INVESTIGAÇÕES SOBRE O ACABAMENTO SUPERFICIAL DE USINAGENS COM ALTÍSSIMA VELOCIDADE DE CORTE

Autor: Ian Faccio

Dissertação apresentada à Escola Politécnica da Universidade de São Paulo, para concorrer ao Título de Mestre, pelo curso de Pós-Graduação em Engenharia Mecânica – Área de concentração: Projeto e Fabricação.

Orientador: Prof. Dr. Marco Stipkovic F

São Paulo
2002
Data da Defesa: ___/___/___

Banca Examinadora

Prof. Dr. ________________________
Julgamento: ____________________ Assinatura: ____________________

Prof. Dr. ________________________
Julgamento: ____________________ Assinatura: ____________________
À minha família, fonte inesgotável de motivação e perseverança.
AGRADECIMENTOS

Aos amigos e orientadores Prof. Dr. Gilmar Ferreira Batalha e Prof. Dr. Marco Stipkovic Filho, pelo constante apoio e diretrizes essenciais.
Ao Prof. Dieter Bousseljot e ao Instituto Tecnológico Brasil-Alemanha pelo equipamento e instalações utilizados.
A todos que direta ou indiretamente, colaboraram na execução deste trabalho.
SUMÁRIO

RESUMO

SUMMARY / ABSTRACT

1 INTRODUÇÃO ..1
1.1 Apresentação ...1
1.2 Objetivos gerais ...3
1.3 Objetivos específicos ...3

2 REVISÃO DA LITERATURA
 USINAGEM COM ALTÍSSIMA VELOCIDADE DE CORTE5
 2.1 Aspecto Histórico ...5
 2.2 Definição de Usinagem com Altíssima Velocidade de Corte10
 2.3 Processos de Usinagem com Altíssima Velocidade de Corte14
 2.4 Materiais e Métodos de Ensaio com Altíssima Velocidade de Corte ..25
 2.5 Máquinas para Altíssima Velocidade de Corte......................38
 2.6 Processos de Formação de Cavaco com Altíssima Velocidade de Corte ...49
 2.7 Ferramentas para Altíssima Velocidade de Corte59

3 REVISÃO DA LITERATURA
 RUGOSIDADE ...72
 3.1 Conceito de Rugosidade ..72
LISTA DE FIGURAS

Figura 1 - Princípio de Salomon ... 6
Figura 2 - Tempos de operações de usinagem ... 8
Figura 3 - Campo de aplicação da velocidade de corte 10
Figura 4 - Classificação das máquinas fresadoras 12
Figura 5 - Classificação do tipo de rebarbas ... 16
Figura 6 - Comparação das velocidades de avanço 20
Figura 7 - Contraste da distribuição de esforços 22
Figura 8 - Mecanismo do processo de amortecimento 28
Figura 9 - Diagrama de estabilidade .. 29
Figura 10 - Diagrama esquemático de medição de temperaturas locais 35
Figura 11 - Seqüência de usinagem .. 36
Figura 12 - Conjunto de aplicações otimizadas 39
Figura 13 - Diagrama de tipos de peças diferentes 40
Figura 14 - Diagrama de alguns materiais de engenharia 44
Figura 15 - Utilização de um eixo para evitar interferências 48
Figura 16 - Metodologia para determinação ... 51
Figura 17 - Primeira fase da formação de um cavaco 53
Figura 18 - Segunda fase da formação de um cavaco 53
Figura 19 - Terceira fase da formação de um cavaco 54
Figura 20 - Quarta fase da formação de um cavaco 54
Figura 21 - Analogia entre espessura da transferência seletiva 57
Figura 22 - Deformações no acoplamento 63
Figura 23 - Corte esquemático do sistema de acionamento 64
Figura 24 - Exemplo de desempenho em relação ao desgaste 68
Figura 25 - Exemplo de representação de um perfil de rugosidade 73
Figura 26 - Ilustração do parâmetro de rugosidade R_a 79
Figura 27 - Ilustração do parâmetro de rugosidade R_y 80
Figura 28 - Ilustração do parâmetro de rugosidade R_z 81
Figura 29 - Comparação de duas distribuições de alturas de perfis 84
Figura 30 - Arranjo da fixação dos corpos de prova 89
Figura 31 - Resultados de Rugosidade média (R_a) 95
Figura 32 - Resultados de R_z .. 98
Figura 33 - Resultados de R_y .. 99
Figura 34 - Resultados de S_m ... 100
Figura 35 - Resultados de m_4 ... 101
Figura 36 - Exemplo da estrutura metalográfica do 1º corpo de prova 103
Figura 37 - Exemplo da estrutura metalográfica do 2º corpo de prova 104
Figura 38 - Exemplo da estrutura metalográfica do 3º corpo de prova 105
LISTA DE TABELAS

TABELA 1 - Comparação entre os processo de usinagem..................18
TABELA 2 - Características construtivas dependentes do material...........44
TABELA 3 - Exemplo comparativo dos aspectos construtivos..............45
TABELA 4 - Modelos de excitação para vibrações67
TABELA 5 - Valores de R_a atingíveis......................................76
TABELA 6 - Configuração da profundidade de corte conforme o ensaio...87
TABELA 7 - Configuração da distribuição dos ensaios88
TABELA 8 - Desempenho de processos de retificação e torneamento.....108
TABELA 9 - Desempenho de processos de torneamento e fresamento...109
TABELA 10 - Comparação entre os processo de usinagem111
LISTA DE ABREVIATURAS E SIGLAS

CAD - Projeto auxiliado por computador
CAM - Manufatura auxiliada por computador
CAPP - Planejamento de processos auxiliado por computador
Cermet - material composto de mistura de cerâmicas com metais
CBN - Nitreto Cúbico de Boro
CNC - Comando numérico computadorizado
CVD - Deposição química de vapor
DIN - Norma técnica alemã
HB - Dureza Brinell
HSCO - Aço rápido com Cobalto
HSK - Mandril normalizado alemão de fuso oco
HSM - Usinagem com altíssima velocidade de corte
HVM - Usinagem de alta velocidade
ISO - Norma técnica internacional (Organização para normalização internacional)
LSM - Usinagem de baixa velocidade
MD - Metal duro
MQL - Quantidade mínima de lubrificação
NURBS - Splines tipo B Racionais Não-Uniformes
PFC - Polímero Reforçado com Fibras de Carbono
PVD - Deposição física de vapor
UHSM - Usinagem de velocidade ultra alta

VB - Maior dimensão do desgaste na aresta da pastilha de corte

VDI - Norma da indústria automobilística alemã

VHSM - Usinagem de velocidade muito alta
LISTA DE SÍMBOLOS

a - avanço, mm.min\(^{-1}\)
C - calor específico, J.kg\(^{-1}\).K\(^{-1}\)
D - quantidade de picos em um perfil de rugosidade
e - excentricidade residual permissível, µm
F - força, N
f - frequência de rotação operacional, Hz
h - espaçamento da malha de elementos finitos
J - equivalente mecânico do calor, J
K\(_1\) - fator de adaptação
k - condutibilidade térmica, kg.m.s\(^{-3}\).K\(^{-1}\)
l\(_m\) - comprimento medido da rugosidade, mm
m - massa, kg
m\(^*\) - massa combinada da ferramenta e do eixo do fuso, kg
q - geração de calor, J
V - velocidade de corte
V\(_{CAV}\) - velocidade do cavaco, m.min\(^{-1}\)
V\(_{CIS}\) - velocidade no plano de cisalhamento, m.min\(^{-1}\)
V\(_c\) - velocidade de corte, m.min\(^{-1}\)
V\(_{MAX}\) - velocidade vibracional máxima
T - temperatura, °C, K
T_{CIS} - temperatura no plano de cisalhamento, K
T_{INT} - temperatura na interface cavaco-ferramenta, K
t - tempo, s
γ - ângulo de folga da ferramenta, °
ε - deformação
ε_R - deformação referencial
κ - difusividade do calor
µ - coeficiente de atrito
ρ - densidade, kg.m^{-3}
σ - tensão de escoamento, MPa
θ - espessura do filme fluido, µm
τ_{PLA} - tensão de cisalhamento no plano primário de cisalhamento, MPa
τ_{FER} - tensão de cisalhamento na face da ferramenta, MPa
ϕ - diâmetro, mm
Ω - freqüência de excitação, s^{-1}
ω - freqüência natural, s^{-1}
RESUMO

Corpos de prova de ferro fundido foram usinados com altíssima velocidade de corte. Tiveram diversos parâmetros de sua rugosidade medida e os valores foram descritos em gráficos de rugosidade versus profundidade de corte. Pode-se verificar uma dependência entre estes valores, mas não o clássico aumento da rugosidade conforme o aumento da profundidade de corte. Realizou-se ainda a inspeção metalográfica dos corpos de prova na busca de mudanças de fase na estrutura ferro carbono que indiquem temperaturas elevadas no local, causadas pela alta velocidade de corte.

Palavra-chave: Usinagem, Altíssima Velocidade de Corte, Rugosidade, Processos de Fabricação.

Cast iron test parts were high-speed machined. They had several roughness parameters measured and these values were plotted on roughness versus depth of cut charts. It could be noticed a relation between these values, but not the classical roughness increase due to the increase of depth of cut. Moreover, the metallographical analysis was performed for these test parts, in a search for phase changes on the carbon-iron structure which indicate high temperatures at the region, caused by the high cutting speed.

Keywords: Machining, HSM, Roughness, Manufacturing Processes.
AUTORIZAÇÃO

Autorizo a reprodução e/ou divulgação total ou parcial da presente obra, por qualquer meio convencional ou eletrônico, desde que citada a fonte.

Ian Faccio
Assinatura do autor: __________________
Instituição: Escola Politécnica da USP
Local: São Paulo
Endereço: Av. Escola Politécnica
E-mail: ian.faccio@poli.usp.br