• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.3.2011.tde-12032012-122211
Document
Auteur
Nom complet
Giancarlo Franko Sánchez Chávez
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2011
Directeur
Jury
Brandi, Sérgio Duarte (Président)
Azevedo, Cesar Roberto de Farias
Hippert Júnior, Eduardo
Titre en portugais
Simulação física e caracterização de zonas afetadas pelo calor de aços API 5L grau X80.
Mots-clés en portugais
Aços API 5L X80
Constituinte MA
Óleodutos
Soldagem
Resumé en portugais
Os aços para tubos API 5L X80 são aços de alta resistência e baixa liga (ARBL) usados na fabricação de tubos para o transporte de gás e petróleo conduzidos através de dutos. Os tubos API 5L X80 se caracterizam por terem excelentes propriedades mecânicas como resistência à tração, tenacidade, ductilidade e resistência à corrosão, além de boa soldabilidade. Estes tubos trazem muitos benefícios como, por exemplo, o fator econômico já que ao ter boa resistência mecânica estes tubos podem ser fabricados com espessuras de parede menores. Estas reduções nas espessuras diminuem os custos de transporte, construção, soldagem e instalação. Além disso, estes tubos podem ser fabricados com grandes diâmetros, permitindo o transporte de grandes quantidades de fluidos a elevadas pressões e vazões. A tenacidade confere ao material a propriedade de ser resistente à fratura frágil, uma vez que estes tubos em sua maioria trabalham em condições ambientais severas. O objetivo deste trabalho é simular fisicamente e estudar as propriedades mecânicas de regiões da zona afetada pelo calor (ZAC) produzidas por diferentes ciclos térmicos, que ocorrem quando o tubo é fabricado e o duto montado. A ideia foi estudar a ZAC produzida no tubo fabricado pelo processo UOE (solda longitudinal) e a solda feita no campo quando o tubo é montado (solda circunferencial) além da ZAC na intersecção entre a soldagem longitudinal e circunferencial. Foram usinados corpos-de-prova nas orientações L-T e T-L e com o cordão de solda longitudinal do tubo no centro. Estes corpos-de-prova foram submetidos a quatro ciclos térmicos únicos com temperaturas máximas de 650, 800, 950 e 1300 °C e ciclos térmicos multipasse 950-800 e 950-800- 650 °C. Estes corpos-de-prova foram submetidos a diferentes ensaios e caracterizações. Foram feitos ensaios de impacto a 0 °C, as superfícies fraturadas foram analisadas no MEV e mediu-se a expansão lateral produzida pelo ensaio de impacto. Mediu-se a dureza da microestrutura por meio do ensaio Vickers com 300g de carga. A microestrutura da ZAC foi caracterizada por microscopia óptica, com ataque convencional e ataque colorido Klemm, e microscopia eletrônica de varredura. Metalografia quantitativa foi usada para obter a quantidade de perlita na matriz dos corpos-de-prova. A trajetória da fratura na microestrutura dos corpos-de-prova simulados, provocada pelo ensaio Charpy, foi analisada com microscopia óptica e eletrônica de varredura. Os resultados mostraram que as energias absorvidas no ensaio de impacto pelos corpos-de-prova simulados cumprem com os requisitos exigidos pela norma API 5L para o metal base sem simulação e que as microestruturas observadas variam segundo o tipo de ciclo térmico aplicado a cada posição do tubo.
Titre en anglais
Physical simulation and characterization on heat affected zones of API 5L grade X80 steels.
Mots-clés en anglais
API 5L X80 steels
MA Constituent
Oil Pipeline
Welding
Resumé en anglais
API 5L Grade X80 steel are high strength low alloy steels (HSLA) used in the manufacture of pipes for transporting oil and gas by pipelines. API 5L X80 pipes are characterized by having excellent mechanical properties such as tensile strength, toughness, ductility, corrosion resistance, and good weldability. These pipes bring many benefits, for example, the economic factor related to the good mechanical strength of these tubes which can be produced with smaller wall thicknesses. This reduction in thickness lowers costs for transportation, construction, welding and installation. In addition, these tubes can be fabricated with large diameters, allowing the transport of large amounts of fluids at high pressures and flow rates. The toughness gives, to this material, the characteristic of being resistant to brittle fracture, since these tubes mostly work in aggressive environmental conditions. The objective of this work is to physically simulate and study the mechanical properties of regions of the heat affected zone (HAZ) produced by different thermal cycles, which occur when the duct pipe is manufactured and assembled. The idea was to study the HAZ produced in the pipe manufactured by the UOE process (longitudinal weld) and the welding done in the field when the tube is mounted (HAZ beyond the intersection between the longitudinal and circumferential welding). Charpy V samples were machined in the L-T and T-L orientations and in the longitudinal weld in the center of the tube. These samples were subjected to single thermal cycles with maximum temperatures of 650, 800, 950 and 1300°C and multipass thermal cycling with maximum temperatures of 950-800 and 950-800-650°C. The samples were subjected to different tests and characterizations. Impact tests were made at 0°C, measured the lateral expansion produced and the surface fracture were examined under SEM. Vickers 300g microhardness was also measured in the simulated HAZ region. The microstructure of the HAZ was characterized by optical microscopy with conventional etching and Klemm colorful etching, and scanning electron microscopy. Quantitative metallography was used to obtain the amount of pearlite in the matrix of samples. The Charpy V fracture propagation path trajectory in the simulated microstructure was analyzed with optical microscopy and scanning electron microscopy. The results showed that the Charpy V absorbed energy by the simulated samples complies with the requirements of the API 5L standard for the base metal without simulation and the HAZ observed microstructures vary according to the thermal cycle type applied to each tube position.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2014-02-07
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2024. Tous droits réservés.