Análise espacial da vulnerabilidade das praias do Estado de Santa Catarina a ondas por meio de um índice multicritério

Dissertação apresentada ao Instituto Oceanográfico da Universidade de São Paulo, como parte dos requisitos para a obtenção do título de Mestre em Ciências, Programa de Oceanografia, área de Oceanografia Geológica.

Orientador: Prof. Dr. Eduardo Siegle
Coorientador: Prof. Dr. Jarbas Bonetti Filho

São Paulo
2017
Universidade de São Paulo
Instituto Oceanográfico (IOUSP)

ANÁLISE ESPACIAL DA VULNERABILIDADE DAS PRAIAS DO ESTADO DE SANTA CATARINA A ONDAS POR MEIO DE UM ÍNDICE MULTICRITÉRIO

Mirela Barros Serafim

Dissertação apresentada ao Instituto Oceanográfico da Universidade de São Paulo, como parte dos requisitos para a obtenção do título de Mestre em Ciências, Programa de Oceanografia, área de Oceanografia Geológica

Julgada em _____/_____/____

Prof. Dr. Eduardo Siegle

Conceito

Prof. (a) Dr. (a)

Conceito

Prof. (a) Dr. (a)

Conceito
Sumário

Resumo ... vi
Abstract ... vii
Lista de figuras ... viii
Lista de tabelas ... ix
1. INTRODUÇÃO ... 1
2. FUNDAMENTAÇÃO TEÓRICA ... 6
 2.1. Terminologia associada à vulnerabilidade no contexto das mudanças climáticas 6
 2.1.1. Perigo e ameaça (hazard) ... 6
 2.1.2. Exposição, sensibilidade e suscetibilidade .. 8
 2.1.3. Resiliência e capacidade adaptativa ... 8
 2.1.4. Vulnerabilidade .. 9
 2.1.5. Risco .. 10
 2.1.6. Desastre natural .. 11
 2.1.7. Considerações quanto aos termos utilizados ... 12
 2.2. Escala e resolução espacial ... 12
 2.3. Índice de vulnerabilidade costeira ... 14
3. OBJETIVOS .. 16
 3.1. Geral .. 16
 3.2. Específicos .. 16
4. ÁREA DE ESTUDO ... 17
 4.1. Caracterização física .. 18
 4.2. Análises de vulnerabilidade costeira no Estado ... 20
5. MATERIAIS E MÉTODOS .. 22
 5.1. Delimitação da linha de costa .. 25
 5.2. Delimitação da área em perigo .. 26
 5.3. Avaliação da suscetibilidade ... 26
 5.3.1. Largura de praia .. 26
 5.3.2. Modelagem numérica de ondas ... 26
 5.3.2.1. Malha numérica ... 28
 5.3.2.2. Batimetria ... 29
 5.3.2.3. Definição dos limites de contorno ... 30
 5.3.2.4. Climatologia de ondas .. 31
 5.3.2.5. Dados mareográficos .. 32
 5.3.3. Gradiente de deriva litorânea potencial .. 32
 5.3.4. Elevação e declividade do terreno .. 34
 5.4. Avaliação da capacidade adaptativa ... 35
 5.4.1. Área ocupada .. 35
 5.4.2. Distância entre ocupação e linha de costa ... 35
 5.4.3. Variáveis socioeconômicas ... 36
 5.4.3.1. Número de residentes .. 38
5.4.3.2. Renda por residente ... 39
5.4.3.3. Domicílios de uso ocasional ... 39
5.5. Resolução dos dados .. 39
5.6. Ponderação das variáveis .. 40
5.7. Integração dos dados em ambiente Sistema de Informação Geográfica 42
5.8. Índices de suscetibilidade (ISC), capacidade adaptativa (ICA) e vulnerabilidade (IVC) 42
6. RESULTADOS E DISCUSSÃO .. 44
 6.1. Perigos costeiros no litoral catarinense ... 44
 6.1.1. Exposição das áreas ocupadas a ondas ... 44
 6.1.1.1. Cenários de maior frequência de ocorrência de direções leste (CFE), sul (CFS) e nordeste (CFNE) .. 47
 6.1.1.2. Cenário extremo de direção sul (CES) ... 49
 6.1.2. Propagação de ondas em águas rasas .. 50
 6.1.3. Gradiente de deriva litorânea potencial .. 53
 6.2. Classificação das variáveis em graus de vulnerabilidade 54
 6.3. Ponderação das variáveis .. 55
 6.4. Distribuição espacial das variáveis e índices .. 59
 6.4.1. Análise espacial das variáveis e índices nos cinco setores do GERCO/SC 59
 6.4.1.1. Litoral norte .. 62
 6.4.1.2. Litoral centro-norte ... 63
 6.4.1.3. Litoral centro ... 64
 6.4.1.4. Litoral centro-sul .. 65
 6.4.1.5. Litoral sul .. 65
 6.4.2. Suscetibilidade, capacidade adaptativa e vulnerabilidade no litoral catarinense 66
 7. CONSIDERAÇÕES FINAIS ... 75
 8. REFERÊNCIAS BIBLIOGRÁFICAS .. 80
Agradecimentos

À Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, processo de número 10422-5 do ano dois mil e quinze) e à Fundação de Apoio ao Instituto de Pesquisas Tecnológicas (FIPT) pelo financiamento da pesquisa.

Aos meus orientadores, por todo o conhecimento repassado, profissionalismo, amizade e compreensão.

Professor Eduardo, muito obrigada pelo abrigo no laboratório, por todo o apoio científico, burocrático e pelo bom relacionamento pessoal.

Professor Jarbas, obrigada pela constante presença na minha vida acadêmica, amizade, dedicada orientação e conselhos.

À Alessandra Corsi, pelo acolhimento no IPT, interesse no projeto, por toda a ajuda técnica e pela amizade.

Ao Guilherme Isoppe e ao Argeu Vanz por disponibilizarem os dados medidos dos marégrafos da EPAGRI/Ciram.

Aos colaboradores do projeto SMC-Brasil, coordenado pelo MMA, pelo fornecimento dos dados batimétricos.

À Secretaria de Estado do Desenvolvimento Econômico Sustentável do Estado de Santa Catarina (SDS/SC) pelo fornecimento dos modelos digitais de terreno, bem como ao José Maurício de Camargo, do Laboratório de Oceanografia Costeira da UFSC, pela ajuda com a obtenção dos mesmos.

À Isabel Montoya, Alessandra Corsi e ao Michel de Mahiques, Paulo Sousa, Guilherme Fernandez, Eduardo Siegle, Jarbas Bonetti pela colaboração na determinação de pesos às variáveis.

Às pessoas queridas do Laboratório de Dinâmica Costeira do IOUSP (LDC) pela troca de conhecimentos. Um abraço à Mirella Borba, Carolina Olpe, Bruna Garcia, Lilian Seiler, Mariana Abade e ao Paulo Sousa, Caio Aragon e Tito Conte.

Ao Luís Moneda, pelo companheirismo, compreensão e ajuda com rotinas de Python.

Aos meus pais, Maria Helena e Mário César, por todo o amor, apoio e aceitação em todas as minhas decisões.
Resumo

A manifestação de danos em infraestruturas costeiras decorrente da ação de ondas tem estimulado avaliações de vulnerabilidade para fins de gestão integrada da costa. Os municípios costeiros do Estado de Santa Catarina concentram 28% de sua população e sua interface com o oceano é predominantemente composta por praias arenosas dominadas por ondas. Impactos costeiros relacionados a processos dominados por ondas, sobretudo às escalas local e regional, podem ser ainda mais danosos do que os ocasionados por processos naturais de larga escala (p. ex., a subida do nível do mar). A abordagem utilizada neste estudo consiste na definição de um índice multicritério de vulnerabilidade a ondas de maior frequência de ocorrência e de tempestade para o litoral de Santa Catarina. O índice de vulnerabilidade (IVC) foi obtido a partir da integração entre o índice de capacidade adaptativa, composto por variáveis socioeconômicas e de ocupação (área ocupada, distância entre a ocupação e a linha de costa, número de residentes, renda por residente e número de domicílios de uso ocasional), e o índice de suscetibilidade – composto por variáveis do meio físico (altura significativa de onda, gradiente de deriva litorânea potencial, largura de praia, elevação e declividade). A dinâmica costeira resultante da incidência de ondas sobre as manchas urbanas na área em perígo é analisada através de produtos de modelagem numérica, integrados às demais variáveis em ambiente de Sistema de Informação Geográfica (SIG). A relevância das variáveis na composição do índice foi avaliada pelo método de decisão multicritério AHP (analytic hierarchy process). As variáveis e os índices foram representados em cinco classes de vulnerabilidade (muito baixa, baixa, média, alta e muito alta) nos setores do Plano Estadual de Gerenciamento Costeiro (GERCO/SC). Com base na opinião de especialistas, as variáveis físicas foram consideradas mais relevantes do que as socioeconômicas. Os setores mais suscetíveis e vulneráveis são: centro-sul, sul, norte, centro-norte e centro, respectivamente. Já os setores de menor capacidade adaptativa são: centro-norte, centro, norte, centro-sul e sul, respectivamente. A baixa presença de residentes e ocupações na área em perígo, bem como as maiores distâncias entre a ocupação e a linha de costa – variáveis utilizadas na determinação da capacidade adaptativa e que favorecem a redução da vulnerabilidade – apresentaram um papel secundário na determinação do IVC para os setores centro-sul e sul. Os setores ao norte do Estado são menos suscetíveis e vulneráveis, todavia se encontram intensamente ocupados em praias com menores larguras de faixa de areia, terrenos planos e com baixa declividade (segmentos de maior suscetibilidade). A maior ocorrência de danos por erosão e inundação, atualmente observada ao norte do Estado, pode ser facilmente revertida caso haja a expansão de áreas ocupadas próximo às linhas de costa dos setores centro-sul e sul, tendo em vista a alta suscetibilidade e os baixos valores de renda e de segunda-moradia encontrados ao sul do Estado.

Palavras-chave: geoprocessamento; erosão costeira; inundações costeiras; modelagem numérica; suscetibilidade.
Abstract

The occurrence of coastal infrastructure damage due to wave action has been promoting vulnerability assessments for integrated coastal management. Santa Catarina’s coastal municipalities concentrate 28% of the state’s population and the interface between the coastline and the ocean is predominantly composed by wave-dominated sandy beaches. Coastal impacts related to wave-dominated processes, especially at local and regional scales, can produce more damaging effects than large-scale natural processes (e.g., sea level rise). The approach suggested in this study consists of defining a vulnerability multicriteria index, for Santa Catarina’s coastline, to waves with higher frequency of occurrence and to storm wave events. The coastal vulnerability index (IVC) was obtained by integrating the adaptive capacity index, composed by socioeconomic and occupational variables (constructed area, distance between human settlements and shoreline, number of residents, income per capita and number of households for occasional use), and the susceptibility index — consisting of environmental variables (significant wave height, potential longshore drift gradient, beach width, coastal elevation and slope). The resulting coastal dynamics from nearshore wave incidence is analyzed through the application of a numerical model, integrated with the other variables by geoprocessing techniques in a Geographic Information System (GIS) environment. The variables’ relevance in the index formula was obtained by the analytic hierarchy process (AHP). Variables and indices were hierarchized in five vulnerability classes (very low, low, medium, high and very high) and represented in the sectors from the State Coastal Management Plan (GERCO/SC): north, center-north, center, center-south and south. Based on specialists’ opinion on the determination of vulnerability, physical/environmental variables were considered more relevant than socioeconomic variables. The most susceptible and vulnerable sectors are: center-south, south, north, center-north and center, respectively. Sectors with the lowest adaptive capacity are: center-north, center, north, center-south and south, respectively. The low number of residents and settlements in the endangered area, as well as the greater distances between occupied area and the shoreline — variables used to determine adaptive capacity and that contribute to reduction of vulnerability — played a secondary role in the CVI’s determination for the center-south and south sectors. The northern sectors of the state are less susceptible and vulnerable; however, they are intensely occupied in beaches with smaller beach width, lower elevation and slope (segments with higher susceptibility degrees). The highest occurrence of erosion and flood damage, currently observed at the north of the state, can easily be reversed in case of expansion of settlements near the center-south and south sectors, as a function of the higher susceptibility degrees and lower income per capita and number of households of occasional use found at the south of the state.

Keywords: geoprocessing; coastal erosion; coastal inundation; numerical modeling; susceptibility.
Lista de figuras

Figura 1 – Localização da área de estudo e setores do GERCO/SC. ... 17
Figura 2 – Fluxograma de avaliação da vulnerabilidade costeira. .. 23
Figura 3 – Identificação da interface entre areia seca e úmida em um trecho da Praia do Rosa,
Figura 4 – Demonstração da malha numérica ao longo de todo o domínio (A), detalhamento ao longo
da costa de Santa Catarina (B) e ao longo da Ilha de Santa Catarina (C). 29
Figura 5 – Superfície batimétrica interpolada na área de domínio. .. 30
Figura 6 – Detalhe do mapeamento das manchas urbanas no município de Garopaba dentro da área
em perigo de 67 m de distância da linha de costa. .. 36
Figura 7 – Malha digital dos setores censitários do censo de 2010 realizado pelo IBGE. 37
Figura 8 – Frequência de ocorrência de ondas por direção de propagação em classes de altura
significativa (A) e de período de onda (B). .. 46
Figura 9 – Percentual de área em perigo ocupada nas direções de exposição da linha de costa. 47
Figura 10 – Altura significativa de onda (Hs) para os cenários de maior frequência de ocorrência de
direções nordeste (CFNE), leste (CFE), sul (CFS) e para o cenário extremo de direção sul (CES). .. 52
Figura 11 – Direção da deriva litorânea potencial para os cenários de onda e para o modelo
multiespectral. ... 54
Figura 12 – Espacialização das variáveis socioeconômicas e de ocupação e modelo de capacidade
adaptativa. .. 61
Figura 13 – Espacialização das variáveis físicas e modelo de suscetibilidade. 61
Figura 14 – Espacialização dos modelos de suscetibilidade, capacidade adaptativa e vulnerabilidade.
... 62
Figura 15 – Representação gráfica do percentual de graus de vulnerabilidade, para o modelo de
suscetibilidade, por setor do GERCO/SC. ... 67
Figura 16 – Representação gráfica do percentual de graus de vulnerabilidade, para o modelo de
capacidade adaptativa, por setor do GERCO/SC. ... 68
Figura 17 – Representação gráfica do percentual de graus de vulnerabilidade, para o modelo de
vulnerabilidade, por setor do GERCO/SC. ... 69
Figura 18 – Ocupação para as áreas em perigo compreendidas entre a linha de costa e a distância de
170 m (A) e de 67 m (B) da mesma. ... 74
Figura 19 – Percentual de área ocupada nas direções de exposição da linha de costa para as áreas
em perigo compreendidas entre a linha de costa e a distância de 170 m (A) e de 67 m (B) da mesma.
.. 74
Lista de tabelas

Tabela 1 – Definição dos termos técnicos assumida para a análise de vulnerabilidade costeira. 12
Tabela 2 – Contextualização das variáveis que compõem o Índice de Vulnerabilidade Costeira (IVC). 24
Tabela 3 – Área em perigo definida por Muler (2012). 26
Tabela 4 – Resolução e fonte dos dados utilizados para a obtenção das variáveis de vulnerabilidade. 40
Tabela 5 – Distribuição da frequência de ocorrência de Hs por direção de propagação de onda. Destaque para as classes de Hs mais expressivas para as direções com frequência de ocorrência >20% e direção nordeste (Hs de 1,5 a 1,99 m) e para a classe de Hs representativa de valores extremos de direção sul (Hs de 4,5 a 4,99 m). 45
Tabela 6 – Distribuição da frequência de ocorrência do período de onda (Tp) para ondas de leste com Hs entre 1,5 – 1,99 m. Destaque para a classe de maior frequência de ocorrência. 48
Tabela 7 – Distribuição da frequência de ocorrência do período de onda (Tp) para ondas de sul com Hs entre 1,5 – 1,99 m. Destaque para a classe de maior frequência de ocorrência. 48
Tabela 8 – Distribuição da frequência de ocorrência do período de onda (Tp) para ondas de nordeste com Hs entre 1,5 – 1,99 m. Destaque para a classe de maior frequência de ocorrência. 49
Tabela 9 – Distribuição da frequência de ocorrência de valores extremos de Hs (m) por direção de propagação de onda. Destaque para a classe de altura de onda mais expressiva na direção de maior frequência de ocorrência. 50
Tabela 10 – Distribuição da frequência de ocorrência do período de onda (Tp) para ondas do quadrante sul com Hs entre 4,5 – 4,99 m. Destaque para a classe de maior frequência de ocorrência. 50
Tabela 11 – Frequência de ocorrência das classes de altura significativa de onda representativas dos cenários modelados numericamente. 51
Tabela 12 – Classificação das variáveis de suscetibilidade em graus de vulnerabilidade. Os valores representam o limite superior de cada classe. 55
Tabela 13 – Classificação das variáveis de capacidade adaptativa em graus de vulnerabilidade. Os valores representam o limite superior de cada classe. 55
Tabela 14 – Ponderação e razão de consistência (RC) das variáveis por especialista. 57
Tabela 15 – Ponderação final das variáveis. 58
1. INTRODUÇÃO

As mudanças climáticas representam um problema clássico de variações globais multiescala na medida em que se caracterizam por atores, estressores e escalas de tempo múltiplos (ADGER, 2006). Por comporem a unidade fisiográfica situada no limite entre o continente e o oceano, as praias se constituem em porções de território com grande propensão para sentir os efeitos advindos das mudanças do clima (PBMC, 2014).

Praias oceânicas podem ser compreendidas como sistemas transicionais altamente dinâmicos e sensíveis, que se ajustam às flutuações dos níveis locais de energia e são retrabalhadas por processos eólicos, biológicos e hidráulicos (HOEFEL, 1998). Caracterizam-se pela presença de sedimentos inconsolidados, depositados e constantemente mobilizados pela ação predominante das ondas e correntes associadas (DAVIDSON–ARNOTT, 2010), conjugada em maior ou menor grau à presença de correntes de maré (ABREU DE CASTILHOS, 2011).

Entre os perigos costeiros que estão relacionados às mudanças climáticas previstas para este século, pode-se citar: a subida do nível do mar e o aumento na frequência de ocorrência de ondas de tempestade em função da diminuição do período de retorno associado a eventos extremos (COOPER e McLAUGHLIN, 1998). Como consequência, estes podem aumentar a suscetibilidade de populações costeiras através da inundação permanente de regiões baixas (incluindo zonas úmidas e estuários), amplificação de episódios eventuais de inundação, aumento da erosão praial e intrusão de água salina em aquíferos subterrâneos (McLEAN et al., 2001); ameaçando recursos históricos, culturais, de infraestrutura, bem como levando à alteração de ecossistemas (COSTA, 2016; McINNES et al., 2003).

O nível do mar tem aumentado em torno de 1,7 a 1,8 mm/ano no último século, com projeção de subida entre 0,26 e 0,98 m durante os próximos cem anos (IPCC, 2013). Em 100 a 150 anos, a elevação contribuirá para o processo de erosão em muitas localidades dado a energia das ondas, o fornecimento de sedimentos e a intervenção antrópica (IPCC, 2007). Outra consequência esperada é o aumento da vulnerabilidade à inundação por marés de tempestade decorrentes de ciclones tropicais (WMO, 2006). Neves (1992) ressalta a tendência de incremento na
ocorrência das chamadas marés meteorológicas no sudeste brasileiro, colaborando na amplificação do poder erosivo dos processos costeiros.

Alterações na frequência e na intensidade de eventos extremos e no clima de ondas têm sido identificadas em pesquisas atuais (IPCC, 2013; YOUNG et al., 2011; DODET et al., 2010; KOMAR e ALLAN, 2008). Ondas de tempestade podem resultar em alterações ambientais muito mais rápidas e significativas na costa do que a elevação do nível do mar, devido à ocorrência gradual desta. Por possuírem as maiores alturas, são frequentemente relacionadas à ocorrência de episódios de erosão aguda e de inundação marinha brusca. Morfologicamente, influenciam na dinâmica costeira tanto pelo transporte direto de sedimentos quanto pela geração de correntes devido à quebra da onda, acarretando em pontos de erosão e de acreção.

Latitudinalmente, o Estado de Santa Catarina se situa em uma faixa de transição de processos meteorológicos e oceanográficos ocorrentes sobre o Atlântico Sul. O litoral é fortemente influenciado pela passagem de frentes frias, as quais favorecem a ocorrência de eventos marinhos de tempestade que podem se manifestar em inundação marinha e erosão praial, amplificados quando associados a marés astronômicas de sizígia (RUDORFF et al., 2014).

A incidência de perigos costeiros acarreta, muitas vezes, em desastres naturais. Os danos ocorrem, principalmente, em locais da orla marítima de elevada concentração populacional e ocupação desordenada, que apresentam grande potencial de impacto sobre a dinâmica sedimentar costeira (ABREU DE CASTILHOS, 2011).

Considerada patrimônio natural e econômico, a zona costeira abriga atualmente grande parte da população mundial, sendo palco de diversas atividades socioeconômicas. De acordo com o relatório do United Nations Environment Programme (UNEP), a densidade populacional média em zonas costeiras era de 77

Entre os ambientes costeiros, as praias arenosas possuem características dinâmicas que as conferem grande vulnerabilidade à erosão. A resposta dos sistemas praias aos processos atuantes difere em função das escalas de variabilidade temporal e espacial destes (CEPAL, 2012a), além de ser influenciada pela componente antrópica. O impacto humano interfere no escoamento superficial em episódios de inundação pela água do mar, bem como no tempo de recuperação de uma praia aos processos erosivos, principalmente nos decorrentes de eventos de tempestade. Nesse contexto, as interferências antrópicas no balanço sedimentar transversal e longitudinal à costa podem comprometer a manutenção do estoque de sedimentos dos sistemas praias, promovendo a aceleração dos processos erosivos (ABREU DE CASTILHOS, 2011).

A severidade dos impactos causados pelos extremos climáticos depende fortemente do nível de exposição e das vulnerabilidades para cada um destes extremos (IPCC, 2012). Em decorrência, as consequências negativas destes podem estar mais relacionadas às formas como se dá a ocupação do espaço pela sociedade do que com a magnitude do fenômeno desencadeador (MARENGO et al., 2015). Portanto, os impactos ocasionados pelos eventos naturais extremos dependerão da exposição de indivíduos, propriedades ou grupos sociais ao perigo, de características físicas da área e podem ser amenizados pela capacidade de adaptação aos impactos, refletida pela resiliência dos sistemas (humanos e/ou naturais) atingidos.

As evidências existentes sugerem que os impactos das mudanças climáticas aumentarão substancialmente os encargos sobre as populações que já são vulneráveis às manifestações de eventos climáticos extremos e que as mesmas terão que suportar o peso das mudanças projetadas, e cada vez mais observadas, atribuídas às mudanças climáticas globais (ADGER, 2006). O primeiro relatório de avaliação nacional do Painel Brasileiro de Mudanças Climáticas (PBMC, 2014) atenta que as populações mais pobres serão as mais atingidas pelas alterações do clima, tornando-se necessário o desenvolvimento de pesquisas científicas sobre recursos naturais com aderência de questões socioeconômicas. Em decorrência destes apontamentos científicos, a identificação das vulnerabilidades existentes – principalmente a nível local e regional – é imprescindível para que as mesmas sejam
contornadas através de medidas apropriadas, e planejadas a tempo, de proteção à vida, à propriedade e ao meio ambiente.

Diferentes metodologias têm sido propostas para a avaliação de vulnerabilidades costeiras, principalmente a potenciais impactos ocasionados pela subida do nível do mar e por ondas de tempestade em áreas desenvolvidas. Um dos métodos mais difundidos na academia é a utilização de índices de vulnerabilidade costeira como ferramentas de controle e suporte a medidas preventivas de gestão. Nesse contexto, o *Coastal Vulnerability Index* (CVI), descrito por Gornitz e Kanciruk (1989) e Gornitz (1991), tem sido amplamente aplicado com ajustes para as variáveis locais e considerando a disponibilidade de dados. Complementarmente, demais técnicas de geoprocessamento são comumente associadas aos índices, entre elas: Sistemas de Informação Geográfica, sensoriamento remoto e modelagem numérica.

A incidência de perigos na zona costeira ocasiona diferentes graus de vulnerabilidade sobre a mesma. Estes irão depender dos componentes do meio físico (por exemplo, tipos litológicos e de ambientes costeiros, elevação do terreno, presença de estruturas artificiais), dos agentes costeiros (ondas, correntes e marés) que influenciam os processos litorâneos e dos componentes socioeconômicos da área afetada (população, renda, atividades econômicas, desenvolvimento de medidas educacionais para lidar com os impactos, entre outros). Portanto, uma análise efetiva de vulnerabilidade costeira requer um estudo detalhado das energias disponíveis e capazes de causar danos à população, das características físicas locais relacionadas ao amortecimento dessa energia, bem como de fatores socioeconômicos que interfiram na capacidade da população em minimizar e enfrentar impactos produzidos por um agente de dada magnitude.

Este trabalho tem como objetivo compreender a vulnerabilidade através de uma visão holística, considerando os sistemas naturais e sociais detalhadamente e de forma integrada. A metodologia utilizada consiste na integração de variáveis físicas e socioeconômicas, processadas por meio de modelagem numérica e demais técnicas de geoprocessamento, posteriormente espacializadas e integradas em um Sistema de Informação Geográfica. As variáveis foram integradas pela aplicação de índices multicritério ponderados, adaptados do CVI de Gornitz (1991), compostos por variáveis físicas (índice de suscetibilidade), socioeconômicas e de ocupação (índice de capacidade adaptativa) e por todas as variáveis (índice de vulnerabilidade).
Considerou-se fundamental estudar detalhadamente os processos hidrodinâmicos capazes de gerar impactos na costa por meio de uma modelagem numérica integrada, com base em dados medidos de maré e em análise de ondas de maior ocorrência no litoral do Estado, assim como aquelas mais relacionadas a eventos extremos e também as de maior incidência sobre áreas ocupadas. Com este propósito, também foram mapeados polígonos com ocupação próximos à linha de costa. Além disso, é apresentada uma análise crítica quanto à inclusão das variáveis ao índice – contribuição de fundamental importância à compreensão da vulnerabilidade para a costa do Estado de Santa Catarina.

Atualmente, os estudos de vulnerabilidade costeira consideram conjuntos distintos de variáveis para o cálculo dos índices, produzindo resultados muito diversos, inclusive para uma mesma área de estudo. Para que sejam alcançados resultados mais consistentes com a realidade, um grande avanço é o reconhecimento da importância relativa das variáveis quanto à influência na capacidade de uma área em se antecipar, enfrentar, resistir e se recuperar do impacto produzido por um evento natural através de seus elementos físicos e socioeconômicos. Visando suprir essa necessidade, as variáveis selecionadas foram ponderadas no índice com base na opinião de especialistas em análises de vulnerabilidade e/ou morfodinâmica costeira.
2. FUNDAMENTAÇÃO TEÓRICA

A ciência da mudança climática possui caráter multidisciplinar. Como consequência, os conceitos terminológicos são muitas vezes interpretados de distintas maneiras (ROMIEU et al., 2010). Mais especificamente, a falta aparente de convergência ao longo do tempo reflete a variedade de objetivos de pesquisa e fenômenos explicados (ADGER, 2006).

Por este motivo, o conceito de vulnerabilidade tem sido continuamente expandido com o objetivo de se atingir um formato que possibilite sua adequada delimitação. Deve, idealmente, abranger as diferentes áreas em que a vulnerabilidade pode ser reconhecida (ambiental, social, econômica, institucional) e considerar sua relação com os demais termos habitualmente empregados em estudos de eventos extremos, entre eles: suscetibilidade, perigo, exposição, capacidade adaptativa, risco e desastre natural.

Devido à falta de consenso acerca da diversidade terminológica em estudos de vulnerabilidade e ao significativo aumento de produções científicas nessa área temática, uma explicação clara da terminologia adotada se faz essencial para sustentar o estudo.

Também é essencial que sejam definidos, em cada projeto, o objeto de estudo e os agentes que condicionam a vulnerabilidade em análise. Mazzer (2007) ressalta a importância de se determinar os elementos que norteiam as metodologias dos estudos, sendo eles: escala espacial, indicadores, tratamento e análise dos dados.

2.1. Terminologia associada à vulnerabilidade no contexto das mudanças climáticas

2.1.1. Perigo e ameaça (hazard)

O termo hazard, da literatura inglesa, é traduzido para o português como perigo ou ameaça. Os perigos naturais (natural hazards) associados às mudanças do clima podem ser classificados, conforme suas origens, em: geológicos, hidrometeorológicos ou biológicos. São caracterizados por sua localização, intensidade, frequência e probabilidade de ocorrência (ISDR, 2004).
Gornitz (1991) define perigo costeiro como o fenômeno natural que expõe a zona costeira a riscos de danos e demais efeitos adversos, citando como exemplos: a subida do nível do mar, marés de tempestade, ventos e ondas extremas. Nicolodi e Petermman (2010) citam como perigos costeiros a sobrelevação temporária do nível do mar causada por tempestades associadas a baixas pressões e ventos fortes (maré meteorológica – *storm surge*), as ondas geradas por ventos extremos e a erosão costeira pela ação de ondas, marés e correntes. Nos Relatórios de Avaliação de Danos (AVADANS) da Defesa Civil brasileira, os processos marinhos com possibilidade de causar danos costeiros são referidos como: “inundações litorâneas provocadas pela brusca invasão do mar” e “erosão marinha”.

Entre os perigos atuantes na linha de costa, as ondas de tempestade se destacam pela intensidade de danos ocasionados. As ondas podem causar danos às propriedades tanto pelo impacto direto da pressão da água quanto pelos impactos dos detritos nela presentes (GARES et al., 1994). Ondas com amplitude maior que o normal (ondas de tempestade), na maioria das vezes, ocorrem devido à atuação de sistemas meteorológicos de baixa pressão (ciclones extratropicais). Quando associadas à sobrelevação do nível do mar provocada pela elevação da maré astronômica e/ou maré meteorológica, têm-se o fenômeno denominado “ressaca” (BITENCOURT et al., 2002).

No presente estudo, compreende-se perigo costeiro como o fenômeno físico, processo natural ou a atividade humana com potencial de gerar danos à população. Tem-se como exemplo as ondas de tempestade, que acarretam em processos erosivos e inundacionais bruscos.
2.1.2. Exposição, sensibilidade e suscetibilidade

O reconhecimento da relação entre as ameaças ambientais e o meio físico é essencial em uma análise de vulnerabilidade e está fortemente relacionado aos conceitos de exposição, sensibilidade e suscetibilidade. A exposição é a natureza e o grau com que um sistema experimenta estresse ambiental ou também sócio-político (BURTON et al., 1993 apud ADGER, 2006). Os termos sensibilidade e suscetibilidade são muitas vezes utilizados como sinônimos e representam modificações do ambiente – ocasionadas por eventos naturais – condicionadas pelas características físicas do meio.

Eventuais danos na zona costeira irão se manifestar segundo uma maior ou menor propensão à alteração da condição de equilíbrio dinâmico de uma área em função das características de seu meio físico. O grau em que um sistema é afetado, quer negativamente ou beneficamente, por uma ameaça/perigo define a sensibilidade do sistema (NGUYEN et al., 2016). Já a definição do termo suscetibilidade é mais comumente associada a impactos negativos. Um exemplo é a definição de UNDP (2004), pela qual a suscetibilidade é entendida como a intensidade ou probabilidade de um determinado ambiente sofrer impacto em função de um perigo natural, tendo como fatores suas características físicas.

2.1.3. Resiliência e capacidade adaptativa

Segundo a ISDR (2004), a capacidade adaptativa é determinada pelo grau que um sistema social possui em se auto organizar e aumentar sua capacidade de
aprender e se adaptar, incluindo a capacidade de recuperação de um desastre. Uma área de elevada capacidade adaptativa indica uma maior resiliência das populações afetadas e representa práticas, processos ou estruturas capazes de moderar ou eliminar o dano potencial, bem como o aproveitamento das oportunidades criadas por uma mudança no clima.

Em síntese, a capacidade adaptativa pode ser compreendida como a habilidade de um sistema, comunidade ou sociedade de se adaptar a mudanças ou evoluir, pelo aumento da tolerância da variabilidade com a qual podem lidar, para acomodar ameaças ambientais. Sua identificação é feita através de fatores sociais, econômicos, culturais, institucionais, entre outros.

2.1.4. Vulnerabilidade

O termo vulnerabilidade é usualmente definido em termos negativos, através de sua relação com danos ambientais, sociais, econômicos e culturais. Representa o estado das comunidades, incluindo sua estrutura social, ativos físicos, economia e suporte ambiental – elementos que fazem com que as mesmas sejam mais ou menos afetadas por eventos extremos (IOC, 2009; ISDR, 2004).

O Painel Intergovernamental de Mudanças Climáticas (IPCC) define vulnerabilidade como o grau no qual um sistema natural ou social é suscetível e incapaz de lidar com os efeitos adversos das mudanças do clima (IPCC, 2007). Adger (2006) ressalta ainda que a vulnerabilidade está relacionada à potencialidade de se absorver os impactos, à autonomia de se auto organizar e à habilidade de se adaptar, melhorando ou simplesmente reagindo/ lidando com os impactos. Portanto, a vulnerabilidade é uma função do caráter, magnitude e taxa de variação climática a que um sistema é exposto, sua sensibilidade (sinônimo de suscetibilidade) e sua capacidade adaptativa (ADGER, 2006).

Nesse sentido, a Comissão Europeia (SCHNEIDERBAUER e EHRlich, 2004) considera que a vulnerabilidade é composta pelos termos suscetibilidade (ou sensibilidade) e resiliência e que esta, por sua vez, pode se dividir em: capacidade de resistir e de se recuperar. O IPCC estabelece que a vulnerabilidade é função da suscetibilidade de um sistema a mudanças no clima e da capacidade adaptativa – equivalente ao termo “resiliência” definido pela Comissão Europeia (IPCC, 2007).
Em resumo, a vulnerabilidade se vincula à ideia ampla de se estar propenso a sofrer danos ou perdas devido à ação de um perigo. É uma característica de pessoas, ecossistemas e regiões confrontando estresses ambientais e socioeconômicos. Aqui ela é entendida como resultante da associação entre suscetibilidade (características físicas/ambientais da costa) e capacidade adaptativa (aspectos socioeconômicos das comunidades costeiras).

A vulnerabilidade representa o grau com que um sistema, comunidade ou indivíduo se antecipa, enfrenta, resiste e se recupera do impacto produzido por um agente de uma dada magnitude. Portanto, uma área de suscetibilidade muito alta pode ser pouco vulnerável. Isso significa que a mesma possui uma maior capacidade adaptativa frente a um impacto produzido por um agente de dada magnitude, devido às características dos elementos de seus meios social, econômico, institucional. Os impactos e a recuperação do tsunami da Ásia em 2004, ou a habilidade de pequenas ilhas em enfrentar extremos relacionados ao clima, por exemplo, demonstram como eventos discretos na natureza expõem a vulnerabilidade local e transfiguram os sistemas em novos domínios onde a resiliência pode ser reduzida (ADGER et al., 2005).

Segundo Muler e Bonetti (2014), os mapas de suscetibilidade fornecem indicações para o planejamento da expansão da ocupação costeira, na medida em que identificam áreas intrinsecamente expostas aos perigos. O mapeamento da vulnerabilidade, por sua vez, fornece subsídios para ações adaptativas.

2.1.5. Risco

O conceito de risco é compreendido na bibliografia como uma medida da probabilidade de consequências adversas ou perdas esperadas (de vidas, pessoas feridas, propriedade, meios de vida, ruptura de atividades econômicas ou ambientes danificados) resultantes da convolução entre os perigos naturais e as condições de vulnerabilidades e capacidades (CEPAL, 2011; UNDP, 2004; ISDR, 2004).

O risco está associado a um acontecimento que pode ou não se realizar. A sua existência está condicionada à valoração de algum bem, material ou imaterial, pois não há risco sem a noção de que se pode perder alguma coisa. Além disso, deve-se considerar o sujeito que corre risco, por exemplo um indivíduo ou a sociedade.
Segundo CEPAL (2011), o risco deve ser determinado para um elemento exposto num período de tempo e quantificado em função da perda econômica esperada, número de vidas perdidas ou da extensão do dano físico à propriedade.

2.1.6. Desastre natural

A incidência de perigos sobre a costa acarreta, muitas vezes, em desastres naturais. Sua ocorrência está associada à ocupação da faixa de praia dos municípios costeiros – espaço privilegiado para o desenvolvimento de atividades turísticas, de lazer, pesca, entre outras (PBMC, 2014). A elevada concentração populacional sobre a região costeira colabora para uma maior ocorrência de danos, principalmente quando a ocupação é feita de maneira desordenada.

Desastres resultam de uma combinação de ameaças, condições de vulnerabilidade e capacidades ou medidas insuficientes para a redução das consequências de risco (ISDR, 2004). Um desastre natural expressa uma ruptura das funcionalidades de um território desencadeada por um perigo, ocasionando perdas humanas, materiais, econômicas e ambientais que excedem a capacidade de resposta frente ao evento adverso (UNDP, 2004). A extensão de um desastre dependerá da intensidade e abrangência do perigo e da vulnerabilidade do sistema social impactado (UNDP, 2004). Sua magnitude e risco são diretamente proporcionais à sensibilidade e inversamente proporcionais ao grau de resiliência da comunidade exposta (ADGER, 2006).

Algumas definições para o termo “desastre natural” estabelecem limites mínimos de prejuízos financeiros que devem ser causados, ou uma quantidade mínima de pessoas atingidas, para que os impactos de um evento extremo o caracterizem como tal (BURTON et al., 1978 apud MARENGO et al., 2015). Entretanto, segundo Marengo et al. (2015) esta definição não considera os diferentes níveis de preparo e estruturação das sociedades, uma vez que nações mais fragilizadas levam muito mais tempo para se recuperar de prejuízos financeiros e/ou humanos, e podem até mesmo entrar em colapso, especialmente quando os desastres são recorrentes.
2.1.7. Considerações quanto aos termos utilizados

Neste trabalho são identificadas as vulnerabilidades associadas às características físicas do meio (suscetibilidade), socioeconômicas e de ocupação (capacidade adaptativa) que interferem na ocorrência de danos por processos costeiros relacionados a ondas.

Diante da diversidade de áreas em que a vulnerabilidade atua e de conceitos associados, as definições assumidas para os principais termos foram sintetizadas na Tabela 1.

<table>
<thead>
<tr>
<th>TERMINOLOGIA</th>
<th>DEFINIÇÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perigo</td>
<td>Fenômeno físico, processo natural ou atividade humana com potencial de gerar danos à população.</td>
</tr>
<tr>
<td>Suscetibilidade</td>
<td>Propensão à alteração da condição de equilíbrio dinâmico de um setor em função das características físicas do meio.</td>
</tr>
<tr>
<td>Capacidade adaptativa</td>
<td>Fatores sociais e econômicos que possibilitam à população se adaptar ou evoluir para acomodar ameaças e aumentar a tolerância da variabilidade de condições ambientais com a qual podem lidar.</td>
</tr>
<tr>
<td>Vulnerabilidade</td>
<td>Capacidade de uma área de se antecipar, enfrentar, resistir e se recuperar do impacto produzido por um agente de dada magnitude através de elementos físicos e socioeconômicos (CEPAL, 2011).</td>
</tr>
<tr>
<td>Risco</td>
<td>Medida da probabilidade de consequências adversas resultantes da interação entre os perigos naturais e as condições de vulnerabilidade: perdas esperadas de vidas, pessoas feridas, danos materiais e econômicos, entre outros (UNDP, 2004).</td>
</tr>
<tr>
<td>Desastre natural</td>
<td>Ruptura, desencadeada por um perigo natural, que ocasiona perdas humanas, materiais, econômicas e ambientais que excedem a capacidade de resposta frente ao evento adverso (UNDP, 2004).</td>
</tr>
</tbody>
</table>

2.2. Escala e resolução espacial

O detalhe da escala espacial é determinante para a abordagem do estudo e para a resposta que se pretende alcançar. Portanto, a primeira fase de um estudo de vulnerabilidade consiste na definição da escala espacial, a qual pode variar de global (mais de um país), nacional (um país), regional (uma região ou Estado de um país) ou
local (uma praia). Outra classificação é a de macroescala (nacional/internacional), mesoesala (regional) e microescala (local) (CEPAL, 2011).

O presente estudo pode ser considerado de mesoescala. Nesta escala de detalhamento os dados costumam ser mais abundantes, possuir maior resolução e envolver mais aspectos físicos e socioeconômicos quando comparados aos disponíveis para estudos de macroescala, devido à homogeneidade de informação ser exigida somente a nível estadual e dependendo somente de organismos e administrações regionais (CEPAL, 2011). Em análises de mesoescala os dados são mais simples de se obter, detalhados e variados, o que aumenta a confiabilidade dos resultados e gera conclusões e análises mais detalhadas que, por sua vez, podem derivar em atuações e diagnósticos de maior concreção. Por outro lado, possui um menor detalhamento espacial quando comparada a microescalas (por exemplo, MULER, 2012; RUDORFF e BONETTI, 2010).

Estudos de vulnerabilidade a escalas regionais podem servir de apoio ao estabelecimento de áreas prioritárias para estudos locais – identificadas pelos graus de vulnerabilidade mais elevados. Todavia, análises de vulnerabilidade à escala local requerem um grande nível de detalhamento para que possam ser definidas áreas de vulnerabilidade potencial.

Para medidas concretas altamente específicas de defesa da costa é determinante que sejam efetuados estudos locais (CEPAL, 2011), com um maior detalhamento do elemento geomorfológico. No caso de uma praia em que se pretende realizar uma obra de defesa à erosão costeira, é necessário um estudo preciso da configuração geomorfológica e da hidrodinâmica para estabelecer de forma precisa qual será sua evolução frente às distintas alternativas possíveis de proteção.

Adaptações na escala de trabalho devem ser realizadas pela inclusão ou omissão de variáveis. Algumas variáveis, todavia, independem da escala e podem ser aplicadas tanto no índice regional quanto no local, desde que o nível de detalhe aumente com a resolução da área de estudo (McLAUGHLIN e COOPER, 2010). Além da adaptação da escala de análise, outra limitação se dá em função da geometria dos dados. Cada referência geográfica está associada a uma resolução espacial, igual ao tamanho da área associada a essa referência (LONGLEY et al., 2013). No âmbito deste estudo, um bom exemplo é a diferença de áreas e de extensões de linha de costa entre os setores censitários do Instituto Brasileiro de Geografia e Estatística.
A fim de se comparar valores de setores censitários com características tão diferentes, é fundamental que sejam feitas transformações na escala de valores das variáveis utilizadas.

2.3. Índice de vulnerabilidade costeira

Em função das múltiplas facetas que apresenta, a vulnerabilidade não é facilmente avaliada por meio de uma única métrica, tampouco facilmente quantificável. Enquanto é fácil reconhecer pessoalmente a sensação de vulnerabilidade e compreender a resposta desta em outros que estejam em uma situação similar, a tradução desse conjunto complexo de parâmetros em uma métrica quantitativa reduz seu impacto e esconde sua complexidade (ALWANG et al., 2001).

Ainda não existe uma metodologia universal para a determinação de vulnerabilidade costeira e cada análise deve ser adaptada aos objetivos específicos da pesquisa e à escala e às características da área de estudo (CEPAL, 2012b).

Na avaliação de vulnerabilidade por meio de índices multicritérios, as variáveis são selecionadas considerando sua representatividade na sintetização de características ambientais/físicas e socioeconômicas da costa e, após serem espacializadas, são classificadas em graus de vulnerabilidade e analisadas integradamente (BONETTI e WOODROFFE, 2015).

A análise de vulnerabilidade é uma importante ferramenta para a identificação de impactos socioeconômicos em zonas litorâneas. O Painel Brasileiro de Mudanças Climáticas (PBMC) alerta sobre a importância do desenvolvimento de pesquisas científicas sobre recursos naturais com a aderência de fatores socioeconômicos (PBMC, 2014). A inclusão destes a índices de vulnerabilidade costeira tem sido indicada de grande relevância por diversos autores (McLAUGHLIN et al., 2002; GORNITZ et al., 1991). Entretanto, como observado por McLaughlin et al. (2002), muitos dos autores não as incluem mesmo em seus estudos posteriores.

Segundo McLaughlin e Cooper (2010), a incorporação de dados socioeconômicos a índices de vulnerabilidade deve levar em consideração que muitos têm um valor monetário que pode ser restituído, enquanto outros não e, portanto, são difíceis de quantificar. Além disso, destaca-se a dificuldade de obtenção de indicadores socioeconômicos em níveis setoriais adequados ao estudo. O padrão
construtivo de edificações fornecido pelo IBGE a nível municipal, por exemplo, não seria apropriado para representar o tipo de material de edificações expostas à ação marinha, uma vez que o tipo de material predominante na orla pode ser bastante diferente daqueles predominantes em áreas mais afastadas do litoral.

A escolha pelo índice multicritério proposto por Gornitz e Kanciruk (1989), o *Coastal Vulnerability Index* (CVI), para representar a vulnerabilidade costeira do Estado de Santa Catarina foi baseada na necessidade de desenvolvimento de um índice simples, com possibilidade de aplicação em escalas mais amplas e que pudesse abranger, inclusive, áreas com carência de dados. Todavia, no índice proposto não haviam sido incorporados fatores socioeconômicos e nem atribuídos pesos às variáveis – outra contribuição futura a estudos de vulnerabilidade apontada por Gornitz (1991).

\[
CVI = \sqrt{\frac{a_1 \times a_2 \times a_3 \times a_4 \times a_5 \times a_6 \ldots a_n}{n}},
\]

onde, \(a_n\) = variável e \(n\) = número de variáveis.

O índice pode ser calculado tanto pelo produto quanto pela soma das variáveis, após estas terem sido hierarquizadas em graus de vulnerabilidade (GORNITZ, 1991; GORNITZ e WHITE, 1992). Embora o produto tenha a vantagem de expandir o intervalo de valores, pode ser bastante sensível a pequenas mudanças de classe de uma variável.
3. OBJETIVOS

3.1. Geral

Analisar a vulnerabilidade costeira do Estado de Santa Catarina à incidência de ondas por meio de um índice multicritério.

3.2. Específicos

- Identificar, através de modelagem numérica, a exposição costeira a ondas extremas, de alta frequência de ocorrência e àquelas para as quais há um maior percentual de ocupação exposta;

- Definir índices multicritérios que possibilitem estimar a suscetibilidade, a capacidade adaptativa e a vulnerabilidade a ondas para a orla do Estado de Santa Catarina, considerando suas características físicas e socioeconomicas de forma isolada e integrada;

- Ponderar as variáveis do índice em relação à influência de cada uma na vulnerabilidade costeira com base na opinião de especialistas na área; e

- Realizar uma análise descritiva da variabilidade das variáveis físicas, socioeconomicas e dos índices propostos ao longo do litoral catarinense, utilizando como referência os setores do Plano Estadual de Gerenciamento Costeiro (GERCO/SC).
4. ÁREA DE ESTUDO

Inserida na zona costeira do Estado de Santa Catarina, região sul do Brasil, a orla catarinense é delimitada pelos paralelos 25°57’41”S e 29°23’55”S e se situa próxima ao meridiano 49°W. A leste, a linha de costa é banhada pelo Oceano Atlântico na totalidade dos seus 564 km de extensão, ou 1.874 km quando contabilizadas suas baías e ilhas mais expressivas (SANTA CATARINA, 2006).

Para uma melhor visualização dos resultados, o litoral do Estado de Santa Catarina foi representado nos cinco setores do GERCO/SC: norte, centro-norte, centro, centro-sul e sul (Figura 1). Estes abrangem 36 municípios e uma faixa marítima que se estende até o limite do mar territorial, que corresponde a 12 milhas náuticas distantes da linha de base reta (SANTA CATARINA, 2006).

![Figura 1 – Localização da área de estudo e setores do GERCO/SC.](image_url)

Os cinco setores compõem um complexo mosaico formado por uma ampla variedade de ecossistemas litorâneos (lagunas, lagoas, manguezais, ilhas, estuários, dunas, praias), bem como pelos diversificados usos e formas de ocupação humana,
destacando-se os setores de turismo, desenvolvimento urbano, portos, aquicultura, pesca, entre outros.

4.1. Caracterização física

A planície costeira é o domínio que se manifesta predominantemente ao longo do litoral. É representada por terras baixas, com altitudes médias de até 10 m em locais de depósitos holocênicos e entre 24 e 30 m em depósitos pleistocênicos (HORN FILHO e DIEHL, 2004).

Neves e Muehe (2008) definem o litoral do Estado como cristalino e de praias de enseada. Abreu de Castilhos (2011) aponta para o contraste existente entre o litoral sul, com aproximados 120 km de praias retílineas, e os litorais centro e centro-norte, com forte presença de praias de enseada.

As praias arenosas são os ambientes mais frequentes ao longo da linha de costa de Santa Catarina, representando 66% de sua extensão (SERAFIM, 2014). Estas possuem elevado valor social e econômico, em função das diferentes atividades exercidas e da alta concentração populacional nos municípios costeiros – 28% da população segundo os dados censitários do IBGE para o ano de 2010, calculado por Serafim (2014).

Por estar situado na região sul do Brasil, o litoral do Estado apresenta um clima mesotérmico superúmido do tipo temperado (NIMER, 1979) e regime de micromarés (RUDORFF, 2005). A costa sul brasileira é dominada por ondas e está regularmente sob a influência de ciclones extratropicais e outros sistemas de tempestade. Embora os ciclones extratropicais sejam bem menos intensos que os tropicais, geralmente são maiores, movem-se lentamente e podem durar diversos dias, gerando ondas com alturas comparáveis às geradas por furacões e marés de tempestade, que induzem processos erosivos de grande extensão (DOLAN e DAVIS, 1992).

O regime de ondas reflete o padrão meteorológico típico da região, comandado pelas interações entre o Anticiclone semi-estacionário do Atlântico Sul e o Anticiclone Polar Atlântico migratório. Esses dois sistemas atmosféricos determinam, respectivamente, a geração de ondas locais – decorrentes da atuação de ventos de nordeste, e a incidência de ondulações de quadrante sul, associadas à passagem de frentes frias na região (ABREU DE CASTILHOS, 1995).
As isolinhas batimétricas de Santa Catarina acompanham a orientação NE/SW da linha de costa, refletindo em diferenças longitudinais no comportamento das ondas ao se aproximarem de águas rasas (SIEGLE e ASP, 2007). Em decorrência da orientação da linha de costa, é observada uma região mais abrigada ao norte do litoral, quando comparada ao trecho sul. Portanto, o efeito de refração de ondas ao norte é mais significativo e as ondas se aproximam com um maior ângulo na metade sul (SIEGLE e ASP, 2007).

A localização geográfica do Estado de Santa Catarina, situado latitudinalmente em uma região de transição de processos meteorológicos e oceanográficos sobre o Atlântico Sul, explica o seu preocupante histórico de episódios de inundações e erosão costeiras. O litoral é fortemente influenciado pela passagem de frentes frias, com uma média mensal de 3 a 4 eventos (RODRIGUES et al., 2004). A passagem destas influencia a ocorrência de marés meteorológicas e ondas de tempestade, ocasionando episódios de inundações marinha e erosão praial que podem acarretar em danos à zona costeira – principalmente quando associadas a marés astronômicas de sizigia. Em Santa Catarina os eventos meteorológicos podem elevar o nível do mar até 1 m acima da maré astronômica e ocorrer na frequência de 10 dias (TRUCOLLO, 1998).

O aumento do nível do mar decorrente de uma elevação da maré astronômica e/ou meteorológica associado a ondas de amplitude maior que o normal é denominado “ressaca”. As ressacas predominam nos meses de outono e inverno, embora ciclones extratropicais também possam se desenvolver sobre o Oceano Atlântico em outras estações do ano, provocando ventos fortes e gerando agitação marítima na costa da região sul do Brasil (BITENCOURT et al., 2002). A ocorrência destas pode provocar inundações e desencadear processos de erosão aguda favorecidos pela elevação do nível de base do ataque de ondas.

A maioria dos registros de eventos danosos de maré meteorológica associada a ondas de tempestade é para o norte do Estado, o que Herrmann et al. (2009) justifica pela presença de balneários com forte presença de infraestruturas urbanas expostas à ação de ondas. Durante o ano de 2001, nove ressacas foram registradas somente no município de Balneário Camboriú, custando quase R$ 1.000.000,00 aos cofres públicos (BITENCOURT et al., 2002).

No Estado de Santa Catarina, Horn Filho (2006) constatou que, após processos erosivos, praias com baixa ocupação urbana tiveram seu perfil praial recuperado, com
ganho sedimentar. Por outro lado, praias densamente ocupadas tiveram a duna frontal descaracterizada, impedindo a troca de sedimentos. Nestas, os processos erosivos foram intensificados pela ação antrópica acarretando no recuo da linha de costa, observado nas praias de Armação, Barra da Lagoa, Canasvieiras e Ingleses. No litoral centro-norte, Klein et al. (2006) ressaltam a influência da ocupação sobre o sistema de dunas ou de proteção local através da construção de avenidas beira-mar ou de calçadões sobre o prisma ativo da praia.

4.2. Análises de vulnerabilidade costeira no Estado

Estudos de vulnerabilidade e temas correlatos, baseados em SIG, têm sido desenvolvidos de forma mais ampla nos últimos dez anos ao longo do litoral de Santa Catarina.

Mazzer (2007) analisou a vulnerabilidade do sudeste da Ilha de Santa Catarina à erosão através de uma proposta metodológica baseada na variação da linha de costa e na classificação desta em unidades homogêneas representadas por células costeiras. As diferentes características da zona costeira foram estruturadas espacialmente e vinculadas ao balanço sedimentar costeiro.

Rudorff e Bonetti (2010) aplicaram o método dos geoindicadores para o reconhecimento do estado erosional e inferência da suscetibilidade de segmentos da Ilha de Santa Catarina. A partir de técnicas de análise multicritério e lógica difusa foram representados, na forma de superfícies contínuas, os locais mais propensos a serem afetados por eventos extremos em praias com histórico de danos.

Para algumas praias da Ilha de Santa Catarina, Muler e Bonetti (2014) propuseram uma abordagem integrada de avaliação da vulnerabilidade a partir da identificação do grau de exposição humano às ondas incidentes. A análise abrangeu o grau de exposição da costa às diferentes direções de incidência de onda, a presença de estruturas humanas em risco e a caracterização de extremos de altura de onda para cada direção, considerando o clima de ondas local.

Em Serafim (2014) o mapeamento da vulnerabilidade costeira foi avaliado frente a eventos extremos de ondas e marés, segundo a metodologia proposta por Gornitz e Kanciruk (1989). O modelo final de vulnerabilidade foi obtido a partir da integração entre dois outros submodelos: de capacidade adaptativa (composto por variáveis socioeconômicas) e de suscetibilidade (composto por variáveis do meio físico). Embora tenham sido inseridas componentes socioeconômicas ao índice, como sugerido por Gornitz (1991), não foram atribuídos pesos às variáveis – também apontado como uma contribuição futura pela autora. O índice de vulnerabilidade costeira a ondas e marés extremas foi determinado a partir de algumas variáveis que não foram mensuradas na época – por exemplo, as derivadas de modelagem numérica de processos costeiros. As informações de ondas e marés haviam sido coletadas da base de dados da Comissão Econômica para a América Latina e o Caribe (CEPAL, <http://www.cepal.org/id.asp?id=48025>).
5. MATERIAIS E MÉTODOS

As variáveis utilizadas nos modelos de suscetibilidade, capacidade adaptativa e vulnerabilidade costeira para o Estado de Santa Catarina foram avaliadas por meio da associação de técnicas de geoprocessamento baseadas em Sistema de Informação Geográfica (SIG) e em modelagem numérica. O fluxograma de avaliação da vulnerabilidade é apresentado na Figura 2.

Os valores obtidos para cada uma das variáveis foram rebatidos para segmentos da linha de costa do Estado. A representação espacial das variáveis ao longo do litoral se deu com base em classes de vulnerabilidade delimitadas por quintis da escala de valores. Ou seja, os valores ordenados foram divididos em cinco subconjuntos de dimensão essencialmente igual, representados pelos graus de vulnerabilidade de 1 a 5 – muito baixo, baixo, médio, alto e muito alto.

Os modelos gerados resultam da integração de variáveis físicas e socioeconômicas por meio de índices multicritérios adaptados do Coastal Vulnerability Index (CVI) proposto por Gornitz e Kanciruk (1989). Os dados de entrada aos índices foram os graus de vulnerabilidade de cada variável nos segmentos de linha de costa e o peso atribuído a cada uma em relação a sua relevância na vulnerabilidade costeira a ondas.

Ao Índice de Suscetibilidade (ISC) foram incorporadas as variáveis de natureza física: altura significativa de onda, gradiente de deriva litorânea potencial, largura de praia, elevação e declividade. O Índice de Capacidade Adaptativa (ICA) foi representado por componentes socioeconômicas e relacionadas à ocupação costeira: área ocupada, distância entre ocupação e linha de costa, número de residentes, renda por residente, número de domicílios de uso ocasional. O Índice de Vulnerabilidade (IVC), por sua vez, resulta da combinação entre os valores de suscetibilidade e de capacidade adaptativa, anteriormente hierarquizados em graus de vulnerabilidade. O contexto de cada variável na avaliação da vulnerabilidade costeira é apresentado na Tabela 2.

Na construção de índices de vulnerabilidade, deve-se avaliar uma série de pontos com o objetivo de compreender quais variáveis são mais representativas para a análise e qual peso deve ser atribuído a cada uma delas. Para tanto, optou-se por ponderar as variáveis através de um método de decisão multicritério (MCDM) que
envolvia critérios subjetivos. O método escolhido foi o *Analytic Hierarchy Process* (AHP).

![Figura 2 – Fluxograma de avaliação da vulnerabilidade costeira.](image)
Tabela 2 – Contextualização das variáveis que compõem o Índice de Vulnerabilidade Costeira (IVC).

<table>
<thead>
<tr>
<th>Sub-índice</th>
<th>Variável</th>
<th>Contexto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacidade Adaptativa</td>
<td>Área em perigo ocupada</td>
<td>Área construída com propensão a ser impactada por eventos de erosão e inundação, mapeadas no formato de polígonos a partir de imagens aéreas. Um maior número de estruturas/construções pode refletir em gastos econômicos elevados.</td>
</tr>
<tr>
<td></td>
<td>Distância entre linha de costa e área ocupada</td>
<td>Quanto maior a distância das ocupações ao mar, maior a perda de energia de onda e menor a chance de áreas construídas serem impactadas. A medição foi realizada a partir de imagens aéreas.</td>
</tr>
<tr>
<td></td>
<td>Número de residentes</td>
<td>Número de pessoas expostas a um perigo costeiro, representado pela menor unidade espacial de coleta de dados do IBGE – o setor censitário.</td>
</tr>
<tr>
<td></td>
<td>Renda por residente</td>
<td>Quanto maior o rendimento de um setor, maior a capacidade deste em reverter uma situação de dano e, até mesmo, de resistir a um impacto pela construção de estruturas de proteção e melhores padrões construtivos das edificações. A variável é representada nos setores censitários costeiros do IBGE.</td>
</tr>
<tr>
<td></td>
<td>Número de domicílios de uso ocasional</td>
<td>A existência de uma segunda moradia indica a possibilidade de deslocamento dos moradores para outra habitação quando a casa próxima à costa for danificada ou ameaçada por um perigo. A variável é representada nos setores censitários costeiros do IBGE.</td>
</tr>
<tr>
<td>Suscetibilidade</td>
<td>Altura significativa de onda</td>
<td>Maiores alturas de onda acarretam em um maior avanço do mar sobre a costa, colaborando para a ocorrência de processos erosivos e de inundação. Influencia na energia de onda, fator de grande importância nos processos costeiros e na geração de correntes longitudinais e transversais, que controlam grande parte dos processos de erosão. A variável é resultante de modelagem numérica costeira.</td>
</tr>
<tr>
<td></td>
<td>Gradiente de deriva litorânea potencial</td>
<td>Demonstra a estabilidade/instabilidade sedimentar de uma linha de costa. A variável é resultante de modelagem numérica costeira.</td>
</tr>
<tr>
<td></td>
<td>Largura de praia</td>
<td>Sistemas praiais mais largos são mais propensos à estabilidade. A medição foi realizada a partir de imagens aéreas.</td>
</tr>
<tr>
<td></td>
<td>Elevação média da área em perigo</td>
<td>Predisposição, em dimensão vertical, que a orla marítima irá apresentar frente a um recuo da linha de costa, além de estar associada à suscetibilidade e inundação costeira. Quanto maior a elevação, menor a probabilidade das áreas ocupadas e dos residentes serem impactados por agentes marinhos. A variável foi obtida a partir de um modelo digital de terreno.</td>
</tr>
<tr>
<td></td>
<td>Declividade média da área em perigo</td>
<td>Quanto maior a declividade, menor a probabilidade das áreas ocupadas e dos residentes serem impactados por agentes marinhos. A variável foi obtida a partir de um modelo digital de terreno.</td>
</tr>
</tbody>
</table>
5.1. Delimitação da linha de costa

A linha de costa utilizada como referência foi digitalizada sobre a interface areia úmida/seca na escala de análise de 1:5000, utilizando-se imagens do satélite Quickbird como base geográfica (Figura 3). As imagens possuem 3 bandas multiespectrais e resolução espacial de 2,4 m (EURIMAGE, 2001).

Priorizou-se a escolha da imagem mais recente e de boa qualidade disponível para a área, tendo sido utilizadas imagens dos anos de 2002 a 2010, as quais tiveram seu brilho e contraste corrigidos – quando necessário – a fim de facilitar a identificação da interface.

A interface entre a areia seca e a úmida pôde ser delimitada pela mudança de coloração decorrente dos diferentes padrões de reflexão da luz solar pelo sedimento. A areia seca tem maior reflectância que a molhada, o que explica a diferença na tonalidade da superfície praial (BOAK e TURNER, 2005).

5.2. Delimitação da área em perigo

A área ocupada, a elevação e a declividade do terreno foram obtidas para a faixa contida da linha de costa à distância de 67 m desta. A faixa de análise foi definida com base no valor médio das distâncias da área em perigo calculadas em Muler (2012) para os arcos praiais de Moçambique – Barra da Lagoa, Ingleses e Armação (Tabela 3). Os valores das distâncias determinadas em Muler (2012) representam a soma das maiores taxas de retração da linha de costa, por sua vez calculadas pela taxa de variação da linha de costa, altura do espraiamento \textit{(runup)} e elevação do nível do mar.

Tabela 3 – Área em perigo definida por Muler (2012).

<table>
<thead>
<tr>
<th>Praias</th>
<th>Taxa de variação (metros)</th>
<th>Run up (metros)</th>
<th>Elevação do nível do mar (metros)</th>
<th>Distância total (metros)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingleses</td>
<td>-57.5</td>
<td>-0.1</td>
<td>-6.96</td>
<td>-64.56</td>
</tr>
<tr>
<td>Barra Moçambique</td>
<td>-89.5</td>
<td>-0.63</td>
<td>-4</td>
<td>-94.13</td>
</tr>
<tr>
<td>Armação</td>
<td>-36.5</td>
<td>-1.52</td>
<td>-4</td>
<td>-42.02</td>
</tr>
</tbody>
</table>

Fonte: Muler (2012).

5.3. Avaliação da suscetibilidade

5.3.1. Largura de praia

A largura de praia foi medida através das imagens utilizadas na determinação da linha de costa. A medição foi feita desta à duna frontal, quando presente, ou outra barreira física abrupta.

5.3.2. Modelagem numérica de ondas

Segundo Muler e Bonetti (2014), há uma prática comum em avaliações de vulnerabilidade em se considerar apenas a ameaça, e não o grau de exposição da costa. Os autores citam como exemplo a obtenção da exposição à onda realizada pela simples inclusão da altura de onda ao índice, desconsiderando a orientação da linha.
de costa e a presença humana. O ideal, portanto, é que os processos marinhos costeiros sejam analisados por meio de uma modelagem numérica integrada, que represente a configuração espacial da linha de costa de forma mais detalhada o possível e que considere a exposição da ocupação costeira.

A modelagem numérica de ondas teve como objetivo analisar a exposição da costa de Santa Catarina às ondas que influenciam em maior grau os impactos costeiros. Foram considerados os casos de extremo de altura de onda, de alta frequência de ocorrência e ondas para as quais a ocupação é predominantemente exposta.

A exposição é resultante de um processo básico que atua sobre ondas de águas profundas ao incidirem sobre águas rasas: a refração. Esta opera mais significativamente quando as ondas atingem uma profundidade quatro vezes menor que o seu comprimento (HOEFEL, 1998).

A refração pode ser entendida como o redirecionamento dos raios de onda devido à batimetria, o que faz com que uma frente de ondas que incide obliquamente a uma costa de contornos batimétricos regulares e paralelos entre si tenda a se reajustar paralelamente à linha de costa (HOEFEL, 1998).

O modelo numérico utilizado é Delft3D – desenvolvido pela Deltares juntamente com a Delft University of Technology (TU Delft) para modelagem de áreas costeiras, rios, lagos e estuários. O modelo possui diferentes módulos, que podem ser utilizados individualmente ou acoplados. Os módulos permitem que sejam feitas simulações de fluxo, de transporte de sedimento, ondas, qualidade de água, desenvolvimento morfológico e ecologia.

O módulo Delft3D-WAVE foi utilizado para simular a propagação e as transformações de ondas geradas por vento na medida em que estas se aproximam da costa. Neste, são inseridos os valores de altura significativa de onda, período de pico, direção média de propagação e espalhamento do espectro direcional.

Os cálculos utilizados para a propagação das ondas em águas rasas foram os disponíveis pela terceira geração do modelo Simulating Wave Nearshore (SWAN) e são representados por uma equação do balanço de ação espectral com todos os processos físicos ocorrentes próximos à costa explicitamente modelados (BOOIJ et al., 1999). Desta forma, as ondas geradas em águas profundas foram propagadas em direção à linha de costa, observando-se o efeito dessas ao atingirem águas rasas.

A modelagem de ondas em águas rasas permitiu identificar a distribuição de altura de onda ao longo da linha de costa vinculada às diferentes direções de propagação e, assim, obter o modelo multiespectral de altura de onda. Os dados de saída (altura significativa e direção de onda próximo à costa) também foram utilizados para a geração de um modelo multiespectral de deriva litorânea, representado através de um gradiente ao longo da linha de costa. As variáveis obtidas a partir dos resultados multiespectrais da modelagem numérica (altura significativa de onda e gradiente de deriva litorânea potencial) tiveram seus indicadores ponderados segundo a frequência de ocorrência dos casos de onda selecionados.

5.3.2.1. Malha numérica

A configuração do modelo de ondas foi representada por uma única grade numérica, gerada em coordenadas esféricas. A fim de evitar a geração e propagação de ruídos numéricos, foram atendidos os requisitos de ortogonalidade e suavização nos eixos x e y, conforme os valores máximos para estes parâmetros estabelecidos em DELFT3D-RGGRID (2011).

A malha utilizada na modelagem numérica possui resolução de 0,8 km por 0,9 km, distância norte-sul de 682 km e leste-oeste (do leste da Ilha de Santa Catarina ao limite oceânico da malha) de 183 km. A configuração da malha numérica ao longo de todo o domínio e em regiões de maior detalhamento é apresentada na Figura 4.
5.3.2.2. Batimetria

Os dados de profundidade utilizados para a representação batimétrica no domínio da malha numérica foram os do Sistema de Modelagem Costeira do Brasil (SMC – Brasil), digitalizados a partir de cartas náuticas da Diretoria de Hidrografia e Navegação (DHN). Os dados de batimetria foram orientados na malha numérica através do método de interpolação por triangulação (Figura 5).

5.3.2.3. Definição dos limites de contorno

A modelagem considerou a linha de costa como contorno fechado e os limites oceânicos norte, leste e sul do domínio como contornos abertos. Nestes foram inseridas as forçantes de elevação da superfiúcie livre.
5.3.2.4. Climatologia de ondas

O clima de ondas compreende as condições de altura, período e direção de onda prevalecentes em um local por um período específico. Resulta da soma de vagas formadas pelos ventos locais e marulhos originados de tempestades distantes.

Os valores de altura significativa de onda (Hs), período (Tp) e direção (Dp) para o Estado de Santa Catarina foram extraídos do modelo de águas profundas WAVEWATCH-III, sob a coordenada 29ºS e 48ºW situada próximo à quebra da plataforma continental, para o período de janeiro de 2005 a março de 2015.

O efeito das ondas em águas rasas foi simulado para quatro cenários: os dois cenários de maior frequência de ocorrência, um cenário de valores extremos de altura de onda e um cenário representativo da direção de ondas para a qual a ocupação é predominantemente exposta. A frequência de ocorrência dos casos de ondas foi calculada para o período de 10 anos de dados.

Os cenários das condições de maior frequência de ocorrência foram definidos pelo valor mais baixo das classes de altura significativa de onda (Hs) mais frequentes para as direções que representaram mais de 20% dos casos de ondas da série temporal.

A definição dos valores extremos de altura significativa de onda foi baseada em Melo et al. (2006). Neste, os autores consideram extremos os valores superiores a 2 vezes a média da altura significativa de onda no período analisado (Hs (extremo) > 2*Hs (médio)). O cenário de extrema foi gerado para a direção de onda com maior percentual de valores extremos. A fim de se considerar o pior cenário de eventos marinhos, a este modelo foi adicionado o maior valor de maré meteorológica, somada a sua correspondente astronômica, para o período compreendido entre 2015 e 2016.

Tendo em vista a maior amplitude dos danos costeiros sobre áreas com maior presença de infraestruturas expostas aos agentes marinhos (HERRMANN et al., 2009), considerou-se essencial a geração de um modelo de ondas para as quais há um maior percentual de ocupação exposta. Este cenário foi definido com base nos percentuais de áreas construídas expostas às diferentes direções de onda.

Valores de altura significativa de onda de pontos dos modelos numéricos, distanciados a cada 2 km sobre a isóbata de 10 m, foram rebatidos para os segmentos de linha de costa. O modelo multiespectral de ondas foi obtido pela média ponderada
das alturas significativas de onda dos cenários modelados numericamente. Os pesos correspondem à frequência de ocorrência dos casos de onda.

5.3.2.5. Dados maregráficos

Dados de marégrafos situados nas localidades de Itapoá, Florianópolis e Laguna foram cedidos pela Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina (EPAGRI/Ciram). Os dados medidos possuem incremento de 15 minutos e correspondem ao período de 24 de fevereiro de 2015 a 24 de fevereiro de 2016.

Valores de maré astronômica foram extraídos através do WXTIDE 3.2, para as localidades de Paranaguá (48°27’W, 25°31’S) Florianópolis (48°34’W, 27°36’S) e Laguna (48°47’W, 28°30’S) – pontos disponíveis mais próximos aos marégrafos, considerando-se a disponibilidade de dados para o mesmo período dos dados de maré medida.

A componente meteorológica da maré pode ser obtida pela diferença entre os valores de maré medida e astronômica. Ao maior valor de maré meteorológica da série, somou-se o valor de sua correspondente astronômica e o resultado da soma foi utilizado na simulação do cenário extremo de onda.

5.3.3. Gradiente de deriva litorânea potencial

A deriva litorânea é uma das formas mais eficientes de mobilização de sedimentos ao longo da costa e é ocasionada pela incidência oblíqua do trem de ondas sobre a face praiual, atingindo a máxima intensidade no ângulo de incidência de onda de 45° (SIEGLE e ASP, 2007).

A estimativa da deriva potencial foi adotada como indicador de vulnerabilidade por permitir identificar células de divergência e convergência de correntes ao longo da costa, sendo um indicador de áreas potenciais para a ocorrência de processos erosivos.

A intensidade e a direção da deriva potencial foram estimadas para os segmentos de linha de costa através de modelagem numérica, com base nos valores de altura e direção de onda nas proximidades da costa.
A estimativa da deriva litorânea potencial foi realizada segundo o método de Longuet-Higgins (1970) e Komar (1998), que considera a energia de onda diretamente proporcional ao quadrado da altura, e que a intensidade da deriva varia em função do ângulo em que a frente de onda se aproxima da costa, dado pela Equação 2:

\[y = \sin (\alpha) \times \cos (\alpha), \]

onde, \(y \) é o fator de intensidade para a deriva litorânea potencial e \(\alpha \) é o ângulo entre a frente de onda incidente e a linha de costa.

Com a inclusão da altura de onda próxima à costa, a deriva litorânea potencial adimensional pode ser obtida para os segmentos de linha de costa a partir da aplicação da Equação 3:

\[x = y \times H^2, \]

onde, \(x \) é a deriva litorânea potencial e \(H \) é a altura de onda próxima à costa.

Para o cálculo da deriva litorânea potencial foram selecionados pontos obtidos da modelagem numérica distanciados a, aproximadamente, cada 2 km de linha de costa, sobre a isóbata de 10 m. Do modelo numérico, foram extraídos o ângulo de incidência e a altura significativa das ondas refratadas.

Para a determinação do ângulo entre a onda incidente e a linha de costa foram utilizados o ângulo de incidência de ondas, resultante da modelagem, e a orientação da linha de costa em relação ao norte geográfico, determinada por Serafim (2014) através da extensão FindPolylineAngle (ZAZULA, 2005). A ferramenta utilizada por Serafim (2014) para a determinação da orientação da linha de costa permitiu a adição de um campo denominado GeoAngle (ângulo de rotação do azimute do norte geográfico) à tabela de atributos do arquivo digital da linha de costa. O ângulo geográfico considera a direção norte equivalente a 0º, leste a 90º, sul a 180º e oeste a 270º.

A participação de cada cenário de onda na deriva litorânea potencial multispectral foi calculada com base nos percentuais de frequência de ocorrência.
dos casos de onda modelados numericamente. Desta forma, o modelo multispectral foi obtido pela aplicação da Equação 4:

\[D_{lm} = \sum_{i=1}^{4} x_i * f_i, \]

onde, \(D_{lm} \) é a deriva litorânea potencial multispectral, \(x_i \) é o valor de deriva litorânea potencial calculada para cada um dos cenários e \(f_i \) é a frequência de ocorrência de cada um dos cenários de onda no clima de ondas geral.

O valor de deriva litorânea potencial resultante das equações de Longuet-Higgins (1970) e Komar (1998) é adimensional. Para a identificação de áreas potenciais de acreção e erosão de sedimentos foi necessário que os valores encontrados para os segmentos fossem avaliados por meio de pontos de divergência e convergência de correntes, identificados a partir de um gradiente ao longo da linha de costa.

O gradiente de deriva litorânea potencial foi determinado a partir de uma rotina em Python que considerou o resultado de cada segmento como o valor de deriva de "entrada" dos 2 segmentos adjacentes subtraído pelo valor de deriva de "saída" dos dois segmentos adjacentes. O cálculo do gradiente foi feito para cada cordão arenoso situado entre costões rochosos. Quando na presença destes, o atributo "vazio" era gerado pela rotina de programação, que reiniciava, desconsiderando os valores dos segmentos anteriores.

5.3.4. Elevação e declividade do terreno

Os indicadores de relevo representam a predisposição, em dimensão vertical, que a orla marítima irá apresentar frente ao recuo da linha de costa, além de estarem associados à inundação costeira (MAZZER et al., 2008). Áreas costeiras com menor altitude serão mais afetadas em caso de frentes de marés ou elevação do nível do mar, portanto essas são áreas mais vulneráveis. Uma menor declividade do terreno, por sua vez, favorece o alcance mais rápido da água sobre áreas mais elevadas.

Ambas as variáveis foram obtidas através dos modelos digitais de terreno (MDT) gerados no âmbito do Levantamento Aerofotogramétrico realizado pelo
Governo do Estado, por meio da Secretaria do Desenvolvimento Econômico Sustentável (SDS). Os modelos de elevação foram gerados a partir de fotografias aéreas de alta resolução, sendo representados na escala de 1:10000 e com resolução de 1 m.

Em cada segmento de linha de costa de 2 km de extensão foram criados perfis transversais entre a mesma e o limite da área em perigo. Os valores de elevação e de declividade foram obtidos pela média aritmética dos valores dos pixels do MDT intersectados pelos perfis transversais.

5.4. **Avaliação da capacidade adaptativa**

5.4.1. **Área ocupada**

Os polígonos das áreas com ocupação (manchas urbanas) foram digitalizados a partir de imagens de satélite Quickbird, disponíveis através da extensão BingMaps para o ArcGIS 10. A demarcação das áreas foi feita para a faixa costeira situada entre a linha de costa e o limite da área em perigo na escala de análise de 1:10000 (Figura 6). A área dos polígonos situados entre os limites de cada segmento de linha de costa foi somada e os valores resultantes foram rebatidos aos segmentos.

5.4.2. **Distância entre ocupação e linha de costa**

A medição foi feita da linha de costa aos polígonos de ocupação mais próximos do mar para cada um dos segmentos de linha de costa.
As variáveis número de residentes, número de residências de uso ocasional e rendimento total por setor censitário foram preteritamente integradas em ambiente SIG por Serafim (2014) para a avaliação da capacidade adaptativa ao longo do litoral catarinense. Os dados brutos foram obtidos a partir de tabelas disponibilizadas pelo censo do Instituto Brasileiro de Geografia e Estatística (IBGE), realizado na data de referência de 31 de julho de 2010 (IBGE, 2011).

Com o objetivo de analisar a capacidade adaptativa da zona costeira do Estado, optou-se pela utilização de informações referentes ao menor nível setorial de coleta de dados: o setor censitário. Conforme a definição de IBGE (2011), “setor censitário é a menor unidade territorial, formada por área contínua, integralmente contida em área urbana ou rural, com dimensão adequada à operação de pesquisas e cujo conjunto esgota a totalidade do Território Nacional”. Equivale à área percorrida por um único recenseador (IBGE, 2011).

Figura 6 – Detalhe do mapeamento das manchas urbanas no município de Garopaba dentro da área em perigo de 67 m de distância da linha de costa.
A malha de polígonos dos setores censitários de 2010 (Figura 7) foi utilizada como base para as operações realizadas em ambiente SIG através do isolamento dos setores fronteiriços com o mar. A resolução do arquivo digital é variável: em áreas urbanas é compatível com escalas cartográficas na faixa de 1:2.000 a 1:10.000 e, em áreas rurais, com escalas na faixa de 1:25.000 a 1:250.000 (IBGE, 2011).

Figura 7 – Malha digital dos setores censitários do censo de 2010 realizado pelo IBGE.

Para a análise espacial das variáveis, as tabelas de dados foram incorporadas à malha do arquivo digital dos polígonos dos setores censitários. A segmentação da linha de costa para cada uma das variáveis se deu sobre os limites dos setores
censitários fronteiriços com o mar, sendo excluídos do modelo final os segmentos com ausência de um ou mais dados do IBGE.

Os polígonos dos setores censitários possuem diferentes áreas e formatos, podendo estar majoritariamente concentrados nas adjacências da linha de costa ou terem uma maior área deslocada em direção ao interior do continente. Isso inviabiliza a comparação direta da capacidade adaptativa entre os setores sobre a orla, sendo necessário otimizá-la. Para tanto, foi realizada uma transformação na escala de valores, levando em consideração o comprimento do setor censitário em contato com o mar e sua área, através da Equação 5:

\[y = \frac{x}{a \times b} \]

onde, \(x \) = valor original da variável, \(y \) = valor da variável ajustado pelas variáveis \(a \) e \(b \), \(a \) = comprimento do setor censitário em contato com o mar (m) e \(b \) = área do setor censitário (m²).

5.4.3.1. Número de residentes

A população residente constitui-se no somatório do número de moradores em domicílios particulares e coletivos por setor censitário.

Domicílio particular é o local independente que, na data de referência, servia de habitação a uma ou mais pessoas e onde o relacionamento entre seus ocupantes é ditado por laços de parentesco, de dependência doméstica ou por normas de convivência (IBGE, 2011). Domicílios coletivos são instituições ou estabelecimentos em que a relação entre as pessoas presentes na data de referência estava restrita a normas de subordinação administrativa (IBGE, 2011). Exemplos de domicílios coletivos são: asilos, conventos, hotéis, campings, pensões, alojamento de trabalhadores ou estudantes, república de estudantes, presídio.
5.4.3.2. Renda por residente

A variável é representada pela razão entre o valor total de rendimento domiciliar e o número de residentes por setor censitário. A renda média por residente indica a capacidade da população em enfrentar e se adaptar a uma situação adversa, tanto por meio de infraestruturas de proteção quanto pela reconstrução de edificações danificadas.

O valor de rendimento domiciliar refere-se à somatória da renda anual obtida pelos domicílios particulares permanentes e particulares improvisados. Domicílio particular permanente é aquele que serve exclusivamente à habitação de uma ou mais pessoas. Já os improvisados são representados pelos domicílios localizados em edificação (loja, fábrica etc.) onde não há dependência destinada exclusivamente à moradia, bem como por locais inadequados à habitação e que, na data de referência, estavam ocupados por morador (IBGE, 2010).

5.4.3.3. Domicílios de uso ocasional

O valor utilizado neste trabalho se refere à somatória, por unidade de setor censitário, do número de domicílios particulares permanentes considerados de uso ocasional.

Domicílio particular permanente de uso ocasional é o domicílio particular permanente que servia ocasionalmente de moradia na data de referência, ou seja, era o domicílio utilizado para descanso de fins de semana, férias ou outro fim, mesmo que, na data de referência, seus ocupantes ocasionais estivessem presentes (IBGE, 2011).

5.5. Resolução dos dados

A resolução e a fonte dos dados incorporados ao modelo de vulnerabilidade são apresentadas na Tabela 4. Com exceção das variáveis socioeconômicas obtidas a partir dos dados do IBGE, para as quais a resolução de representação espacial é condicionada pela extensão de linha de costa dos setores censitários, as demais variáveis foram rebatidas para segmentos de linha de costa de 2 km de extensão.
Tabela 4 – Resolução e fonte dos dados utilizados para a obtenção das variáveis de vulnerabilidade.

<table>
<thead>
<tr>
<th>Variável</th>
<th>Fonte</th>
<th>Resolução do arquivo original</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de residentes (1), renda por residente (2), domicílios de uso ocasional (3)</td>
<td>Censo do IBGE para o ano de 2010</td>
<td>Polígonos dos setores censitários</td>
</tr>
<tr>
<td>Área ocupada (4)</td>
<td>Elaboração própria a partir de imagens Quickbird</td>
<td>2,4 m (pixel)</td>
</tr>
<tr>
<td>Altura de onda (5)</td>
<td>Elaboração própria – modelo numérico</td>
<td>0,8 por 0,9 km (célula)</td>
</tr>
<tr>
<td>Gradiente de deriva litorânea potencial (6)</td>
<td>Elaboração própria – modelo numérico</td>
<td>0,8 por 0,9 km (célula)</td>
</tr>
<tr>
<td>Largura de praia (7)</td>
<td>Elaboração própria a partir de imagens Quickbird</td>
<td>2,4 m (pixel)</td>
</tr>
<tr>
<td>Distância entre ocupação e linha de costa (8)</td>
<td>Elaboração própria a partir de imagens Quickbird</td>
<td>2,4 m (pixel)</td>
</tr>
<tr>
<td>Elevação (9), declividade do terreno (10)</td>
<td>MDT da SDS/SC</td>
<td>1m (pixel)</td>
</tr>
</tbody>
</table>

5.6. **Ponderação das variáveis**

A atribuição de pesos às variáveis de vulnerabilidade costeira foi realizada pelo método *Analytic Hierarchy Process* (AHP), desenvolvido e aplicado por Saaty (1987, 1980). O AHP é um método de tomada de decisão multicritério (MCDM) utilizado para estimar, computar e então gerar pesos relativos para as variáveis selecionadas (NGUYEN e WOODROFFE, 2016). Nessa técnica de ponderação, recorre-se a especialistas ou tomadores de decisão para classificar as variáveis em graus de importância, utilizando-se uma matriz de prioridades.

No método AHP, as variáveis são comparadas de forma pareada por meio de uma matriz quadrática recíproca. Segundo Saaty (1987), na construção de matrizes de comparação dois a dois, cada variável é avaliada em relação a outra atribuindo um valor relativo de dominância de 1 (mesma importância), 3 (moderada), 5 (forte), 7 (muito forte), e 9 (extrema importância).

A escolha das variáveis e suas prioridades na comparação pareada para a área de estudo depende de um número de fatores, incluindo um nível requerido de análises.
existentes, acurácia, disponibilidade de dados, o conhecimento e a experiência dos especialistas.

A ponderação por AHP é baseada em julgamentos subjetivos que nem sempre são consistentes. Consistência se refere a pensar do mesmo jeito através de toda uma circunstância. Nesse sentido, um dos pontos fortes da AHP é a sua capacidade de realizar uma verificação de consistência dos juízos subjetivos. Por este motivo, é importante que se tenha uma matriz bem estruturada, ou seja, que os pesos aplicados pelos especialistas sejam coerentes entre as variáveis.

A consistência lógica está vinculada à habilidade do ser humano de estabelecer relações entre objetos ou ideias de forma que elas sejam coerentes (SAATY, 2000). O método AHP se propõe a calcular a Razão de Consistência (RC) dos julgamentos – razão entre o índice de consistência e um índice de consistência randômico, obtido para uma matriz recíproca de ordem n, com elementos não-negativos (TREVIZANO e FREITAS, 2005). A condição de consistência dos julgamentos é dada por $RC \leq 0,10$ (SAATY, 2000).

O Índice de Consistência (IC) é dado pela Equação 6:

$$ IC = \frac{\lambda_{\text{máx}} - n}{(n-1)} $$

onde $\lambda_{\text{máx}}$ é o maior autovalor da matriz de julgamentos e n é o número de elementos da matriz.

A fim de reproduzir classificações fidedignas da vulnerabilidade costeira, o julgamento de pesos foi feito por especialistas em análises de vulnerabilidade ambiental e/ou morfodinâmica praiual, colaborando para a melhor representatividade do índice. Cada especialista, do total de oito, preencheu uma matriz de comparação por pares com os pesos relativos entre as variáveis. As matrizes foram posteriormente combinadas para a obtenção de um único conjunto de pesos.
5.7. Integração dos dados em ambiente Sistema de Informação Geográfica

Os dados gerados no software Delft3D foram exportados para o formato shapefile e incorporados ao banco de dados do projeto a partir da estruturação de um geodatabase. Em ambiente SIG, foram selecionados os dados de ondas situados entre as isolinhas batimétricas de 10 e 15 metros para todos os cenários. Os valores de altura significativa e direção de incidência de ondas nestas profundidades foram rebatidos para a linha de costa de Santa Catarina.

Com exceção das variáveis socioeconômicas, para as quais a linha de costa foi segmentada nos limites dos setores censitários costeiros, as demais variáveis foram rebatidas para uma linha de costa composta por segmentos de 2 km de extensão. A integração das variáveis se deu através da intersecção dos segmentos de ambas as linhas.

Um sistema de informação geográfica (SIG) é constituído por um conjunto de programas computacionais que permitem a integração de dados, equipamentos e pessoas com a finalidade de coleta, armazenamento, recuperação, manipulação, visualização e análise de dados espacialmente referenciados a um sistema de coordenadas conhecidos (FITZ, 2008).

Por permitirem que informações de diferentes camadas sejam facilmente integradas e analisadas, os SIGs estão cada vez mais sendo utilizados para análise e mapeamento de perigos e vulnerabilidades, bem como para a aplicação e gerenciamento de medidas de redução de risco a desastres (ISDR, 2004).

5.8. Índices de suscetibilidade (ISC), capacidade adaptativa (ICA) e vulnerabilidade (IVC)

Das dez variáveis consideradas na análise de vulnerabilidade, cinco representam a suscetibilidade do meio (altura significativa de onda, gradiente de deriva litorânea potencial, largura de praia, elevação e declividade), enquanto as outras cinco, por serem influenciadas pela presença humana, são representativas da capacidade adaptativa (distância entre ocupação e linha de costa, número de residentes, renda por residente, área ocupada e domicílios de uso ocasional). Desta forma, o índice de vulnerabilidade pôde ser reduzido a dois subíndices, representados
espaçalmente ao longo do litoral de forma isolada – através dos modelos de suscetibilidade e de capacidade adaptativa – e integrada, pelo modelo de vulnerabilidade costeira.

Os índices foram baseados na fórmula do CVI, originally proposta por Gornitz e Kanciruk (1989), com adaptações às variáveis locais e com a inclusão de pesos às variáveis. Optou-se pelo cálculo do índice baseado na raiz quadrada da média aritmética ponderada das variáveis (GORNITZ, 1991; GORNITZ e WHITE, 1992).

Desta forma, o Índice de Suscetibilidade (ISC), o Índice de Capacidade Adaptativa (ICA) e o Índice de Vulnerabilidade (IVC) foram obtidos através da aplicação das Equações 7, 8 e 9, respectivamente. As variáveis são expressas no índice pelo valor de sua classe de vulnerabilidade.

\[
ISC = \sqrt{\frac{(P_1a_1) + (P_2a_2) + (P_3a_3) + (P_4a_4) + (P_5a_5)}{\sum P_i}}
\]

onde, \(a_1 = \) declividade, \(a_2 = \) altura significativa de onda, \(a_3 = \) gradiente de deriva litorânea potencial, \(a_4 = \) largura de praia, \(a_5 = \) elevação e \(P_i = \) peso das variáveis de suscetibilidade.

\[
ICA = \sqrt{\frac{(P_1a_1) + (P_2a_2) + (P_3a_3) + (P_4a_4) + (P_5a_5)}{\sum P_j}}
\]

onde, \(a_1 = \) distância entre ocupação e linha de costa, \(a_2 = \) número de residentes, \(a_3 = \) renda por residente, \(a_4 = \) área ocupada, \(a_5 = \) domicílios de uso ocasional e \(P_j = \) peso das variáveis de capacidade adaptativa.

\[
IVC = \sqrt{\frac{(\sum P_i a_1) + (\sum P_j a_2)}{\sum P_i + \sum P_j}}
\]

onde, \(a_1 = \) suscetibilidade, \(a_2 = \) capacidade adaptativa, \(P_i = \) pesos das variáveis de suscetibilidade, \(P_j = \) pesos das variáveis de capacidade adaptativa.
6. RESULTADOS E DISCUSSÃO

Os sistemas e a ciência da informação geográfica podem nos ajudar a compreender a interdependência dos fatores causadores de vulnerabilidade costeira. No presente estudo, as variáveis e os índices de suscetibilidade (ISC), capacidade adaptativa (ICA) e vulnerabilidade (IVC) são representados por meio de técnicas de geovisualização, com a finalidade de facilitar o entendimento da crescente complexidade da incidência de perigos costeiros sobre áreas com diferentes características físicas/ambientais, sociais e econômicas na orla catarinense.

6.1. Perigos costeiros no litoral catarinense

A exposição a ondas e o gradiente de deriva litorânea potencial foram analisados com o objetivo de identificar áreas vulneráveis à ocorrência de erosão e inundação costeiras.

6.1.1. Exposição das áreas ocupadas a ondas

O clima de ondas em águas profundas, para o ponto localizado sob a coordenada 29ºS e 48ºW, indicou uma maior frequência de ocorrência de ondas do quadrante sul, seguidas por ondas do quadrante leste, para o período compreendido entre 2005 e 2015 (Tabela 5). As direções de propagação de sul e leste correspondem a 38,67% e 23,11% do clima de ondas local, respectivamente. Ondas de direção nordeste, embora tenham apresentado frequência de ocorrência inferior a 20%, foram simuladas numericamente em função da maior presença de áreas ocupadas expostas a ondas dessa direção. Ondas de alturas extremas de direção sul também são analisadas, tendo em vista o seu expressivo percentual, correspondente a 60% do conjunto de valores extremos de altura significativa de onda. Na Figura 8 são representadas as frequências de ocorrência por direção de propagação de onda em classes de altura significativa (Hs) e de período (Tp).

Ao cenário de eventos extremos de onda foi incorporada uma componente relativa ao valor extremo de maré, obtido pela soma entre a maior maré meteorológica e sua correspondente astronômica. A maré meteorológica de maior amplitud, de 1,21
m, ocorreu em 4 de outubro de 2015, às 14:45 horas, na região de Itapoá (extremo norte do Estado). A maré astronômica correspondente foi de 0,68 m. Portanto, o valor de maré utilizado na modelagem numérica do cenário de eventos extremos de sul foi de 1,89 m.

Tabela 5 – Distribuição da frequência de ocorrência de Hs por direção de propagação de onda. Destaque para as classes de Hs mais expressivas para as direções com frequência de ocorrência >20% e direção nordeste (Hs de 1,5 a 1,99 m) e para a classe de Hs representativa de valores extremos de direção sul (Hs de 4,5 a 4,99 m).

<table>
<thead>
<tr>
<th>Hs (m)</th>
<th>N</th>
<th>NE</th>
<th>E</th>
<th>SE</th>
<th>S</th>
<th>SW</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,5–0,99</td>
<td>0,0135</td>
<td>0,5962</td>
<td>1,1251</td>
<td>0,6400</td>
<td>0,5558</td>
<td>0,0168</td>
<td>0,0000</td>
</tr>
<tr>
<td>1–1,49</td>
<td>0,4581</td>
<td>3,9345</td>
<td>6,8147</td>
<td>3,9884</td>
<td>4,9518</td>
<td>0,1044</td>
<td>0,0000</td>
</tr>
<tr>
<td>1,5–1,99</td>
<td>1,1318</td>
<td>5,4068</td>
<td>7,9566</td>
<td>5,5883</td>
<td>9,9306</td>
<td>0,5727</td>
<td>0,0000</td>
</tr>
<tr>
<td>2–2,49</td>
<td>0,6400</td>
<td>2,8498</td>
<td>4,5341</td>
<td>3,9480</td>
<td>9,6207</td>
<td>0,9026</td>
<td>0,0000</td>
</tr>
<tr>
<td>2,5–2,99</td>
<td>0,1179</td>
<td>1,1487</td>
<td>1,6203</td>
<td>1,8595</td>
<td>6,5081</td>
<td>0,8859</td>
<td>0,0000</td>
</tr>
<tr>
<td>3–3,49</td>
<td>0,0674</td>
<td>0,2897</td>
<td>0,6367</td>
<td>0,7074</td>
<td>3,6010</td>
<td>0,6737</td>
<td>0,0000</td>
</tr>
<tr>
<td>3,5–3,99</td>
<td>0,0034</td>
<td>0,0236</td>
<td>0,2931</td>
<td>0,3503</td>
<td>2,1087</td>
<td>0,5087</td>
<td>0,0000</td>
</tr>
<tr>
<td>4–4,40</td>
<td>0,0000</td>
<td>0,0236</td>
<td>0,1112</td>
<td>0,1651</td>
<td>0,8556</td>
<td>0,3090</td>
<td>0,0000</td>
</tr>
<tr>
<td>4,5–4,99</td>
<td>0,0000</td>
<td>0,0168</td>
<td>0,0101</td>
<td>0,0640</td>
<td>0,4042</td>
<td>0,0977</td>
<td>0,0000</td>
</tr>
<tr>
<td>5–5,49</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0101</td>
<td>0,0472</td>
<td>0,1011</td>
<td>0,0269</td>
<td>0,0000</td>
</tr>
<tr>
<td>5,5–5,99</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0269</td>
<td>0,0337</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>6–6,49</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0034</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>6,5–6,99</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0034</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>>7</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0007</td>
<td>0,0000</td>
<td>0,0000</td>
<td>0,0000</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2,4321</td>
<td>14,2896</td>
<td>23,1119</td>
<td>17,3786</td>
<td>38,6714</td>
<td>4,0966</td>
<td>0,0168</td>
</tr>
</tbody>
</table>

Embora as ondas com direção de propagação sul tenham se destacado pelo maior percentual de frequência de ocorrência no clima de ondas (38,67%), a área construída exposta para essa direção de incidência corresponde a apenas 6,6% da ocupação ao longo do litoral catarinense (Figura 9). Por outro lado, os segmentos expostos à incidência de ondas de nordeste apresentaram o maior percentual de área ocupada (26,50%). Além disso, a propagação de ondas de nordeste apresentou 14,29% de frequência de ocorrência – percentual relativamente alto no clima de ondas da região, o que justificou a simulação de um cenário para esta direção de onda.

Muler e Bonetti (2014) analisaram a exposição às ondas para praias da Ilha de Santa Catarina através da integração do grau de exposição da costa às direções de incidência de onda, máximas alturas de onda por direção de propagação e presença de estruturas em risco. Os autores também encontraram um maior percentual de áreas ocupadas expostas a ondas de nordeste, o que colaborou para a maior importância atribuída a esta direção de onda pelos autores, seguida pelas direções sul, leste e sudeste, respectivamente.
Embora as ondas de sudeste tenham apresentado uma frequência de ocorrência relativamente alta no clima geral de ondas considerado no presente estudo (17,38%), não foram modeladas numericamente devido ao baixo percentual de ocupação exposta a ondas dessa direção (8,83%).

Figura 8 – Frequência de ocorrência de ondas por direção de propagação em classes de altura significativa (A) e de período de onda (B).
6.1.1.1. Cenários de maior frequência de ocorrência de direções leste (CFE), sul (CFS) e nordeste (CFNE)

Os cenários de maior frequência de ocorrência foram modelados numericamente para as direções representativas de mais de 20% do clima de ondas (direções leste e sul) e para a direção nordeste, devido ao maior percentual de área ocupada exposta a ondas desta direção. A classe de altura significativa de onda de maior frequência de ocorrência nas três direções foi a de 1,5 a 1,99 m.

A frequência de ocorrência dos períodos de onda (Tp) foi calculada para as direções leste (Tabela 6), sul (Tabela 7) e nordeste (Tabela 8), individualmente, para os dados de onda situados no intervalo de altura significativa de maior ocorrência. As classes de Tp foram delimitadas por intervalos regulares de 1 s, aproximadamente. A direção média de propagação (Dp) para as ondas dos três quadrantes, por sua vez, foi calculada para os dados situados na classe de período de onda de maior frequência de ocorrência, considerando as alturas significativas entre 1,5 e 1,99 m.
Tabela 6 – Distribuição da frequência de ocorrência do período de onda (Tp) para ondas de leste com Hs entre 1,5 – 1,99 m. Destaque para a classe de maior frequência de ocorrência.

<table>
<thead>
<tr>
<th>Tp (s)</th>
<th>Frequência de ocorrência (Dir E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.65 – 5.66</td>
<td>1,5101</td>
</tr>
<tr>
<td>5.67 – 6.68</td>
<td>7,2148</td>
</tr>
<tr>
<td>6.69 – 7.70</td>
<td>27,6846</td>
</tr>
<tr>
<td>7.71 – 8.72</td>
<td>401007</td>
</tr>
<tr>
<td>8.73 – 9.74</td>
<td>18,7500</td>
</tr>
<tr>
<td>9.75 – 10.76</td>
<td>3,8591</td>
</tr>
<tr>
<td>10.77 – 11.78</td>
<td>0,6711</td>
</tr>
<tr>
<td>11.79 – 12.80</td>
<td>0,2097</td>
</tr>
</tbody>
</table>

Tabela 7 – Distribuição da frequência de ocorrência do período de onda (Tp) para ondas de sul com Hs entre 1,5 – 1,99 m. Destaque para a classe de maior frequência de ocorrência.

<table>
<thead>
<tr>
<th>Tp (s)</th>
<th>Frequência de ocorrência (Dir S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.36 – 5.39</td>
<td>0,9171</td>
</tr>
<tr>
<td>5.4 – 6.43</td>
<td>3,1393</td>
</tr>
<tr>
<td>6.44 – 7.47</td>
<td>4,3386</td>
</tr>
<tr>
<td>7.48 – 8.51</td>
<td>11,2875</td>
</tr>
<tr>
<td>8.52 – 9.64</td>
<td>20,0000</td>
</tr>
<tr>
<td>9.65 – 10.77</td>
<td>24,1623</td>
</tr>
<tr>
<td>10.78 – 11.9</td>
<td>19,9295</td>
</tr>
<tr>
<td>12 – 13.03</td>
<td>9,2769</td>
</tr>
<tr>
<td>13.04 – 14.07</td>
<td>4,3034</td>
</tr>
<tr>
<td>14.08 – 15.11</td>
<td>1,3051</td>
</tr>
<tr>
<td>15.12 – 16.15</td>
<td>0,8466</td>
</tr>
<tr>
<td>16.16 – 17.19</td>
<td>0,2822</td>
</tr>
<tr>
<td>17.2 – 18.23</td>
<td>0,1411</td>
</tr>
<tr>
<td>18.24 – 19.27</td>
<td>0,0705</td>
</tr>
</tbody>
</table>
Os cenários de maior frequência de ocorrência de nordeste, leste e sul foram definidos pelo valor inferior da classe de altura significativa de onda mais ocorrente (1,5 m), nas direções 50°, 89° e 181°, com períodos de onda de 6 s, 8 s e 10 s, respectivamente.

6.1.1.2. Cenário extremo de direção sul (CES)

A média dos valores de altura significativa de onda (Hs) para a série temporal foi de 2,11 m e, portanto, dados com Hs > 4,22 m foram considerados extremos. A Tabela 9 apresenta a frequência de ocorrência dos eventos extremos de Hs por direção de propagação de onda.

A direção sul apresentou o maior percentual de ocorrência de casos extremos de altura significativa, correspondente a 60,12%. A frequência de ocorrência do período de onda para os valores extremos de direção sul foi calculada para os dados situados no intervalo de altura significativa de maior ocorrência, entre 4,5 e 4,99 m (Tabela 10). A direção média de propagação, por sua vez, foi obtida para os dados da classe de período de onda de maior frequência de ocorrência, considerando as alturas significativas entre 4,5 e 4,99 m. Desta forma, o cenário extremo CES foi representado pelos valores: Hs = 4,5 m, Tp = 12 s e Dp = 186°.
Propagação de ondas em águas rasas

Os resultados de altura significativa de onda (Hs) em águas rasas, para os quatro cenários modelados numericamente, são apresentados na Figura 10. As maiores alturas de onda próximo à costa foram geradas por ondas extremas de sul, seguidas por ondas de alta frequência de ocorrência propagadas de leste. Os cenários com direções sul (CFS) e nordeste (CFNE) apresentaram os menores valores de Hs próximo à costa.

O cenário de ondas extremas de sul apresentou valores de Hs entre 2,5 e 3 m nas proximidades das linhas de costa dos setores centro-sul e sul e valores de Hs
inferiores a 2 m do setor norte ao centro do Estado. As ondas de sul com maior frequência de ocorrência apresentaram valores muito inferiores – entre 1 e 1,2 m do sul do setor centro ao setor sul e abaixo de 0,6 m do norte do setor centro ao setor norte. Dos cenários de maior frequência de ocorrência, a propagação de ondas de leste acarretou em maiores valores de Hs ao longo da linha de costa devido ao menor efeito de refração das ondas. Estas apresentaram maiores alturas no sul do setor centro e no norte do setor centro-sul (Hs de 1,4 m), enquanto valores de Hs inferiores a 1,25 m foram observados exclusivamente no norte do setor centro. Os menores valores de Hs para as ondas de propagação de nordeste foram observados para a região compreendida entre o sul do setor centro-sul e o sul do Estado. Nestas regiões os valores máximos de Hs nas adjacências da costa foram de 1 m, enquanto na região entre o norte do setor centro-norte e o extremo norte do Estado os valores de Hs variaram entre 0,9 e 1,2 m.

A integração dos resultados de altura significativa de onda dos quatro cenários foi realizada por meio de uma média ponderada. Os pesos atribuídos aos cenários de onda correspondem aos percentuais da classe de altura significativa mais expressiva em cada uma das direções (para os cenários de maior frequência de ocorrência) e da classe mais expressiva para os valores extremos de direção sul (para o cenário de extremos). Os percentuais, obtidos a partir da tabela de frequência de ocorrência para o clima geral de ondas, são apresentados na Tabela 11.

Tabela 11 – Frequência de ocorrência das classes de altura significativa de onda representativas dos cenários modelados numericamente.

<table>
<thead>
<tr>
<th>MODELO</th>
<th>FREQUÊNCIA DE OCORRÊNCIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFE</td>
<td>7,96</td>
</tr>
<tr>
<td>CFS</td>
<td>9,93</td>
</tr>
<tr>
<td>CFNE</td>
<td>5,41</td>
</tr>
<tr>
<td>CESm</td>
<td>0,40</td>
</tr>
</tbody>
</table>

Praias oceânicas podem assumir configurações planimétricas distintas, definidas pelo grau de controle geológico exercido pelo embasamento sobre a linha de costa e pelo padrão direcional de incidência de ondas (ABREU DE CASTILHOS, 2011). As maiores alturas de onda foram observadas ao sul do Estado, onde a refração das ondas é reduzida, em função da orientação e característica retilínea da

Figura 10 – Altura significativa de onda (Hs) para os cenários de maior frequência de ocorrência de direções nordeste (CFNE), leste (CFE), sul (CFS) e para o cenário extremo de direção sul (CES).
6.1.3. Gradiente de deriva litorânea potencial

As correntes de deriva litorânea geradas por ondas com incidência de leste e nordeste se deslocam, predominantemente, em direção ao sul. Correntes geradas por ondas de sul, tanto as de maior frequência de ocorrência quanto as associadas a eventos extremos, deslocam-se predominantemente para norte. Esse padrão é alterado, principalmente, nos setores centro e centro-norte, onde a linha de costa contém maiores reentrâncias e, portanto, as direções de deslocamento de deriva litorânea potencial apresentam maior variabilidade.

O modelo multiespectral de deslocamento de correntes de deriva litorânea possui maiores semelhanças com os cenários de leste e nordeste – em função da frequência de ocorrência observada para estas direções de onda. No setor norte, há predominio de deslocamentos em direção ao sul e os deslocamentos para norte se concentram no norte do setor. Nos setores centro-norte e centro as direções das correntes de deriva litorânea apresentam maior variabilidade, enquanto nos setores centro-sul e sul uma forte predominância de deslocamentos para sul é observada, principalmente no último.

A identificação de convergências e divergências de correntes no modelo multiespectral, através do cálculo do gradiente de deriva litorânea, permitiu a atribuição de graus de vulnerabilidade à variável. Os menores graus representam as maiores taxas de acreção de sedimentos, enquanto os maiores graus destacam áreas com baixas taxas de acreção ou, até mesmo, indicativas de erosão (grau 5).
6.2. Classificação das variáveis em graus de vulnerabilidade

A vulnerabilidade é maior em setores costeiros mais suscetíveis e com baixa capacidade adaptativa. A classificação das variáveis de suscetibilidade e de capacidade adaptativa em graus de vulnerabilidade é apresentada nas Tabelas 12 e 13, respectivamente. As variáveis são classificadas nos graus: 1 (muito baixo), 2 (baixo), 3 (médio), 4 (alto) e 5 (muito alto).

Em relação às variáveis físicas, utilizadas no modelo de suscetibilidade, foram consideradas mais vulneráveis as praias que apresentaram: menor largura de praia, maior altura de onda, gradientes de deriva litorânea indicativos de erosão — seguidos pelos valores indicativos de baixa acreção —, elevação e declividade baixas.

As variáveis socioeconômicas e de ocupação, utilizadas no modelo de capacidade adaptativa, colaboram para o aumento da vulnerabilidade principalmente em locais onde: a área ocupada é mais expressiva e está situada mais próxima à linha
de costa, há um maior número de residentes, a renda por residente é menor e há um menor número de domicílios de uso ocasional.

Tabela 12 – Classificação das variáveis de suscetibilidade em graus de vulnerabilidade. Os valores representam o limite superior de cada classe.

<table>
<thead>
<tr>
<th>Grau de vulnerabilidade</th>
<th>Largura de praia (m)</th>
<th>Altura de onda (m)</th>
<th>Gradiente de deriva litorânea (adimensional)</th>
<th>Elevação (m)</th>
<th>Declividade (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>121,83</td>
<td>0,58</td>
<td>53,60</td>
<td>20,21</td>
<td>53,54</td>
</tr>
<tr>
<td>2</td>
<td>35,16</td>
<td>0,68</td>
<td>11,30</td>
<td>3,92</td>
<td>10,40</td>
</tr>
<tr>
<td>3</td>
<td>26,15</td>
<td>0,82</td>
<td>3,59</td>
<td>2,95</td>
<td>7,27</td>
</tr>
<tr>
<td>4</td>
<td>18,91</td>
<td>0,97</td>
<td>0,13</td>
<td>2,21</td>
<td>5,52</td>
</tr>
<tr>
<td>5</td>
<td>11,47</td>
<td>1,14</td>
<td>-5,04</td>
<td>1,59</td>
<td>3,51</td>
</tr>
</tbody>
</table>

Tabela 13 – Classificação das variáveis de capacidade adaptativa em graus de vulnerabilidade. Os valores representam o limite superior de cada classe.

<table>
<thead>
<tr>
<th>Grau de vulnerabilidade</th>
<th>Área ocupada (m²)</th>
<th>Distância entre ocupação e linha de costa (m)</th>
<th>Número de residentes/(A*L)</th>
<th>Renda por residente/(A*L)</th>
<th>Domicílios de uso ocasional/(A*L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>>67</td>
<td>1,32</td>
<td>161559,00</td>
<td>9586,25</td>
</tr>
<tr>
<td>2</td>
<td>6620,61</td>
<td>65</td>
<td>7,46</td>
<td>794,10</td>
<td>146,26</td>
</tr>
<tr>
<td>3</td>
<td>22796,00</td>
<td>45</td>
<td>40,07</td>
<td>173,10</td>
<td>33,09</td>
</tr>
<tr>
<td>4</td>
<td>53954,90</td>
<td>25</td>
<td>177,19</td>
<td>28,06</td>
<td>5,57</td>
</tr>
<tr>
<td>5</td>
<td>138665,00</td>
<td>15</td>
<td>14603,70</td>
<td>4,63</td>
<td>0,79</td>
</tr>
</tbody>
</table>

A = área do setor censitário e L = comprimento de linha de costa do setor censitário.

6.3. Ponderação das variáveis

A combinação das matrizes de comparação por pares possibilitou a geração de um único conjunto de pesos, representativo de uma ideia de consenso entre os oito especialistas. Cinco das matrizes de pesos foram consideradas consistentes segundo Saaty (2000), ou seja, obtiveram a Razão de Consistência menor ou igual a 0,1 (RC ≤ 0,1, Tabela 14). A ponderação final, por variável, foi obtida a partir da Equação 10:

\[
Peso da variável = \frac{\sum 2^{Vx} + \sum Vy}{n}
\]

onde, \(Vx\) = peso da variável para matrizes com RC ≤ 0,1, \(Vy\) = peso da variável para as matrizes com RC > 0,1 e \(n\) = número de matrizes analisadas.
Embora o método AHP não tenha sido aplicado diretamente para ponderar os modelos de suscetibilidade e capacidade adaptativa, os resultados obtidos os diferenciam em dois grupos. Como pode ser observado na Tabela 15, os especialistas consultados atribuíram maiores pesos às variáveis ambientais. O somatório de pesos das variáveis utilizadas no modelo de suscetibilidade foi quase duas vezes superior ao somatório de pesos das variáveis do modelo de capacidade adaptativa – seus pesos no índice de vulnerabilidade costeira (IVC) foram representados por 65 e 35, respectivamente. A ponderação final das variáveis sugere que os especialistas tenham considerado que a vulnerabilidade pressupõe a existência de áreas suscetíveis.

Uma alternativa à ponderação dos modelos de suscetibilidade e de capacidade adaptativa é a aplicação do método AHP em dois níveis diferentes; um deles composto pelos índices de suscetibilidade e capacidade adaptativa e o outro composto pelas variáveis utilizadas na determinação de cada índice. Um modelo de quatro níveis para a avaliação de vulnerabilidade a partir de variáveis ambientais e socioeconômicas, por exemplo, é apresentado por Nguyen e Woodroffe (2016). Neste, três componentes possuem oito subcomponentes, por sua vez representados por vinte e duas variáveis e vinte e quatro subvariáveis.
Tabela 14 – Ponderação e razão de consistência (RC) das variáveis por especialista.

<table>
<thead>
<tr>
<th>Especialista</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
<th>VII</th>
<th>VIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC</td>
<td>0,075</td>
<td>0</td>
<td>0,043</td>
<td>0</td>
<td>0</td>
<td>0,362</td>
<td>0,135</td>
<td>0,245</td>
</tr>
<tr>
<td>Área ocupada</td>
<td>4</td>
<td>9</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Residentes</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>9</td>
<td>6</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>Renda</td>
<td>2</td>
<td>3</td>
<td>15</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>Domicílios de uso ocasional</td>
<td>2</td>
<td>3</td>
<td>12</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Altura significativa de onda</td>
<td>31</td>
<td>3</td>
<td>3</td>
<td>13</td>
<td>20</td>
<td>14</td>
<td>21</td>
<td>14</td>
</tr>
<tr>
<td>Gradiente de deriva litorânea potencial</td>
<td>19</td>
<td>4</td>
<td>3</td>
<td>12</td>
<td>13</td>
<td>16</td>
<td>20</td>
<td>14</td>
</tr>
<tr>
<td>Largura de praia</td>
<td>6</td>
<td>17</td>
<td>25</td>
<td>8</td>
<td>13</td>
<td>1</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Distância entre ocupação e linha de costa</td>
<td>6</td>
<td>21</td>
<td>6</td>
<td>11</td>
<td>6</td>
<td>10</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Elevação</td>
<td>10</td>
<td>17</td>
<td>2</td>
<td>19</td>
<td>3</td>
<td>29</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Declividade</td>
<td>17</td>
<td>15</td>
<td>25</td>
<td>15</td>
<td>28</td>
<td>11</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

* resultados fora da margem de consistência.
Tabela 15 – Ponderação final das variáveis.

<table>
<thead>
<tr>
<th>VARIÁVEL</th>
<th>PESO (AHP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUSCETIBILIDADE</td>
<td></td>
</tr>
<tr>
<td>Declividade</td>
<td>17</td>
</tr>
<tr>
<td>Altura significativa de onda</td>
<td>15</td>
</tr>
<tr>
<td>Gradiente de deriva litorânea potencial</td>
<td>11</td>
</tr>
<tr>
<td>Largura de praia</td>
<td>11</td>
</tr>
<tr>
<td>Elevação</td>
<td>11</td>
</tr>
<tr>
<td>Distância entre ocupação e linha de costa</td>
<td>11</td>
</tr>
<tr>
<td>CAPACIDADE ADAPTATIVA</td>
<td></td>
</tr>
<tr>
<td>Residentes</td>
<td>8</td>
</tr>
<tr>
<td>Renda</td>
<td>7</td>
</tr>
<tr>
<td>Área ocupada</td>
<td>5</td>
</tr>
<tr>
<td>Domicílios de uso ocasional</td>
<td>4</td>
</tr>
</tbody>
</table>

Com base no conjunto de pesos obtidos por AHP, os índices de suscetibilidade, capacidade adaptativa e vulnerabilidade foram definidos pelas Equações 11, 12, 13, respectivamente.

\[
\text{ISC} = \sqrt{\frac{17a_1 x 15a_2 x 11a_3 x 11a_4 x 11a_5}{65}}
\]

onde, \(a_1 = \text{declividade}, a_2 = \text{altura significativa de onda}, a_3 = \text{gradiente de deriva litorânea potencial}, a_4 = \text{largura de praia} \) e \(a_5 = \text{elevação}\).

\[
\text{ICA} = \sqrt{\frac{11a_1 x 8a_2 x 7a_3 x 5a_4 x 4a_5}{35}}
\]

onde, \(a_1 = \text{distância entre a ocupação e a linha de costa}, a_2 = \text{número de residentes}, a_3 = \text{renda por residente}, a_4 = \text{área ocupada} \) e \(a_5 = \text{domicílios de uso ocasional}\).

\[
\text{IVC} = \sqrt{\frac{65\text{ISC} x 35\text{ICA}}{100}}
\]

(13)
6.4. Distribuição espacial das variáveis e índices

Visto que as variáveis ambientais e o índice de suscetibilidade foram obtidos para segmentos aproximadamente equidistantes, e que sua classificação em graus de vulnerabilidade tenha sido baseada em quantis, é esperado que as classes apresentem percentuais de ocorrência semelhantes ao longo do litoral. Portanto, não é possível afirmar que o litoral tende a ser mais ou menos vulnerável pelos percentuais de ocorrência das classes de vulnerabilidade para as variáveis ambientais e para o índice de suscetibilidade. O mesmo problema é observado para as variáveis distância entre ocupação e linha de costa e área ocupada, utilizadas no modelo de capacidade adaptativa. Já as variáveis socioeconômicas da base de dados do IBGE, embora não tenham sido obtidas para segmentos equidistantes – mas sim definidas nos limites dos setores censitários –, ainda assim não expressam limites realísticos da variabilidade dos fenômenos espaciais analisados. O setor censitário é uma unidade territorial com dimensão adequada à operação de pesquisas no Território Nacional (IBGE, 2011) e, portanto, sua extensão de linha de costa não reflete modificações nos padrões de espacialização das variáveis socioeconômicas.

Posto isto, o presente estudo optou pela representação dos resultados por meio de comparações relativas entre os setores do Plano Estadual de Gerenciamento Costeiro (GERCO/SC) – unidades costeiras definidas com base na compatibilização das atividades socioeconômicas e da expansão urbana com as características específicas da zona costeira, com o objetivo de ordenar as atividades humanas no que concerne ao uso, à ocupação do solo e do mar e à exploração dos recursos naturais renováveis e não-renováveis (SANTA CATARINA, 2006).

6.4.1. Análise espacial das variáveis e índices nos cinco setores do GERCO/SC

Para a compreensão das condições de vulnerabilidade ao longo da linha de costa do Estado, cada variável e índice obtidos foram representados espacialmente nos quintis de vulnerabilidade: 1 (muito baixa, em azul escuro), 2 (baixa, em azul claro), 3 (média, em verde), 4 (alta, em amarelo) e 5 (muito alta, em vermelho). Os setores do GERCO/SC serviram de guias à representação descritiva dos resultados.
A identificação da predominância relativa dos graus de vulnerabilidade entre os setores do GERCO/SC contribui para a elaboração de planos de gestão no litoral catarinense, através do reconhecimento de áreas com maior potencial de perdas sociais, econômicas e ambientais; sobre as quais a ocupação deve ser evitada. As características gerais do litoral dos cinco setores do GERCO são descritas com base no predomínio de graus mais baixos (somatório dos percentuais dos graus 1 a 2, ou 1 a 3, de vulnerabilidade), intermediários (somatório dos percentuais dos graus 2 a 4 de vulnerabilidade) e mais altos (somatório dos percentuais dos graus 3 a 5, ou 4 a 5, de vulnerabilidade). A espacialização das variáveis e dos índices nos cinco setores, em graus de vulnerabilidade, é apresentada nas Figuras 12, 13 e 14.

As variáveis adquiridas para os setores censitários do IBGE (número de residentes, domicílios de uso ocasional e renda), a declividade e o modelo de suscetibilidade apresentaram todas as classes de vulnerabilidade em cada um dos setores do GERCO. No setor sul, não foram observados os graus mais altos de vulnerabilidade (ausência dos graus 3, 4 e/ou 5) para as seguintes variáveis e índices: distância entre ocupação e linha de costa (graus 4 e 5), área ocupada (graus 3, 4 e 5), largura de praia (graus 4 e 5), ICA (graus 4 e 5) e IVC (grau 5). Os graus mais baixos foram ausentes (graus 1 e/ou 2) para as variáveis elevação (grau 1), altura de onda (graus 1 e 2) e gradiente de deriva litorânea potencial (grau 1). No centro-sul, as classes alta e muito alta foram ausentes para a variável área ocupada. O setor centro apresentou segmentos classificados nos cinco graus para todas as variáveis e índices. O setor centro-norte não apresentou as classes de vulnerabilidade muito baixa, para a largura de praia, e muito alta, para a altura de onda. Esta também não foi observada no setor norte.
Figura 12 – Espacialização das variáveis socioeconômicas e de ocupação e modelo de capacidade adaptativa.

Figura 13 – Espacialização das variáveis físicas e modelo de suscetibilidade.
6.4.1.1. Litoral norte

O setor norte é caracterizado por baixos números de residentes (graus 1 a 3), renda e domicílios de uso ocasional (ambos com predomínio dos graus 3 a 5). O litoral do setor não é ocupado em 40% de sua extensão, o que pode ser observado pelo elevado percentual do grau 1 para as variáveis área ocupada e distância entre ocupação e linha de costa – embora ambas sejam seguidas por maiores percentuais de grau 4. Ou seja, embora o setor não seja amplamente ocupado, há uma forte concentração de áreas construídas e estas se situam próximas à linha de costa – principalmente no extremo norte e extremo sul do setor. Em função das características socioeconômicas e de ocupação, capacidades adaptativas mais baixas são encontradas sobre as áreas ocupadas (graus 3 a 5), enquanto as áreas sem ocupação apresentam capacidades adaptativas mais elevadas (graus 2 e 3) – decorrentes do maior peso atribuído às variáveis distância entre ocupação e linha de costa e número de residentes.
O litoral é representado, em maior percentual, por baixos graus de suscetibilidade (graus 1 e 2). Todavia, segmentos com graus de suscetibilidade elevados são observados no extremo norte do setor, onde também é observada uma elevada concentração da ocupação próxima ao mar e uma brusca mudança na orientação da linha de costa – e, consequentemente, na exposição às ondas. Os graus mais baixos de suscetibilidade são explicados por terrenos mais elevados (graus 1 e 2) e com declividades acentuadas (graus 1 a 3), alturas de ondas relativamente baixas (graus 2 e 3) e gradientes de deriva litorânea potencial intermediários (graus 2 a 4). Por outro lado, as faixas praias do litoral norte são estreitas (graus 3 a 5).

O modelo de vulnerabilidade, por sua vez, destaca-se pelo alto percentual de expressão do grau muito baixo (41%) sobre as áreas não ocupadas, seguido pelas classes muito alta e média sobre as áreas ocupadas – com destaque ao extremo norte do litoral, onde os graus de vulnerabilidade mais elevados dos modelos de suscetibilidade e capacidade adaptativa coincidem.

6.4.1.2. Litoral centro-norte

O setor centro-norte é caracterizado por elevados números de residentes (graus 3 a 5), renda e percentuais de domicílios de uso ocasional (ambos com predomínio dos graus 1 e 2). É importante ressaltar que o setor foi o único a apresentar predomínio das classes menos vulneráveis para as duas últimas variáveis. A ocupação na área em perigo é bastante expressiva – representada pelo grau 5 de vulnerabilidade em 38% da extensão do setor – e está situada, predominantemente, próxima ao mar (graus 3 a 5). Em função das características socioeconômicas e de ocupação do setor, sua capacidade adaptativa se caracteriza por elevados percentuais das classes média a muito alta – indicativos de uma baixa capacidade de adaptação.

Sua baixa suscetibilidade (graus 1 e 2) é consequência da combinação de áreas mais elevadas com declividades acentuadas (ambas com o predomínio dos graus 1 a 3), baixa altura de onda (graus 1 a 3) e gradiente de deriva litorânea potencial predominantemente muito baixo (grau 1) em 34% da extensão da linha de costa; todavia, a classe muito baixa é seguida pelos graus 3 a 5. As faixas praias do setor,
assim como observado no litoral norte, são bastante estreitas – predominio dos graus 3 a 5, sendo este representativo de 35% da extensão do litoral.

O modelo de vulnerabilidade é representado, em maior extensão, pelas classes baixa e média. A espacialização da vulnerabilidade neste setor destaca a predominância da suscetibilidade em relação à capacidade adaptativa. Os baixos graus de vulnerabilidade são justificados, principalmente, por características físicas do setor. Ou seja, embora as características socioeconômicas e de ocupação favoreçam o aumento da vulnerabilidade, estas possuam um papel secundário na determinação do IVC.

6.4.1.3. Litoral centro

O setor centro é caracterizado por valores intermediários de residentes (graus 2 a 4), percentuais baixos de domicílios de uso ocasional e renda (ambos representados, predominantemente, pelos graus 4 e 5). A ocupação na área em perigo e a distância entre a ocupação e a linha de costa são regulares (percentuais razoavelmente bem distribuídos entre as classes). Tendo em vista as características socioeconômicas e de ocupação do setor, o modelo de capacidade adaptativa resultante apresentou graus de vulnerabilidade mais elevados (graus 3 a 5) – indicativos de baixa capacidade adaptativa.

Sua baixa suscetibilidade (graus 1 a 3) é justificada pela presença de áreas mais elevadas (graus 1 e 2), declividades intermediárias (graus 2 a 4), alturas de onda representadas pela classe muito baixa de vulnerabilidade em 56% de sua extensão e gradientes de deriva litorânea potencial indicativos de maiores acúmulos de sedimento (graus 1 e 2). As faixas praiais de seu litoral apresentaram, entretanto, larguras classificadas predominantemente nos graus 2, 4 e 5, respectivamente.

O setor apresentou baixa vulnerabilidade (graus 1 a 3) – justificada pela predominância da suscetibilidade em relação à capacidade adaptativa. Todavia, assim como observado no litoral centro-norte, os graus no modelo de vulnerabilidade são superiores aos observados no modelo de suscetibilidade, demonstrando a intensificação da vulnerabilidade ocasionada pela baixa capacidade adaptativa.
6.4.1.4. Litoral centro-sul

O setor centro-sul é caracterizado por baixos números de residentes (graus 1 a 3), percentuais de domicílios de uso ocasional e renda (ambos com predominância dos graus 3 a 5). O litoral não possui ocupação ao longo de 80% de sua extensão (observado pelo predomínio do grau 1) e a pouca ocupação existente está situada, em maior percentual, a uma distância intermediária do mar (grau 3). Em função de suas características socioeconômicas e de ocupação, os graus mais baixos (graus 1 a 3) predominam no modelo de capacidade adaptativa.

A alta suscetibilidade encontrada para o setor (graus 3 a 5) resulta da combinação de áreas menos elevadas (graus 3 a 5), planas (graus 4 a 5 de declividade) e submetidas a grandes alturas de onda (graus 3 a 5). Por outro lado, as classes mais baixas encontradas para as variáveis gradiente de deriva litorânea potencial e largura de praia (graus 1 a 3) indicam uma maior propensão do litoral ao acúmulo de sedimentos – além de já ser caracterizado por larguras de praia relativamente amplas. As maiores faixas de areia seca e a acreção de sedimentos foram consideradas, pelos especialistas consultados, menos relevantes na determinação da vulnerabilidade do que a declividade e a altura de onda. Ou seja, na ocorrência de eventos extremos, ondas incidentes sobre áreas de baixa declividade irão apresentar um grande potencial de geração de danos, inclusive em praias com faixas de areia mais largas e maiores taxas de acreção sedimentar.

Embora a alta capacidade adaptativa da população colabore para a redução da vulnerabilidade, devido à baixa concentração populacional e de áreas construídas, o setor se destaca pela vulnerabilidade classificada pelos graus médio e alto. Os baixos valores de renda e de domicílios utilizados como segunda moradia sugerem que os indivíduos do setor – menos expressivos, relativamente aos setores ao norte do Estado – teriam maiores dificuldades para se recuperar de eventuais danos costeiros.

6.4.1.5. Litoral sul

O setor sul é caracterizado por baixos números de residentes (graus 1 a 3), domicílios de uso ocasional e renda (graus 3 a 5). Menos de 10% do litoral é ocupado (predominância do grau 1) e as poucas áreas construídas estão situadas a maiores
distâncias da linha de costa (graus 2 e 3). Em função das características socioeconômicas e de ocupação, a capacidade adaptativa encontrada para o setor é considerada alta (graus 1 e 2).

A alta suscetibilidade observada (graus 3 a 5) resulta de áreas de menor elevação (graus 3 e 4) e declividade (graus 3 a 5), maiores alturas de ondas (graus 4 e 5) e gradientes de deriva litorânea potencial indicativos de baixa acreção de sedimentos (graus 3 e 4). Por outro lado, os segmentos praiais do setor apresentaram as faixas de areia seca mais largas do litoral catarinense – todos eles classificados nas classes muito baixa, baixa e média.

O modelo de vulnerabilidade, por sua vez, é representado predominantemente pelas classes mais altas (graus 3 e 4). As mesmas justificativas atribuídas à alta vulnerabilidade do litoral centro-sul são válidas para o setor sul. Sua ocupação, ainda menos expressiva do que a observada no centro-sul, colabora de forma mais efetiva na redução do cenário de vulnerabilidade, contudo a alta suscetibilidade possui maior influência.

6.4.2. Suscetibilidade, capacidade adaptativa e vulnerabilidade no litoral catarinense

Os setores centro-sul e sul foram os mais suscetíveis, como pode ser observado na Figura 15. Ambos os setores foram representados pelos graus 3, 4 e 5 em 85% de sua extensão, aproximadamente. Os maiores valores de suscetibilidade podem ser justificados pela predominância de ondas mais altas e de terrenos planos – variáveis de maior peso e que apresentam relação espacial com o modelo de suscetibilidade. Nos demais setores, o somatório dos percentuais das classes muito baixa e baixa foram similares e representaram 60% da extensão da linha de costa, aproximadamente. Considerando o somatório das classes de vulnerabilidade alta e muito alta, os setores mais suscetíveis foram: centro-sul (70%), sul (54%), norte (30%), centro-norte (19%) e centro (16%).
Figura 15 – Representação gráfica do percentual de graus de vulnerabilidade, para o modelo de suscetibilidade, por setor do GERCO/SC.

A distribuição da capacidade adaptativa nos graus de vulnerabilidade, ao longo dos cinco setores do GERCO, é apresentada na Figura 16. Considerando o valor percentual do somatório das classes alta e muito alta, os setores de menor capacidade adaptativa (maiores graus de vulnerabilidade) foram: centro-norte (66%), centro (54%), norte (42%), centro-sul (9%) e sul (ausência dos graus 4 e 5).

Embora o litoral centro-sul e sul tenha manifestado os maiores valores de suscetibilidade, a capacidade adaptativa destes setores também é mais elevada. O somatório dos percentuais das classes muito baixa e baixa para o índice de capacidade adaptativa nos setores centro-sul e sul corresponde a 78% e 93%, respectivamente. A predominância das classes de menor vulnerabilidade reflete o menor número de residentes, a baixa ocupação na área em perigo e a menor proximidade das áreas construídas ao mar. A renda e o número de domicílios de uso ocasional, entretanto, são menores em ambos os setores e se contrapõem à maior capacidade adaptativa observada.

Os maiores valores de renda por residente foram observados nos grandes balneários do setor centro-norte e no norte do setor centro. Há uma forte concentração de renda nestes segmentos, tendo em vista que uma grande extensão do litoral é classificada nos graus mais baixos de vulnerabilidade. Os baixos valores de renda por
residentes são, muitas vezes, relacionados a padrões construtivos mais precários e à ausência de infraestruturas de proteção. Além da menor proteção e resistência dessas áreas a eventuais impactos decorrentes de eventos extremos de ondas e marés, áreas de baixa renda também enfrentam maiores desafios no que tange à reconstrução das edificações danificadas. Por conseguinte, sobretudo nos segmentos de baixa renda localizados nos setores mais suscetíveis, a população residente deverá levar mais tempo para se recuperar de um dano costeiro e este pode, até mesmo, ser irreparável.

Figura 16 – Representação gráfica do percentual de graus de vulnerabilidade, para o modelo de capacidade adaptativa, por setor do GERCO/SC.

Em razão dos maiores pesos atribuídos às variáveis ambientais, a espacialização da vulnerabilidade assemelha-se mais ao modelo de suscetibilidade do que ao modelo de capacidade adaptativa. O somatório das classes alta e muito alta, em cada setor do GERCO, indicou que a vulnerabilidade é maior nos setores: centro-sul (47%), sul (36%), norte (35%), centro-norte (32%) e centro (24%), respectivamente. Todavia, o maior grau de vulnerabilidade (grau 5) é maior nos setores norte e centro-norte do Estado e é ausente no setor sul. A mesma ordem de vulnerabilidade foi encontrada para o modelo de suscetibilidade, o que significa que os setores mais suscetíveis são também os mais vulneráveis, como pode ser constatado na Figura 17. No geral, a vulnerabilidade tende a ser amenizada pela alta
capacidade adaptativa dos setores mais suscetíveis – e menos ocupados – e, por outro lado, é amplificada pelas baixas capacidades adaptativas encontradas em áreas com elevada densidade ocupacional.

![Vulnerabilidade](image)

Figura 17 – Representação gráfica do percentual de graus de vulnerabilidade, para o modelo de vulnerabilidade, por setor do GERCO/SC.

Os resultados obtidos sugerem que os setores mais suscetíveis coincidem com os de maior capacidade adaptativa. Nestes, o elevado percentual de segmentos com ausência de áreas ocupadas produz um aumento na capacidade adaptativa – características observadas, predominantemente, ao sul do Estado. Em vista disso, os setores centro-sul e sul tendem a acomodar mais facilmente ameaças ambientais, pela baixa concentração de residentes, de ocupações e pela maior distância entre estas e o mar. Por outro lado, possuem uma menor capacidade de recuperação – justificada pela baixa renda e baixa presença de domicílios de segunda-moradia.

Os setores menos suscetíveis coincidem com os de maior percentual de área ocupada e menor capacidade adaptativa. Esta provoca um aumento na vulnerabilidade, justificado predominantemente pelas variáveis relacionadas à ocupação: maior número de residentes, de área ocupada e menor distância entre ocupação e linha de costa. As variáveis indicativas de desenvolvimento econômico – renda e número de domicílios de uso ocasional – tendem a elevar a capacidade de...
adaptação sobre os setores mais ocupados, entretanto apresentaram um papel secundário na determinação do índice de capacidade adaptativa.

Em síntese, áreas com maior percentual de ocupação apresentam maiores rendas e números de domicílios de uso ocasional. Por outro lado, possuem um maior número de residentes e a distância entre a ocupação e a linha de costa é menor. O maior percentual de área ocupada, número de residentes e a menor distância da ocupação em relação ao mar provocam uma redução da capacidade adaptativa, geralmente mais relevante do que o aumento ocasionado por valores de renda e de domicílios de uso ocasional mais elevados. Os maiores pesos atribuídos às variáveis número de residentes e distância entre ocupação e linha de costa justificam o padrão observado.

Embora as maiores densidades de ocupação, ao longo do litoral catarinense, encontrem-se em setores menos suscetíveis – em especial no setor centro-norte, mas também nos setores norte e centro –, a espacialização das áreas ocupadas e da suscetibilidade nos limites destes setores demonstra a presença de uma maior densidade de infraestruturas em áreas mais suscetíveis. No centro-norte, as áreas mais ocupadas apresentaram graus elevados de suscetibilidade, em decorrência das menores elevações, declividades e larguras de praia observadas nestes trechos – comparativamente aos trechos menos ocupados do setor. No extremo norte do setor norte as maiores ocupações também são associadas a maiores graus de suscetibilidade, explicados principalmente pela baixa elevação e estreita faixa de areia.

A associação entre elevados graus de suscetibilidade e menores capacidades adaptativas observada em segmentos com maior percentual de área construída nos setores norte, centro-norte e centro acarretam em classes mais altas de vulnerabilidade. Isto explica a maior ocorrência de eventos adversos provocados por marés meteorológicas associadas a ondas de tempestade (ressacas) ao norte do Estado de Santa Catarina – como observado por Krueger (2011), com base na análise de relatórios de danos da Defesa Civil (Avadans) e em registros de jornais.

Terrenos planos e de baixa elevação favorecem a expansão de áreas ocupadas nos setores ao norte do Estado. Estas características de relevo se destacam, especialmente, nos setores centro-sul e sul. Além disso, a ampla largura de praia nestes setores poderia favorecer a ocupação costeira na faixa em perigo. Todavia, a
maior energia marinha ao sul do Estado justifica os menores valores de área construída nos setores centro-sul e sul. Este argumento é embasado pela maior presença de áreas ocupadas em segmentos de linha de costa submetidos a menores alturas significativas de onda nos setores centro, centro-norte e norte.

Em resumo, embora os setores ao norte do Estado sejam menos suscetíveis, os mesmos se encontram intensamente ocupados em praias com menores larguras de faixa de areia, terrenos planos e baixa declividade (segmentos de maior suscetibilidade). A escolha por áreas planas e baixas para a construção de edificações, comumente situadas próximas ao mar, acarretou no aumento da vulnerabilidade para os segmentos que se enquadrarem nesta descrição – o que favorece a ocorrência de danos nessas regiões. Destaca-se ainda que a concentração de balneários de grande desenvolvimento econômico pode ter ocorrido em função da menor exposição às ondas, observada nos setores ao norte do Estado de Santa Catarina.

Existe uma distribuição desigual dos fatores econômicos entre as regiões norte e sul do Estado. No geral, os residentes de baixa renda, localizados predominantemente nos setores mais suscetíveis, possuem somente a moradia situada nas proximidades da linha de costa. Por outro lado, os residentes dos balneários de grande desenvolvimento econômico, mesmo aqueles situados em segmentos de maior suscetibilidade, possuem uma maior capacidade de resistir, enfrentar e se recuperar de eventuais danos – através da construção de estruturas de proteção, do deslocamento para outro domicílio próprio e da reconstrução de edificações danificadas.

Em decorrência do predomínio da suscetibilidade sobre a capacidade adaptativa, devido aos maiores pesos atribuídos às variáveis ambientais, os modelos de vulnerabilidade e de suscetibilidade apresentaram uma maior correspondência. Os setores centro-sul e sul foram os mais suscetíveis e, também, os mais vulneráveis. A baixa presença de residentes e ocupações na área em perigo, bem como as maiores distâncias entre a ocupação e a linha de costa – variáveis utilizadas na determinação da capacidade adaptativa e que favorecem a redução da vulnerabilidade –, apresentaram um papel secundário no modelo de vulnerabilidade para estes setores. Contudo, o fato de os setores mais populosos coincidirem com os menos suscetíveis não exclui a possibilidade da manifestação de danos na ocorrência de eventos
extremos, principalmente porque dentro destes a ocupação se concentra nos trechos de maior suscetibilidade.

Considerando-se as energias disponíveis à geração de danos costeiros e as características físicas da área em perigo, a distribuição das áreas ocupadas observada entre os setores do GERCO/SC contribui para a minimização de impactos costeiros. Além disso, as maiores densidades ocupacionais coincidem com a maior concentração de renda e com o maior número de domicílios de uso ocasional, comumente utilizados para o veraneio. Por outro lado, as áreas mais suscetíveis ao sul do Estado são também as de menor concentração de renda, diferentemente do observado nos trechos mais suscetíveis ao norte do Estado.

Uma conclusão a que se pode chegar é que, um aumento da ocupação nos setores centro-sul e sul provavelmente reverteria o padrão histórico de maiores danos ocasionados por ressacas na região ao norte do Estado, observado por Krueger (2011), tendo em vista a alta suscetibilidade e os baixos valores de renda e de segunda-moradia encontrados para os setores ao sul do Estado. A intensificação da ocupação litorânea acarreta no aumento na vulnerabilidade, em decorrência do valor econômico da infraestrutura urbana exposta e da probabilidade de um maior número de pessoas ser afetado em eventos de inundação e erosão (McLAUGHLIN et al., 2002). Além disso, o avanço das áreas ocupadas sobre os ambientes praias promove alterações no transporte sedimentar, muitas vezes associadas à intensificação dos processos erosivos (HORN FILHO, 2006).

Segundo Klein et al. (2006), o processo de urbanização no litoral centro-norte ocorreu de forma acelerada a partir dos anos 70, o que resultou na ocupação desordenada das dunas frontais, com a implantação de avenidas beira-mar e construção de calçadões sobre o prisma ativo da praia. Como consequência, muitos municípios foram afetados por eventos de erosão costeira, por exemplo: Piçarras, Navegantes e Balneário Camboriú. Os autores observaram que, a ocorrência de tempestades decorrentes da passagem de sistemas frontais ocasiona processos de transposição (overwash), durante os quais os sedimentos arenosos são jogados pelas ondas sobre as avenidas beira-mar ou para retaguarda do cordão de dunas frontais. Em outras localidades, as ondas atuam diretamente sobre o perfil praial, com erosão das dunas frontais. No setor centro, Horn Filho (2006) observou que, após os processos erosivos, praias com baixa área construída apresentaram recuperação do
perfil praial com ganho sedimentar. Já nas praias com elevada densidade de ocupação próxima à linha de costa, a duna frontal foi descaracterizada e houve intensificação dos processos erosivos.

O cenário de vulnerabilidade para o sul do Estado poderia ser ainda mais preocupante se uma área em perigo mais larga fosse analisada. Um teste realizado no âmbito deste estudo mostrou que, para uma área em perigo definida por uma distância de 170 m da linha de costa, uma grande extensão litorânea dos setores centro-sul e sul apresentariam áreas ocupadas na faixa em perigo (Figura 18). A abrangência de uma área em perigo mais ampla tenderia a aumentar, principalmente, o percentual de ocupação exposta a ondas de sudeste (Figura 19). É importante ressaltar que a área em perigo considerada neste estudo foi obtida a partir de dados de taxa de variação da linha de costa, altura do espraiamento (runup) e elevação do nível do mar para praias da Ilha de Santa Catarina. Se os dados fossem calculados para a costa sul do Estado, provavelmente a área em perigo seria expandida em função das maiores alturas de onda e baixas declividade e elevação.
Figura 18 – Ocupação para as áreas em perigo compreendidas entre a linha de costa e a distância de 170 m (A) e de 67 m (B) da mesma.

Figura 19 – Percentual de área ocupada nas direções de exposição da linha de costa para as áreas em perigo compreendidas entre a linha de costa e a distância de 170 m (A) e de 67 m (B) da mesma.
7. CONSIDERAÇÕES FINAIS

As consequências negativas de ameaças naturais podem estar mais relacionadas às formas como se dá a ocupação do espaço pela sociedade do que com a magnitude do fenômeno desencadeador (MARENGO et al., 2015). Portanto, diante do atual cenário de mudanças climáticas, avaliações de vulnerabilidade costeira são essenciais para a elaboração de planos e medidas efetivos de minimização de perdas ocasionadas por episódios de erosão e inundação. O Painel Brasileiro de Mudanças Climáticas (PBMC, 2014) atenta ainda que as populações mais pobres serão as mais atingidas pelas alterações do clima, tornando-se necessário o desenvolvimento de pesquisas científicas sobre impactos ambientais com a aderência de questões socioeconômicas.

Perigos costeiros incidem sobre linhas de costa em diferentes situações de vulnerabilidade, decorrentes de variações longitudinais de fatores ambientais (físicos) e socioeconômicos. A eventual incidência de ondas e marés de tempestade sobre áreas costeiras ocupadas, com características físicas representativas de cenários mais suscetíveis e com piores condições socioeconômicas, indicativas de uma baixa capacidade adaptativa, pode afetar a população por um longo período de tempo e, até mesmo, acarretar em desastres costeiros.

Neste sentido, o presente estudo propõe uma avaliação de vulnerabilidade a ondas de maior frequência de ocorrência e a eventos marinhos de tempestade para as praias do Estado de Santa Catarina, através da aplicação de um índice multicritério de vulnerabilidade costeira (IVC), adaptado da abordagem inicialmente proposta por Gornitz e Kanciruk (1989) – o Coastal Vulnerability Index (CVI). O IVC foi composto pelos subíndices de suscetibilidade (ISC, representado por variáveis físicas) e de capacidade adaptativa (ICA, representado por variáveis socioeconômicas e de ocupação).

O Índice de Vulnerabilidade Costeira (IVC) foi calculado pela integração das variáveis: área ocupada, distância entre ocupação e linha de costa, número de residentes, renda por residente, número de domicílios de uso ocasional, altura significativa de onda, gradiente de deriva litorânea potencial, largura de praia, elevação e declividade. As variáveis foram espacializadas em graus de vulnerabilidade (muito baixo, baixo, médio, alto e muito alto) e integradas aos índices
por meio de técnicas de geoprocessamento em ambiente de Sistema de Informação Geográfica (SIG). A definição de índices multicritérios de vulnerabilidade atrelada à análise espacial em SIG possibilita estimar, com um esforço analítico relativamente reduzido, a resposta relativa de diferentes setores litorâneos aos perigos costeiros.

Com o objetivo de fomentar a discussão sobre os fatores preponderantes na determinação da vulnerabilidade costeira para o litoral de Santa Catarina, neste estudo foram apresentados três modelos finais que retratam, isoladamente, a influência regional de fatores físicos (modelo de suscetibilidade), socioeconômicos e de ocupação (modelo de capacidade adaptativa) e, por fim, a integração entre ambos os modelos (modelo de vulnerabilidade). Os resultados são descritos conforme a vulnerabilidade relativa da variáveis e índices entre os setores do Plano Estadual de Gerenciamento Costeiro (GERCO/SC), sendo eles: norte, centro-norte, centro, centro-sul e sul.

A vulnerabilidade é maior em setores costeiros mais suscetíveis e com baixa capacidade adaptativa. Em relação às variáveis físicas, utilizadas no modelo de suscetibilidade, foram consideradas mais vulneráveis as praias que apresentaram: menor largura de praia, maior altura de onda, gradientes de deriva litorânea indicativos de erosão – seguidos pelos valores indicativos de baixa acreção –, elevação e declividade baixas. As variáveis socioeconômicas e de ocupação, utilizadas no modelo de capacidade adaptativa, colaboram para o aumento da vulnerabilidade principalmente em locais onde: a área ocupada é mais expressiva e está situada nas proximidades da linha de costa, há um maior número de residentes, a renda por residente é menor e há um menor número de domicílios de uso ocasional. O somatório dos percentuais das classes de vulnerabilidade alta a muito alta indica que os setores mais suscetíveis foram: centro-sul (70%), sul (54%), norte (30%), centro-norte (19%) e centro (16%). Os setores de menor capacidade adaptativa, definidos pelos maiores graus de vulnerabilidade, foram: centro-norte (66%), centro (54%), norte (42%), centro-sul (9%) e sul (ausência dos graus 4 e 5). Os setores mais vulneráveis, por sua vez, foram representados na mesma ordem dos setores de maior suscetibilidade: centro-sul (47%), sul (36%), norte (35%), centro-norte (32%) e centro (24%).

Uma importante contribuição no âmbito deste estudo foram os resultados obtidos através do método Analytic Hierarchy Process (AHP). Embora a diferenciação por pesos para os modelos de suscetibilidade e de capacidade adaptativa não tenha
sido inicialmente objetivada, os especialistas consultados consideraram o conjunto de variáveis físicas/ambientais mais importante para a determinação da vulnerabilidade, comparativamente ao conjunto de variáveis de capacidade adaptativa.

Em função da ponderação das variáveis, os setores centro-sul e sul foram os mais suscetíveis e, também, os mais vulneráveis. A baixa presença de residentes e ocupações na área em perigo, bem como as maiores distâncias entre a ocupação e a linha de costa – variáveis utilizadas na determinação da capacidade adaptativa e que favorecem a redução da vulnerabilidade – apresentaram um papel secundário na determinação do IVC para esses setores. Os setores ao norte do Estado são menos suscetíveis e vulneráveis, todavia os mesmos se encontram intensamente ocupados em praias com menores larguras de faixa de areia, terrenos planos e com baixa declividade (segmentos de maior suscetibilidade).

Destaca-se que a maior ocorrência de danos atualmente observada na região norte do Estado por Herrmann et al. (2009) e Krueger (2011) pode ser facilmente revertida caso haja a expansão de áreas ocupadas próximo às linhas de costa dos setores centro-sul e sul, tendo em vista a alta suscetibilidade e os baixos valores de renda e de segunda-moradia encontrados ao sul do Estado.

Embora o Coastal Vulnerability Index (CVI) tenha sido amplamente utilizado, principalmente para a linha de costa dos Estados Unidos, não existe um índice de vulnerabilidade costeira aceito globalmente. Índices multicritérios representam um estado de vulnerabilidade sensível às variáveis selecionadas e estritamente dependentes das mesmas. Embora geralmente utilizadas, metodologias baseadas em índices numéricos multicritério ainda falham em expressar a acurácia e a incerteza incorporada na análise espacial.

A análise comparativa entre os resultados de avaliações de vulnerabilidade realizadas para as praias de Santa Catarina não é trivial por uma série de dificuldades. As limitações provêm, principalmente, das diferenças relacionadas à escala de análise, da seleção de variáveis, da classificação dos índices em graus de vulnerabilidade e das técnicas utilizadas para a integração dos dados. A rigor cada estudo é significativo nos limites dos pressupostos adotados por seus autores. Neste sentido, um grande avanço nos estudos de vulnerabilidade é o reconhecimento prévio das variáveis que exercem maior influência na capacidade de uma área em se antecipar, enfrentar, resistir e se recuperar do impacto produzido por um evento natural através de seus
elementos físicos e socioeconômicos.

Visando aprimorar a representatividade do índice, neste trabalho as variáveis foram ponderadas, segundo a sua influência na vulnerabilidade costeira a ondas, por meio de um método de decisão multicritério (MCDM) que envolveu a opinião de especialistas em análises de vulnerabilidade ambiental e/ou morfodinâmica praial. Adicionalmente, Bonetti e Woodroffe (2017) sugerem, como forma de verificação da efetividade dos índices, a utilização de análises multivariadas que permitam a exclusão de redundâncias entre as variáveis selecionadas. Análises de correlação podem auxiliar na seleção de variáveis representativas para o modelo espacial, determinando seu desempenho e identificando redundâncias. Outra análise estatística relevante à avaliação da efetividade do índice é a análise de correspondência, que contribui para a verificação da pertinência do número de classes de vulnerabilidade representadas no mapeamento.

Pendleton et al. (2010) avaliou a vulnerabilidade a potenciais mudanças no nível do mar e de lagos em vinte e duas unidades de parques gerenciadas pelo National Park Service. Uma análise de componentes principais (PCA) revelou que 99% da variabilidade do índice de vulnerabilidade poderia ser explicada por apenas quatro das sete variáveis utilizadas: geomorfologia, declividade costeira, taxa de variação do nível da água e altura significativa de onda. A amplitude da maré, cobertura de gelo e a taxa histórica de variação da linha de costa não são determinantes para o índice definido quando este é aplicado em estudo de larga escala (milhares de quilômetros).

O aumento do nível do mar é apontado como uma das consequências das mudanças climáticas esperadas para o próximo século e, portanto, deve-se considerar a sua inclusão em modelos de vulnerabilidade. Diferentemente da inundação da costa por eventos extremos esporádicos, a inundação causada pela subida do nível médio do mar é permanente. Modelos de vulnerabilidade que integrem taxas de subida do nível do mar, de variação da linha de costa e altura de espraiamento, calculadas para a região sul do Estado, poderiam ser gerados para a avaliação do potencial de perdas esperadas em um cenário de intensificação de áreas ocupadas próximas à costa. Hinkel (2011) argumenta que, uma vez que a vulnerabilidade se refere a danos futuros, a inclusão de modelos preditivos faz-se essencial.
Outra variável comumente analisada nesse tipo de estudo é a taxa histórica de variação da linha de costa (Serafim, 2014; Muler, 2012; Gornitz, 1991). A integração desta componente a índices de vulnerabilidade é um importante indicativo da condição morfológica local e da propensão da linha de costa a ser deslocada com a subida do nível do mar e altura do espraiamento de onda (runup). Taxas de variação da linha de costa para o litoral catarinense foram integradas por Serafim (2014). No entanto, optou-se por não as incorporar ao atual índice proposto em função de resultados de análises estatísticas posteriores, obtidos por Bonetti e Woodroffe (2015), demonstrarem uma baixa correlação entre a variável e os valores de suscetibilidade obtidos por Serafim (2014). É importante ressaltar que os dados preexistentes das taxas de variação histórica da linha de costa de Santa Catarina não são de todo compatíveis. Estes representam escalas temporais variadas, foram calculados a partir de métodos e indicadores de linha de costa alternativos e tiveram suas incertezas definidas segundo diferentes critérios.

Modelos regionais de vulnerabilidade podem fornecer importante conhecimento prévio de áreas prioritárias ao desenvolvimento de estudos de maior detalhamento geomorfológico e hidrodinâmico, essenciais para a implantação de medidas concretas de proteção à costa. A identificação de situações de vulnerabilidade ao longo do litoral também fornece subsídios a análises de risco a desastres naturais. Em abordagens de risco, todavia, é crucial que sejam realizados estudos detalhados da magnitude de danos, envolvendo a quantificação de perdas econômicas esperadas, número de vidas perdidas ou a extensão do dano físico à propriedade (CEPAL, 2011). Ressalta-se, ainda, a importância da quantificação dos investimentos necessários à recuperação de danos (CEPAL, 2012c).

Por fim, o estudo atenta para a importância da ordenação das atividades humanas no que concerne ao uso e ocupação das faixas praiais. O histórico de danos sobre trechos mais suscetíveis e intensamente ocupados ao norte do Estado de Santa Catarina serve de alerta à necessidade de elaboração de planos efetivos de gestão costeira, que visem sobretudo a preservação das faixas praiais dos setores centro-sul e sul, tendo em vista as características ambientais e os fatores econômicos mais vulneráveis observados para estes setores.
8. REFERÊNCIAS BIBLIOGRÁFICAS

HERRMANN, M. L. P.; CARDozo, F.; BAUZYS, F.; PEREIRA, G. Frequência dos

IPCC. Climate Change 2013: the physical science basis. Cambridge: Cambridge University Press, 2013. 1535 p.

ANEXO 1

DOCUMENTO ENVIADO A ESPECIALISTAS EM VULNERABILIDADE COSTEIRA E MORFODINÂMICA PRAIAL PARA A DEFINIÇÃO DE PESOS DAS VARIÁVEIS PELA TÉCNICA AHP (ANALYTIC HIERARCHY PROCESS).

<table>
<thead>
<tr>
<th>TERMINOLOGIA</th>
<th>Definição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perigo</td>
<td>Evento ou processo com potencial para causar danos e que remete à presença humana.</td>
</tr>
<tr>
<td>Suscetibilidade</td>
<td>Propensão à alteração da condição de equilíbrio dinâmico de um setor em função das características físicas do meio.</td>
</tr>
<tr>
<td>Capacidade adaptativa</td>
<td>Fatores sociais e econômicos que possibilitam à população se adaptar às novas condições de um sistema após este ter sido afetado por um perigo natural.</td>
</tr>
<tr>
<td>Vulnerabilidade</td>
<td>Capacidade de uma área antecipar-se, enfrentar, resistir e recuperar-se do impacto produzido por um agente de dada magnitude através de elementos físicos e socioeconômicos (CEPAL, 2011b).</td>
</tr>
<tr>
<td>Risco</td>
<td>Medida da probabilidade das consequências adversas ou das perdas esperadas de vidas, pessoas feridas, danos materiais e econômicos resultantes da interação entre os perigos naturais e as condições de vulnerabilidade (UNDP, 2004).</td>
</tr>
</tbody>
</table>

Fonte: Serafim (2014)
Método AHP:

O método AHP, originalmente desenvolvido por Thomas Saaty (1987), será o método de tomada de decisão multicritério (MCDM) utilizado para fornecer pesos relativos para as variáveis consideradas na avaliação de vulnerabilidade costeira. A análise por AHP será diretamente integrada ao sistema de informação geográfica (SIG) para fornecer um índice composto de vulnerabilidade que indique áreas com maior probabilidade de serem afetadas por eventos de inundação e erosão marinha.

O método permitirá que a ponderação seja feita com base nos descritores quantitativos e avaliada e revisada por especialistas em análises de vulnerabilidade ambiental e/ou oceanografia costeira. As variáveis são comparadas de forma pareada por meio de uma matriz quadrática recíproca. Para o julgamento segundo Saaty (1987), na construção de matrizes de comparação por pares, cada variável é avaliada em relação à outra atribuindo um valor relativo de dominância.

Entretanto, a atribuição de pesos por AHP é baseada em julgamentos subjetivos que nem sempre são consistentes. Consistência se refere a pensar do mesmo jeito através de toda uma circunstância. Um dos pontos fortes da AHP é a sua capacidade de realizar uma verificação de consistência dos juízos subjetivos. Para que o AHP seja aplicado é importante que se tenha uma matriz bem estruturada, ou seja, que os pesos aplicados pelos especialistas sejam coerentes entre as variáveis. Nas matrizes desenvolvidas deve-se obter o índice de consistência (IC) igual ou próximo a zero, que é o parâmetro que testa a coerência dos dados da matriz.

Sua contribuição para o projeto:

Nesta pesquisa, será pedido que você avalie uma série de variáveis e as classifique quanto a sua importância em relação à vulnerabilidade à inundação e erosão costeiras. Para isso, você deverá valorar os indicadores na escala de Saaty (1987), conforme a Tabela 2. Se julgar que dois ou mais indicadores têm a mesma importância (peso), deve-se atribuir o mesmo valor a estes.

<table>
<thead>
<tr>
<th>1/9</th>
<th>1/7</th>
<th>1/5</th>
<th>1/3</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extrema</td>
<td>Muito Forte</td>
<td>Forte</td>
<td>Moderada</td>
<td>Mesma importância</td>
<td>Moderada</td>
<td>Forte</td>
<td>Muito Forte</td>
<td>Extrema</td>
</tr>
<tr>
<td>Menor importância</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maior importância</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Referências bibliográficas

<table>
<thead>
<tr>
<th>Variável</th>
<th>Contexto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Área em perigo ocupada*</td>
<td>Área construída com propensão a ser impactada por eventos de erosão e inundação, mapeadas no formato de polígonos a partir de imagens aéreas. Um maior número de estruturas/construções pode refletir em gastos econômicos elevados.</td>
</tr>
<tr>
<td>Distância entre linha de costa e área ocupada</td>
<td>Quanto maior a distância das ocupações ao mar, maior a perda de energia de onda e menor a chance de áreas construídas serem impactadas. A medição foi realizada a partir de imagens aéreas.</td>
</tr>
<tr>
<td>Número de residentes</td>
<td>Número de pessoas expostas a um perigo costeiro, representado pela menor unidade espacial de coleta de dados do IBGE – o setor censitário.</td>
</tr>
<tr>
<td>Renda por residente</td>
<td>Quanto maior o rendimento de um setor, maior a capacidade deste em reverter uma situação de dano e, até mesmo, de resistir a um impacto pela construção de estruturas de proteção e melhores padrões construtivos das edificações. A variável é representada nos setores censitários costeiros do IBGE.</td>
</tr>
<tr>
<td>Número de casas de segunda moradia</td>
<td>A existência de uma segunda moradia indica a possibilidade de deslocamento dos moradores para outra habitação quando a casa próxima à costa for danificada ou ameaçada por um perigo. A variável é representada nos setores censitários costeiros do IBGE.</td>
</tr>
<tr>
<td>Altura significativa de onda</td>
<td>Maiores alturas de onda acarretam em um maior avanço do mar sobre a costa, colaborando para a ocorrência de processos erosivos e de inundação. Influência na energia de onda, fator de grande importância nos processos costeiros e na geração de correntes longitudinais e transversais, que controlam grande parte dos processos de erosão. A variável é resultante de modelagem numérica costeira.</td>
</tr>
<tr>
<td>Deriva litorânea potencial (gradiente de deriva litorânea)</td>
<td>Demonstra a estabilidade/instabilidade sedimentar de uma linha de costa. A variável é resultante de modelagem numérica costeira.</td>
</tr>
<tr>
<td>Largura de areia seca</td>
<td>Sistemas praiais mais largos são mais propensos à estabilidade. A medição foi realizada a partir de imagens aéreas.</td>
</tr>
<tr>
<td>Elevação média da área em perigo*</td>
<td>Predisposição, em dimensão vertical, que a orla marítima irá apresentar frente a um recuo da linha de costa, além de estar associada à suscetibilidade e à inundação costeira. Quanto maior a elevação, menor a probabilidade das áreas ocupadas e dos residentes serem impactados por agentes marinhos. A variável foi obtida a partir de um modelo digital de terreno.</td>
</tr>
<tr>
<td>Declividade média da área em perigo*</td>
<td>Quanto maior a declividade, menor a probabilidade das áreas ocupadas e dos residentes serem impactados por agentes marinhos. A variável foi obtida a partir de um modelo digital de terreno.</td>
</tr>
</tbody>
</table>

*área em perigo: faixa de 67 m da linha de costa, estabelecida a partir de medições de taxa de variação da linha de costa, runup de onda e subida do nível do mar.
<table>
<thead>
<tr>
<th>Variáveis</th>
<th>Área em perigo ocupada</th>
<th>Número de residentes</th>
<th>Renda por residente</th>
<th>Número de casas de segunda moradia</th>
<th>Altura significativa de onda</th>
<th>Deriva litorânea potencial (gradiente de deriva litorânea)</th>
<th>Largura de areia seca</th>
<th>Distância entre linha de costa e área ocupada</th>
<th>Elevação média da área em perigo</th>
<th>Declividade média da área em perigo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Área em perigo ocupada</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>3 (*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Número de residentes</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renda por residente</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Número de casas de segunda moradia</td>
<td></td>
</tr>
<tr>
<td>Altura significativa de onda</td>
<td></td>
</tr>
<tr>
<td>Deriva litorânea potencial</td>
<td></td>
</tr>
<tr>
<td>Largura de areia seca</td>
<td></td>
</tr>
<tr>
<td>Distância entre linha de costa e área ocupada</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Elevação média da área em perigo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/5 (**)</td>
</tr>
<tr>
<td>Declividade média da área em perigo</td>
<td></td>
</tr>
</tbody>
</table>

_Exemplos: (•) a altura significativa de onda é 3 vezes mais importante que a área ocupada em perigo, (**) a declividade média na área em perigo é 5 vezes menos importante que a elevação média da área em perigo. OBSERVAÇÃO: Preencher a diagonal superior da matriz. _Muito obrigada pela contribuição!_
ANEXO 2

<table>
<thead>
<tr>
<th>NORTES</th>
<th>RESIDENTES</th>
<th>USO OCASIONAL</th>
<th>RENDA</th>
<th>DISTÂNCIA ENTRE OCUPAÇÃO E LC</th>
<th>ÁREA OCUPADA</th>
<th>LARGURA DE PRAIA</th>
<th>ELEVAÇÃO</th>
<th>DECLUSIDADE</th>
<th>ALTURA DE ONDA</th>
<th>GRADIENTE DE DERIVA</th>
<th>ISC</th>
<th>ICA</th>
<th>IVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.395878</td>
<td>0.048396</td>
<td>0.014652</td>
<td>0.398313</td>
<td>0.398313</td>
<td>0.07592</td>
<td>0.314167</td>
<td>0.344767</td>
<td>0.081773</td>
<td>0.084714</td>
<td>0.247413</td>
<td>0.060096</td>
<td>0.43197</td>
</tr>
<tr>
<td>2</td>
<td>0.186304</td>
<td>0.203126</td>
<td>0.145055</td>
<td>0.071229</td>
<td>0.117043</td>
<td>0.077772</td>
<td>0.317593</td>
<td>0.237853</td>
<td>0.354746</td>
<td>0.213858</td>
<td>0.343482</td>
<td>0.316506</td>
<td>0.08652</td>
</tr>
<tr>
<td>3</td>
<td>0.216881</td>
<td>0.215201</td>
<td>0.259583</td>
<td>0.108422</td>
<td>0.19943</td>
<td>0.230179</td>
<td>0.045852</td>
<td>0.189935</td>
<td>0.498024</td>
<td>0.219753</td>
<td>0.109956</td>
<td>0.206159</td>
<td>0.153356</td>
</tr>
<tr>
<td>4</td>
<td>0.183709</td>
<td>0.258657</td>
<td>0.158416</td>
<td>0.228706</td>
<td>0.237471</td>
<td>0.359345</td>
<td>0.095253</td>
<td>0.110186</td>
<td>0.065457</td>
<td>0.280511</td>
<td>0.123934</td>
<td>0.215138</td>
<td>0.092373</td>
</tr>
<tr>
<td>5</td>
<td>0.017228</td>
<td>0.27462</td>
<td>0.422295</td>
<td>0.193331</td>
<td>0.047744</td>
<td>0.256784</td>
<td>0.227127</td>
<td>0.117259</td>
<td>0.029802</td>
<td>0.201165</td>
<td>0.175216</td>
<td>0.202102</td>
<td>0.254554</td>
</tr>
<tr>
<td>CÉNTRO NORTE</td>
<td>RESIDENTES</td>
<td>USO OCASIONAL</td>
<td>RENDA</td>
<td>DISTÂNCIA ENTRE OCUPAÇÃO E LC</td>
<td>ÁREA OCUPADA</td>
<td>LARGURA DE PRAIA</td>
<td>ELEVAÇÃO</td>
<td>DECLUSIDADE</td>
<td>ALTURA DE ONDA</td>
<td>GRADIENTE DE DERIVA</td>
<td>ISC</td>
<td>ICA</td>
<td>IVC</td>
</tr>
<tr>
<td>1</td>
<td>0.11963</td>
<td>0.244772</td>
<td>0.300623</td>
<td>0.084412</td>
<td>0.084412</td>
<td>0.307023</td>
<td>0.338175</td>
<td>0.319908</td>
<td>0.342665</td>
<td>0.334277</td>
<td>0.029798</td>
<td>0.166277</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.133785</td>
<td>0.237382</td>
<td>0.249077</td>
<td>0.030175</td>
<td>0.223645</td>
<td>0.074464</td>
<td>0.247674</td>
<td>0.247961</td>
<td>0.380314</td>
<td>0.114282</td>
<td>0.300978</td>
<td>0.037762</td>
<td>0.332554</td>
</tr>
<tr>
<td>3</td>
<td>0.217924</td>
<td>0.199022</td>
<td>0.172301</td>
<td>0.30732</td>
<td>0.169904</td>
<td>0.296388</td>
<td>0.191721</td>
<td>0.193656</td>
<td>0.280419</td>
<td>0.18184</td>
<td>0.175043</td>
<td>0.271863</td>
<td>0.178911</td>
</tr>
<tr>
<td>4</td>
<td>0.200825</td>
<td>0.108837</td>
<td>0.159626</td>
<td>0.294616</td>
<td>0.138787</td>
<td>0.278022</td>
<td>0.136622</td>
<td>0.149745</td>
<td>0.019359</td>
<td>0.177727</td>
<td>0.154554</td>
<td>0.339567</td>
<td>0.132556</td>
</tr>
<tr>
<td>5</td>
<td>0.327837</td>
<td>0.209989</td>
<td>0.118373</td>
<td>0.283477</td>
<td>0.383252</td>
<td>0.351126</td>
<td>0.116961</td>
<td>0.070464</td>
<td>0.183486</td>
<td>0.035148</td>
<td>0.32101</td>
<td>0.189702</td>
<td></td>
</tr>
<tr>
<td>CENTRO</td>
<td>RESIDENTES</td>
<td>USO OCASIONAL</td>
<td>RENDA</td>
<td>DISTÂNCIA ENTRE OCUPAÇÃO E LC</td>
<td>ÁREA OCUPADA</td>
<td>LARGURA DE PRAIA</td>
<td>ELEVAÇÃO</td>
<td>DECLIVIDADE</td>
<td>ALTURA DE ONDA</td>
<td>GRADIENTE DE DERIVA</td>
<td>ISC</td>
<td>ICA</td>
<td>IVC</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
<td>----------------</td>
<td>-------</td>
<td>-------------------------------</td>
<td>--------------</td>
<td>-------------------</td>
<td>----------</td>
<td>-------------</td>
<td>----------------</td>
<td>----------------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>1</td>
<td>0.088015</td>
<td>0.075205</td>
<td>0.108108</td>
<td>0.255871</td>
<td>0.255871</td>
<td>0.14914</td>
<td>0.31025</td>
<td>0.155288</td>
<td>0.561641</td>
<td>0.205553</td>
<td>0.34334</td>
<td>0.053204</td>
<td>0.197771</td>
</tr>
<tr>
<td>2</td>
<td>0.407312</td>
<td>0.220867</td>
<td>0.233829</td>
<td>0.029557</td>
<td>0.222884</td>
<td>0.291396</td>
<td>0.278493</td>
<td>0.25981</td>
<td>0.043394</td>
<td>0.310793</td>
<td>0.259233</td>
<td>0.094768</td>
<td>0.280424</td>
</tr>
<tr>
<td>3</td>
<td>0.150342</td>
<td>0.117654</td>
<td>0.119454</td>
<td>0.28895</td>
<td>0.220785</td>
<td>0.123056</td>
<td>0.16475</td>
<td>0.227173</td>
<td>0.151214</td>
<td>0.04231</td>
<td>0.23245</td>
<td>0.308091</td>
<td>0.284301</td>
</tr>
<tr>
<td>4</td>
<td>0.251503</td>
<td>0.220503</td>
<td>0.334985</td>
<td>0.168991</td>
<td>0.218083</td>
<td>0.253151</td>
<td>0.188961</td>
<td>0.201475</td>
<td>0.179441</td>
<td>0.215862</td>
<td>0.159671</td>
<td>0.296326</td>
<td>0.147164</td>
</tr>
<tr>
<td>5</td>
<td>0.102828</td>
<td>0.36577</td>
<td>0.203623</td>
<td>0.25663</td>
<td>0.082376</td>
<td>0.183257</td>
<td>0.036771</td>
<td>0.156254</td>
<td>0.06431</td>
<td>0.225482</td>
<td>0.005271</td>
<td>0.247611</td>
<td>0.09034</td>
</tr>
<tr>
<td>CENTRO SUL</td>
<td>RESIDENTES</td>
<td>USO OCASIONAL</td>
<td>RENDA</td>
<td>DISTÂNCIA ENTRE OCUPAÇÃO E LC</td>
<td>ÁREA OCUPADA</td>
<td>LARGURA DE PRAIA</td>
<td>ELEVAÇÃO</td>
<td>DECLIVIDADE</td>
<td>ALTURA DE ONDA</td>
<td>GRADIENTE DE DERIVA</td>
<td>ISC</td>
<td>ICA</td>
<td>IVC</td>
</tr>
<tr>
<td>1</td>
<td>0.448322</td>
<td>0.024192</td>
<td>0.035725</td>
<td>0.803915</td>
<td>0.803915</td>
<td>0.378372</td>
<td>0.075119</td>
<td>0.111538</td>
<td>0.033996</td>
<td>0.305734</td>
<td>0.101776</td>
<td>0.376945</td>
<td>0.119718</td>
</tr>
<tr>
<td>2</td>
<td>0.300303</td>
<td>0.095516</td>
<td>0.099772</td>
<td>0.039376</td>
<td>0.144663</td>
<td>0.238726</td>
<td>0.095438</td>
<td>0.126406</td>
<td>0.050573</td>
<td>0.168785</td>
<td>0.062437</td>
<td>0.407465</td>
<td>0.117667</td>
</tr>
<tr>
<td>3</td>
<td>0.129387</td>
<td>0.220988</td>
<td>0.200501</td>
<td>0.109928</td>
<td>0.051422</td>
<td>0.216254</td>
<td>0.247581</td>
<td>0.068549</td>
<td>0.126358</td>
<td>0.200771</td>
<td>0.132984</td>
<td>0.122768</td>
<td>0.289898</td>
</tr>
<tr>
<td>4</td>
<td>0.089777</td>
<td>0.35922</td>
<td>0.273271</td>
<td>0.034667</td>
<td>0.096774</td>
<td>0.216289</td>
<td>0.358168</td>
<td>0.235112</td>
<td>0.143141</td>
<td>0.266354</td>
<td>0.080709</td>
<td>0.368774</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.031708</td>
<td>0.300084</td>
<td>0.390732</td>
<td>0.012113</td>
<td>0.069874</td>
<td>0.365574</td>
<td>0.335339</td>
<td>0.553961</td>
<td>0.181569</td>
<td>0.436449</td>
<td>0.012113</td>
<td>0.103943</td>
<td></td>
</tr>
<tr>
<td>SUL</td>
<td>RESIDENTES</td>
<td>USO OCASIONAL</td>
<td>RENDA</td>
<td>DISTÂNCIA ENTRE OCUPAÇÃO E LC</td>
<td>ÁREA OCUPADA</td>
<td>LARGURA DE PRAIA</td>
<td>ELEVAÇÃO</td>
<td>DECLIVIDADE</td>
<td>ALTURA DE ONDA</td>
<td>GRADIENTE DE DERIVA</td>
<td>ISC</td>
<td>ICA</td>
<td>IVC</td>
</tr>
<tr>
<td>1</td>
<td>0.405768</td>
<td>0.111434</td>
<td>0.068141</td>
<td>0.926107</td>
<td>0.926107</td>
<td>0.507251</td>
<td>0.10608</td>
<td></td>
<td></td>
<td></td>
<td>0.023463</td>
<td>0.286943</td>
<td>0.154637</td>
</tr>
<tr>
<td>2</td>
<td>0.283236</td>
<td>0.034907</td>
<td>0.0782</td>
<td>0.049449</td>
<td>0.073893</td>
<td>0.278072</td>
<td>0.127321</td>
<td>0.208614</td>
<td></td>
<td></td>
<td>0.095506</td>
<td>0.131174</td>
<td>0.639164</td>
</tr>
<tr>
<td>3</td>
<td>0.193905</td>
<td>0.228888</td>
<td>0.153459</td>
<td>0.024444</td>
<td>0.214677</td>
<td>0.337299</td>
<td>0.251636</td>
<td>0.021578</td>
<td>0.446755</td>
<td>0.302136</td>
<td>0.073893</td>
<td>0.254692</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.072738</td>
<td>0.248822</td>
<td>0.286332</td>
<td>0.352689</td>
<td>0.177642</td>
<td>0.452621</td>
<td>0.382072</td>
<td>0.180799</td>
<td></td>
<td></td>
<td>0.362429</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.044352</td>
<td>0.375949</td>
<td>0.413868</td>
<td>0.18269</td>
<td>0.256029</td>
<td>0.525802</td>
<td>0.075667</td>
<td>0.362429</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>