• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.3.1998.tde-25062024-112858
Document
Author
Full name
Marcio Gustavo di Vernieri Cuppari
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 1998
Supervisor
Committee
Sinatora, Amilton (President)
Júnior, Mário Boccalini
Tanaka, Deniol Katsuki
Title in Portuguese
Relação entre microestrutura e resistência à cavitação de aços inoxidáveis fundidos.
Keywords in Portuguese
Aço inoxidável
Cavitação
Engenharia mecânica
Abstract in Portuguese
Este trabalho trata do papel da microestrutura de aços inoxidáveis fundidos com composição nominal 35Cr-25Ni-3Mo e 35Cr-8Ni-3Mo-3Nb com e sem adições de molibdênio sobre o desgaste por cavitação. As ligas foram fundidas em areia e seccionadas para estudo em duas regiões apresentando diferentes taxas de resfriamento. As diferenças nas taxas de resfriamento foram devidas à geometria do molde utilizado. Os ensaios de cavitação foram realizados por meio de equipamento vibratório operando em uma freqüência de 20 kHz e 40 'mü'm de amplitude. O líquido de ensaio foi água destilada e a duração dos ensaios foi de 10 horas. Como material de referência foram utilizadas amostras de aço inoxidável austenítico AISI 304. A diferença nas taxas de resfriamento produziram alterações na microestrutura que influenciaram as taxas de desgaste. Todas as ligas apresentaram carbonetos 'M IND.7''C IND.3' e 'M IND.23''C IND.6' e as ligas com nióbio, carboneto NbC. As ligas 35Cr-8Ni-3Mo-2Nbcom e sem adição de W, apresentaram a melhor performance. Todas as ligas apresentaram taxas de desgaste menores do que o AISI 304. Os melhores desempenhos foram obtidos com as amostras com taxas de resfriamento mais altas. Este comportamento é atribuído às diferenças microestruturais: tamanho e distribuição de carbonetos e menores teores de austenita.
Title in English
Untitled in english
Keywords in English
Cavitation
Mechanical engineering
Stainless steel
Abstract in English
This work presents the role of microstructure of 35Cr-25Ni-3Mo and 35Cr-8Ni-3Mo-2Nb; with and without tungsten addition cast steels on cavitation-erosion rates. The alloys were sand melted and studied in two regions showing diferente cooling rates, due to the casting mold geometry. The cavitation-erosion tests were made by means of 20 kHz vibratory apparatus with 40-micrometer amplitude vibration in distilled water and the duration of the test was 10 hours. As a reference material, a sample of AISI 304 stainless steel was used. The difference in the cooling rates, produced changes in the microstructure that influences the wear rates. All alloys presented M7C3 and M23C6 carbides and NbC for Nb bearing alloy. The 35Cr-8Ni-3Mo-2Nb with W addition alloy presented the best cavitation-erosion performance, followed by no W alloy and by 35Cr25Ni-3Mo. All alloys presented lower cavitation-erosion when compared to AISI 304. The best performance was obtained in the specimens with higher cooling rates. This behavior was attributed to the difference in the microstructure: carbides size, distribution, and a lower contente of austenite.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2024-06-26
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.