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Abstract

This thesis describes the development of METIS, a numerical tool for the seakeeping analysis
of floating offshore wind turbines (FOWT). It is based on a slender-body approximation for
evaluating the first- and second-order wave loads acting on a floating structure comprised
of slender cylinders that combines Rainey’s equation, which can be seen as an extension
of the inertial part of Morison’s equation to include nonlinear terms, with Pinkster’s
formulation for the low-frequency second-order loads on floating bodies. This combination
is followed to allow the evaluation of the forces considering the mean body position, in
such a way that an Inverse Fast Fourier Transform algorithm can be used to efficiently
compute the time series of wave kinematics and second-order wave loads in a real sea
condition directly in time domain, as opposed to the most common procedure of solving
the second-order radiation/diffraction problem in frequency domain and importing the
results to time-domain solvers. As a drawback of the approximation, end effects due to the
extremities of the cylinder and effects due to wave scattering and radiation are lost, which
is acceptable as long as the diameters of the cylinders that compose the structure are small
in face of their draft and in face of the length of the incoming waves. These conditions
may be too restrictive to modern oil & gas spars and semi-submersibles, which have large

diameter columns, but it is satisfied by FOW'Ts in many significant wave conditions.

The slender-body approximation is first verified by analyzing the simple case of a single
surface piercing cylinder under the action of bichromatic waves, both bottom mounted
and floating, for different combinations of the dimensionless parameters that describe
the problem. The results are compared with the ones obtained with diffraction theory
and Newman’s approximation, evidencing an interesting complementarity between the
two approximations and the conditions in which each of them performs the better. The
relevance of the second-order terms from Rainey’s formulation is shown, demonstrating
that the common practice of analyzing second-order loads by simply applying Morison’s

equation with second-order wave kinematics is not strictly correct.

The method is then applied to the analysis of a semi-submersible FOWT model, moored
by three caternary lines, that was tested at the wave basin of the Numerical Offshore Tank
of the University of Sao Paulo. Three sets of tests are presented: free decays of the moored
model; forced oscillations of the hull; and motions under the action of waves (bichromatic,
JONSWAP and white-noise) and wind. The results obtained with METiS are compared
with the experiments and with WAMIT and OpenFAST, illustrating the capabilities and

limitations of each software.

Keywords: Floating offshore wind turbines. Hydrodynamics. Second-order wave loads.

Slender body approximation.






Resumo

Esta tese descreve o desenvolvimento de uma ferramenta numeérica, denominada MET]S,
para a anélise do comportamento no mar de turbinas eolicas flutuantes (FOWTs). Ela é
baseada em uma aproximacao de corpo esbelto para calcular as forcas de onda de primeira
e segunda ordem em estruturas compostas de cilindros esbeltos que combina a equacao de
Rainey, que pode ser vista como uma extensao da equagao de Morison para incluir termos
inerciais nao lineares, com a formulacao de Pinkster para as forcas de segunda ordem em
corpos flutuantes. Esta combinacao é adotada para permitir a determinacao das forcas
considerando a posi¢ao média do corpo, de tal forma que uma Transformada Rapida de
Fourier pode ser usada para calcular de forma eficiente as séries temporais de cinemética
das ondas e das forgas de segunda ordem para um mar real diretamente no dominio do
tempo, diferentemente do procedimento usual de resolver o problema de radiagao/difragao
de segunda ordem no dominio da frequéncia e importar os resultados para cédigos no
dominio do tempo. Como desvantagem, efeitos de ponta devido as extremidades do cilindro
e efeitos de radiacao e espalhamento de ondas sao perdidos, o que é aceitéavel desde que os
diametros dos cilindros que compoem a estrutura sejam pequenos frente ao calado e ao
comprimento das ondas. Essas condigoes podem ser restritivas para plataformas modernas
do tipo spar e semissubmersivel, que tém colunas de grande didmetro, mas sao satisfeitas

por FOW'Ts em muitas condi¢oes de ondas relevantes.

A aproximagao de corpo esbelto é primeiro verificada para o caso simples de um tnico
cilindro cruzando a superficie livre, tanto fixo quanto flutuante, sob a acao de ondas
bicromaticas para diferentes combinagoes dos adimensionais que descrevem o problema.
Os resultados sao comparados com os obtidos com a teoria de difracao de ondas e a
aproximacao de Newman, evidenciando uma interessante complementaridade entre as
duas aproximacoes e as condi¢oes em que cada uma delas é mais apropriada. Mostra-se a
relevancia dos termos de segunda ordem da formulacao de Rainey, demonstrando-se que a
pratica usual de calcular forcas de segunda ordem pela simples aplicacao da equacao de

Morison com cinemética de ondas de segunda ordem nao ¢é estritamente correta.

O método é entao aplicado a analise de um modelo de uma FOWT do tipo semissubmersivel,
ancorada por trés linhas em catenaria, que foi ensaiado no tanque de provas do Tanque de
Provas Numérico da Universidade de Sao Paulo. Sao apresentados trés conjuntos de testes:
decaimento livre do modelo ancorado; oscilacoes forcadas do casco; e movimentos sob a
acao de ondas (bicromaticas, JONSWAP e ruido branco) e vento. Os resultados obtidos
com o METIS s@ao comparados com os experimentais e com os calculados com os software

WAMIT e OpenFAST, ilustrando as capacidades e limitagoes de cada ferramenta.

Palavras-chave: Turbinas edlicas flutuantes. Hidrodinamica. Forgas de onda de segunda

ordem. Aproximacao de corpo esbelto.
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1 Introduction

For centuries, wind power has been harvested for activities such as propelling sailing ships
and powering windmills to pump water or grind grains. After the widespread adoption
of the coal-fired steam engine in the XVIII century, followed by other fossil fuels, the
role played by the wind in human activities was drastically relegated to a low position.
However, the increasing awareness of the finiteness of these non-renewable energy sources
and of the negative impact they have on the environment has led to a growing interest
in renewable energy from many different sources, such as the sun, waves, rain, tides, and

wind.

This need for renewable energies, coupled with the high availability of wind and
the technical knowledge drawn from other fields, has pushed wind power from a nearly
insignificant role in the 1950s to around 6% of the global electricity production by the
end of 2020 (REN21, 2021). The pace of growth has been fast in the past two decades,
especially in the last seven years, in which at least 50 GW of new wind capacity was
installed yearly (see Figure 1), in such a way that the worldwide installed capacity of 2020

was more than twice the one from only six years earlier.

Figure 1 — Global cumulative installed wind capacity from 2001 to 2020, including both
onshore and offshore capacity.
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Although most of the installed wind capacity is due to onshore wind turbines, the
contribution of offshore wind is growing steadily. Around 10% of the new wind capacity
installed in 2019 was offshore (6.1 GW out of 60.4 GW), and by the end of 2020, almost 5%
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of the global wind capacity was due to offshore winds (GWEC, 2021). The main advantages
of installing wind turbines at sea are the high quality of the wind, which is usually stronger
and steadier than onshore, allowing the use of larger and more powerful turbines; the
availability of space for the installation of new wind farms; and the reduction of visual
and noise pollution. One important disadvantage is the higher cost when compared with
onshore wind, mostly due to the foundation of fixed offshore wind turbines (which account
for most of the offshore wind capacity), the installation process, and the underwater cables.
Nevertheless, as available land is becoming scarcer and wind turbines more powerful, this
cost difference is decreasing (GWEC, 2020a). And even though in 2020 the share of new
offshore wind capacity was reduced to about 7% of the total new wind installations, it
was a remarkable year because it was the first time that the global capital expenditures

committed to offshore wind power exceeded investments in offshore oil and gas (REN21,

2021).

Most of the existing offshore wind turbines are fixed on the sea bottom, a type of
solution in which the wind turbine is installed on top of a structure whose foundations are
embedded directly into the sea floor. These structures are economically feasible in shallow
waters, but costs become prohibitive at waters deeper than around 50 m. Since most of
the wind potential is located in deeper water, a solution for harvesting wind energy in
these areas is to install the wind turbine on a floating platform, a natural progression
that is illustrated in Figure 2. Besides the adequacy for deeper waters, these Floating
Offshore Wind Turbines (FOWTs) have the potential to reduce costs by allowing the
construction and assembly of the whole system onshore, which can then be towed to the
place of installation. This capability is portrayed in Figure 3, which presents pictures of
the WindFloat, one of the existing concepts of FOWT, completely assembled in dry dock

and then being towed to its final location.

Most of the concepts of floating platforms for FOW'Ts are directly derived from the
oil and gas (O&G) industry. They are classified based on how they achieve static stability
(BUTTERFIELD et al., 2005), and the most common ones are depicted in Figure 2. The
semi-submersible (the fourth from left to right) is stable mainly due to its large water-plane
area; the tension leg platform (the next to the right) achieves stability through the tension
in the mooring lines, which is due to the structure being lighter than the weight of the
displaced water (i.e. excess of buoyancy); while the spar-buoy (last to the right) is heavily
ballasted to make its center of mass so close to its bottom that it is below its center of
buoyancy. Each concept has its pros and cons, as discussed by James and Ros (2015) and
Butterfield et al. (2005).

Several real scale prototypes of FOW'Ts have been tested. The first one was a
2.3 MW spar called Hywind Demo, installed offshore Karmgy, Norway, in 2009 by Statoil
(SKAARE, 2017). In 2011, the first of the aforementioned WindFloat, by Principle
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Figure 2 — Some concepts of offshore wind turbines. The first three on the left are bottom-
fixed, while the three on the right are the most common floating concepts,
namely a semi-submersible, a tension-leg platform (TLP), and a spar.

Source: NREL (2015).

Figure 3 — WindFloat in dry dock (left) and being towed to the place of installation (right).

Source: Cermelli and Roddier (2005) and Merrifield (2018).

Power, was inaugurated around 5km off the coast of Agugadoura, Portugal, and was
decommissioned in July 2016 (CERMELLI; LEROUX, et al., 2018). After the 2011
Fukushima nuclear disaster, the Japanese government has decided to invest on energy
sources other than nuclear, in such a way that three different FOW'T concepts and one
floating power sub-station have been installed off the coast of Fukushima in an offshore
testing site (HITACHI, 2014). These prototypes (and others that were also tested) have

withstood harsh environmental conditions, both in terms of waves and wind, proving the
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technical viability of FOWTs.

The current challenge is to reduce costs and prove that floating wind is commercially
competitive as a large scale energy source, as demonstrated by the 2030 floating offshore
wind forecast given by GWEC (2020b), which ranges from 3 GW to 19 GW depending
on how fast the LCOE (levelized cost of energy) can be brought down. An important
step was made in October 2017, when the first floating wind farm, Hywind Scotland, was
powered up. It was developed by Equinor (formerly Statoil) and is an interesting example
to grasp the size of this kind of project. It consists of five 6 MW Hywind floating wind
turbines located 25 km off the coast of Peterhead, Scotland, each with a design draft of
78 m, displacement equal to about 11200t, hub height of 98 m, and rotor diameter of
154m. The farm covers an area of about 4km? with water depths ranging from 95m to
120 m. Each turbine is moored using suction anchors and three 2400 m long mooring lines
made of chain. As reported by Equinor, Hywind Scotland achieved a cost reduction of
60~70% compared with the Hywind Demo project (HARVEY, 2017) (EQUINOR, 2017).

In order to design a cost effective floating wind turbine, a large number of numer-
ical analyses is necessary to assess the performance of different concepts and evaluate
which is the best to satisfy the design requirements. These analyses require simulation
software to be able to model the coupled dynamics of the whole system, which includes
hydrodynamic loads from the waves and sea current, aerodynamic loads from the wind,
mooring dynamics, elasticity, and controls of the turbine. For the past few years, a research
group at the University of Sao Paulo has been working on several mathematical models
and numerical tools to analyze the different physical aspects pertaining FOW'Ts, but a
single comprehensive software to integrate this independent models has been lacking so far.
The starting point of this software is the numerical tool developed in this thesis, called
METiS-USP (Morison Equation Time Domain Simulation - University of Sao Paulo).
Though the software needs to include the several aspects required for a comprehensive
analysis of floating offshore wind turbines, this thesis is concerned with the hydrodynamics
of the floater only, and the development of this in-house code is intended to be continued
in the future with the contribution of other members of the research group, who have
been studying other topics such as mooring dynamics and elasticity. At the current stage,
METiS is capable of evaluating the aerodynamic loads on the rotor with Blade Element
Momentum Theory (based on the code developed by Pegoraro (2018)), and the first- and
second-order wave loads on the floater using the slender-body approach presented in this

thesis.

Due to the high complexity of this kind of tool, a lot of effort has been made to

verify and validate these aero-hydro-servo-elastic software. An important initiative are
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the OC3' (JONKMAN; MUSIAL, 2010), OC4? (ROBERTSON; JONKMAN; VORPAHL,
et al., 2014), and OC5® (ROBERTSON; WENDT, et al., 2017) projects, which have
been continuously running since 2005. These projects have engaged a large number of
participants from 12 countries and different fields, such as universities, the O&G and
wind industries, research institutes, and certifying agencies, with the aim of comparing
the results obtained with diverse simulation software employing different theories and
approaches. Although several valuable conclusions have been drawn from the OC projects,
some questions regarding the discrepancies among the simulation codes and experimental
results are still open. A continuation project, called OC6*, started in 2019 and is planned
to last until 2022, demonstrating that there is still work to be done in the development of
simulation tools for the design of FOWTs.

One particularly interesting question raised during the OC5H project is about the
nonlinear loads due to the waves, as illustrated in Figure 4, which shows the power spectral
density of the tower-base shear force for an operational wave excitation (JONSWAP
with significant height equal to 7.1 m and peak period of 12.1s, without wind nor sea
current) calculated by the different participants of the project. Three distinct regions
can be distinguished in the graph: the peak around the pitch natural frequency at about
0.03 Hz, the linear wave excitation between 0.07 Hz and 0.20 Hz, and the region around
the tower-bending natural frequency at approximately 0.32 Hz. It is curious that although
most of the codes provide fairly good results in the linear wave excitation range, they fail
to model the low-frequency response associated with the pitch natural frequency. Since at
this frequency there is almost no energy associated with the incoming waves, these loads
must come from nonlinear effects, such as the second-order wave forces, thus illustrating

their relevance and the difficulty in modeling them.

Among the different methods for the evaluation of wave loads on floating bodies,
which are discussed in Chapter 2, the so-called slender-body approach is remarkable for
its simplicity. Its application is restricted to hull shapes composed of slender cylinders (i.e.
their diameter is small in face of the wave length), a limitation that is satisfied by most
of the existing concepts of FOWTs. It is usually implemented using Morison’s equation
(MORISON et al., 1950), a semi-empirical formulation developed for the determination of
wave forces on fixed piles that was later adapted to include the effects of body motions.
Due to its original application, Morison’s equation neglects some non-linear aspects of
the flow that may be important when evaluating the motions of floating structures, given
that second-order effects such as mean and slow drift are important. To overcome this

limitation, some authors have proposed alternative formulations that include additional
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Figure 4 — Power spectral density of the tower-base shear force for an operational wave
excitation (JONSWAP with significant height equal to 7.1 m and peak period
of 12.1s, without wind nor sea current) calculated during the OC5 project by

the different participants.
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non-linear terms. Based on these works, this thesis proposes a slender-body approach for

evaluating the first- and second-order wave forces acting on a floating structure directly

in time domain, as opposed to the most common procedure of solving the second-order

radiation /diffraction problem in frequency domain and importing the results to time-

domain solvers. As a consequence of the slender-body approximation, wave scattering

and radiation effects are lost, but it is shown in the text that this is acceptable in several

relevant wave conditions.

Though the numerical tool developed in this thesis is focused on FOW'T5s, it can be

used to analyze other offshore structures under the action of waves, provided that they

are composed of slender cylinders. For instance, O&G semi-submersibles may be eligible if

the incoming waves are long enough.

1.1 Objectives

The main objectives of this thesis are:

i. To understand the physics behind the second-order difference-frequency wave loads

acting on a floating structure and model them in time domain using a simple slender-

body approach, evidencing the similarities and differences with respect to diffraction

theory.
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ii.

iii.

The aim is to find an approach that benefits from the geometry of the hull, considered
to be composed of slender cylinders, to obtain a simple and fast approach to calculate
the second-order difference-frequency wave forces in time domain. This method has
the limitation of not being able to model hull shapes that are not exclusively made
of slender cylinders, but as this hypothesis can be applied to most of the existing
concepts of FOWTs, it is useful after all. In fact, modeling the floater as a slender
structure is an approximation that is already employed in the analysis of FOWTs
with Morison’s equation, and the objective is to extend it to include second-order
wave effects using Rainey’s formulation (RAINEY, 1989). As shown in the text, the
resulting second-order approximation is acceptable roughly for \/D > 10. When
only first-order terms are kept, the formulation is the same as Morison’s equation,
so the usual threshold of A\/D > 5 is applicable.

To modify the original slender-body approach to make its application to the second-

order hydrodynamic analysis of floating bodies in real seas faster

The slender-body approach independently proposed by Madsen (1986), Rainey
(1989), and Manners (1992) evaluates the forces at the instantaneous position of the
cylinder, but this is unpractical for numerical simulations with a large number of
waves such as the ones required by analyses considering a real sea. Since the position
of the body at each time step is unknown at the beginning of the simulation, it
would be necessary to directly sum the contribution of each wave component at
each time step, which is very computationally expensive. If, however, the forces were
evaluated considering the mean body position, it would be possible to use an Inverse
Fast Fourier Transform (IFFT) algorithm to compute the necessary time series
of wave kinematics much faster. By combining Rainey’s equation with Pinkster’s
formulation (PINKSTER, 1980), the original slender-body approximation can be
modified to evaluate the second-order wave loads at the mean body position instead
of considering the instantaneous displacements, hence allowing a computationally
efficient evaluation of the second-order wave loads in a real sea condition directly in

time domain.

To study the suitability of forced oscillation tests to estimate the added mass and

drag coefficients, C, and Cp, which are required by the slender-body approximation.

The main challenge when using a slender-body approach, be it via Morison or
Rainey’s equation, lies in the proper determination of the empirical added mass
and drag coefficients, which is an important topic in current research regarding
floating wind turbines. These coefficients are dependent on the parameters that
characterize the flow, such as the diameter and length of the cylinder, Reynolds
number Re, Keulegan-Carpenter number K C', surface roughness, and proximity to

other boundaries. This is a major complication, as each analysis presents different
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iv.

1.2

combinations of these parameters, hence requiring distinct values of C, and Cp that
need to be chosen somehow. Due to the resonant nature of the slow-drift motions of
floating structures, this choice is of paramount importance, as drag directly impacts
the damping levels and, consequently, the amplitude of the slow-drift motion, while

the added mass influences the natural periods.

Following the results already published by Carmo, Mello, et al. (2020), Chapter 6
presents the analysis of a FOW'T model that was studied during an experimental
campaign at the wave basin of the Numerical Offshore Tank of the University of Sao
Paulo (TPN-USP), which included a set of forced oscillation tests of the whole floater
to determine the drag and added mass coefficients in different K'C' numbers and
oscillation periods. The results were used as an input to the numerical simulations
of the body under the action of waves and wind, and the comparisons between the
motions measured in the experiments with the ones calculated numerically are used
as a verification of both the slender-body approximation and of the utilization of
forced oscillation tests to estimate C, and Cp. For the latter, however, these should

be seen as a preliminary study only, as this is still an ongoing investigation.

To develop a numerical tool for the seakeeping analysis of floating offshore wind
turbines that can be useful for the research activities conducted at the University of

Sao Paulo.

This kind of software must include the many different disciplines that take part in
the coupled dynamics of a FOWT, and this work is part of a collective effort to build
such a tool. The focus here is on the hydrodynamic modeling of the floater, and
although other aspects (aerodynamics and mooring) are included in the software,
they are done so using either traditional methods or very simplistic approaches,
and no contribution is made herein to improve their modeling. These other topics
are under study by other members of the research group, and the numerical tool
presented here is intended to serve as the basis for the integration of the models
that they are working on. The codes developed by Pegoraro (2018), concerning
the aerodynamics of wind turbines, and Carmo (2016), which employs Morison’s

equation to calculate hydrodynamic forces, are taken as an starting point.

Text outline

The text is divided as follows:

e Chapter 2 is dedicated to the literature review, aiming at presenting the works that

were important for this thesis as well as an overview about the existing methods
for the hydrodynamic analysis of floating wind turbines and offshore structure in

general;
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e Chapter 3 presents the derivation of the equations that constitute the slender-body
approximation studied in this thesis, with the objective of providing the theoretical
background to understand the final expressions of the wave forces acting on the
structure and the assumptions that they hold. In short, the floating body is considered
to be composed of slender cylinders, in such a way that the second-order wave forces,
as given by Pinkster (1980), can be simplified using Rainey’s formulation. One
important drawback is that wave scattering and radiation effects, as well as end
effects due to the extremities of the cylinders, are lost, but it is shown later in the

text that this is acceptable in relevant wave conditions;

e Chapter 4 describes the implementation of METiS-USP, the numerical tool that
was developed using the method presented in Chapter 3. Besides the hydrodynamic
forces, this chapter also presents the inclusion of the aerodynamic loads acting on
the rotor using Blade Element Momentum Theory (BEMT) and of the mooring
forces with a simple linear stiffness matrix, as well as the numerical scheme used to

solve the equations of motion, namely a standard 4" order Runge-Kutta method,;

e Chapter 5 compares the results obtained with the slender-body approximation with
the ones calculated using diffraction theory and Newman’s approximation for the
simple case of a single surface piercing cylinder. In the first part of the chapter, the
cylinder is considered to be bottom mounted, and the analytical solution given by
Kim and Yue (1990) for the low-frequency second-order wave force is used to identify
similarities and differences among these different approaches. The same is done in
the second half of the chapter, but considering a floating cylinder and the effects that
the motions induced by first-order wave forces have on the second-order forces. As
this latter case does not have an analytical solution, the radiation/diffraction results
are computed with WAMIT® (WAMIT, 2004), a commercial Boundary Element
Method (BEM) software for simulating wave interactions with offshore structures in

frequency-domain;

e Chapter 6 is about the analysis of JPK, a floating wind turbine that was tested at
TPN-USP. Three sets of tests were performed: free decay tests of the moored model;
forced oscillations of the hull; and motions under the action of waves (bichromatic,
JONSWAP and white-noise) and wind. The model is a semi-submersible with a
central column attached to three smaller diameter orbital columns, and it was moored
by three catenary lines composed of a bottom segment made of chain and a top
one made of polyethylene cable. The same model was then analyzed using METIS,
WAMIT and OpenFAST (formerly known as FAST (JONKMAN; BUHL, 2005)),

evidencing the capabilities and limitations of each software;
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e The main conclusions are summarized in Chapter 7 along with suggestions for further

work.
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2 Literature Review

This chapter provides an overview of some works in the field of seakeeping in order to
highlight the importance of the low-frequency second-order wave loads and to present the
existing methods to evaluate wave forces on floating bodies, specially the so-called slender-
body approximations. Though hydrodynamics is only one of the several disciplines involved
in the analysis of floating offshore wind turbines, discussing other topics (aerodynamics,
moorings, control, elasticity, etc) is out of the scope of this text, and the interested reader
is referred to Jonkman (2007), Manwell, McGowan, and Rogers (2010), Bachynski (2014),
Pegoraro (2018) and the references cited by them.

The problem of a floating body under the action of waves is complex and non linear.
A first-order approximation is obtained by considering a linearized version of the problem
(i.e. the nonlinear boundary conditions on the free surface and on the surface of the body
are linearized), in which the loads act at the same frequencies of the incoming waves, w;,
and are linearly proportional to their amplitudes, A;. As this approach is capable of solving
a large array of relevant seakeeping problems, it was the focus of most of the research
on the motions of floating bodies (specially ships) for several decades. As a consequence,
methods to estimate first-order wave forces with reasonable accuracy in relevant situations
are classical by now, and the ones discussed by Newman (1979) (which includes a very
interesting review of the history of seakeeping) are fundamentally the same used nowadays.
For instance, the memory function introduced by Cummins (1962) is still applied in most
modern time-domain seakeeping software, and the main principles that underline Boundary
Element Method (BEM) (discussed ahead) were laid out decades ago (JOHN, 1950; HESS;
SMITH, 1967; WEHAUSEN, 1971).

Due to the linearity of the first-order loads, they cover the same range of frequencies
of the waves present in the sea, which correspond to periods of a few seconds to about
20s. To avoid resonant effects, most offshore structures are designed to have resonance
periods outside this range (with some notable exceptions, such as wave energy converters).
Nevertheless, some response almost always appears at the resonance frequencies, even
when practically no wave energy is present at those frequencies, and a mean load is also
observed, as first reported by Suyehiro (1924). These phenomena can not be explained by
linear theory and, as the motions of the body are well modeled by a linear dynamic system,
they can not be due to the equations of motion either. The explanation comes from the
next order of approximation of the hydrodynamic problem, which introduces loads acting
at the difference, w; — w;, and sum, w; + w;, frequencies. As a consequence, even though
these second-order loads are way smaller than the first-order ones, they cover a much

wider frequency range that can excite resonances. They are responsible, for instance, for



34 Chapter 2. Literature Review

the springing of the tendons of tension leg platforms (TLPs) (sum frequencies) and for the
slow-drift of moored structures (difference frequencies). Early studies on the second-order
loads were connected to the added resistance of ships, which is a problem closely related
to the mean drift of a stationary body (see, for instance, Havelock (1942) and Maruo
(1957)), but the second-order problem started to draw more attention once the number of
structures moored at sea increased. Particularly, the slow-drift motions, which were shown
by Remery and Hermans (1972) to be associated with the frequencies of wave groups that
are present in irregular waves, became relevant. The reader interested in a review of the
first works regarding the mean- and slow-drifts of floating bodies is referred to Pinkster
(1980) or Pesce (1984)

2.1 Main approaches for seakeeping analysis

There are three main methods for the analysis of wave induced motions: the first is
to perform experiments in a wave basin, but as they are usually expensive and time
consuming, this solution is not well suited as a recurrent design tool; the second is to solve
the problem analytically, an useful approach with the disadvantage of being restricted
to a limited number of examples; and the last is to employ numerical methods to solve
the equations that describe the flow and the body motions. These methods can be very
refined and computationally expensive, such as the Computational Fluid Dynamics (CFD)
software that model real fluid flow through the Navier-Stokes equations, or they can use
approximations to greatly simplify the problem and obtain faster results. In seakeeping
and in many other engineering fields, common practice is to use engineering tools that fit
in the latter group, usually validated using analytical results, CFD, and/or experimental

tests, and leave more refined analyses to the last stages of design.

This is the case of the numerical tools used to design floating offshore wind turbines,
like the ones included in the OC5 project (ROBERTSON; WENDT, et al., 2017). They
employ different approximations for each of the topics that concern a FOWT, in such a
way that a myriad of combinations is possible. Regarding hydrodynamics modeling, they
can be roughly subdivided in three groups based on the assumptions they hold for the
calculation of wave loads: the ones that model the floater as a diffracting body; the ones
that consider the floater to be composed of slender cylinders; and the ones that combine

both approaches.

The theory employed by the first group is based on neglecting viscous effects and
rotationality of the flow to evaluate wave loads with potential flow theory. For the problem
of an oscillating body, as the ones dealt with in seakeeping, this assumption is true if

the ratio of inertial to viscous forces, given by the Reynolds number Re = UD/v, is high

ur

and if the Keulegan-Carpenter number KC = -, related to flow separation, is small
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(FALTINSEN, 1993; SARPKAYA, 2010). This is not always the case, and viscous effects are
frequently important, as in the rolling of ships, motions in severe environmental conditions
or the slow-drift of moored structures. A simple workaround is to adopt external damping
coefficients to partially and heuristically include viscous effects, but since damping is not
the only important effect introduced by viscosity, other approaches have been investigated,

such as the slender-body approximation discussed later in this chapter.

Although the assumptions required by potential flow theory may seem somewhat
strict, it allows the solution of many important problems in hydrodynamics. One of the
most valuable ones is the propagation of surface waves, whose solution can be found in
Newman (1977) and Dean and Dalrymple (1991). The challenge lies in the nonlinear
boundary conditions at the free surface, which is itself unknown, and it has drawn the
interest of great minds like Newton, Lagrange, Laplace, Poisson, Cauchy, Green, and
Stokes (see Craik (2004) for a fascinating review about the history of water wave theory).
For mid and deep water, the solution method relies on a perturbation approach due to
Stokes (1847), in which all quantities are decomposed into a power series in the small
parameter € = kA, with k the wave number and A the wave amplitude. The equations are
then separated by order, breaking down the original problem into a sequence of linked
linear problems, in the sense that the solution of the first-order problem is necessary to
solve the second-order problem, which by its turn is used in the solution of the third order
problem, and so on. The resulting problems can then be treated by order, allowing the
solution of each one separately and the identification of the phenomena related to each of
them.

The motion of a floating body under the action of waves can be analyzed using the
same technique by including the assumption that body motions are small around their
mean position, and a thorough formulation of the problem up to second order may be
found in Molin (1979) or Pinkster (1980) (see also Pesce (1984) and Pesce and Aranha
(1985) for the rigorous and complete treatment of the problem, up to second-order, for the
vertical plane motion case). Despite all the assumed approximations, the problem remains
complex when dealing with arbitrary geometries, and this is where the numerical tools
that belong to the first group make their contribution. These software usually employ
the Boundary Element Method, which is based on a form of Green’s theorem that allows
the determination of the velocity potential at any point in the fluid from a distribution
of singularities over the boundary surfaces, with the intensities of the singularities being
determined numerically (FALTINSEN, 1993). This is an important advantage over other
methods, as it avoids the discretization of the entire fluid domain. The method traces
its origins to Hess and Smith (1967), who originally considered the body to be made of
a finite number of plane quadrilateral panels with a continuous distribution of constant
intensity sources over each panel. The numerical approach has considerably evolved since

them, and it now allows the discretization of the body by plane quadrangular/triangular
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panels, known as low-order panel method, or by the so-called higher order methods, such
as using B-spline or NURBS (Non-uniform Rational Basis Spline) (RUGGERI, 2016).

There are several software based on BEM, and many of the most prominent ones,
for instance WAMIT® (WAMIT, 2004), AQWA® (ANSYS, 2017), and Hydrostar®
(BUREAU VERITAS, 2016), solve the problem in frequency domain, using a Green
function that corresponds physically to a pulsating source which automatically satisfies
the radiation and boundary conditions on the linear free surface and on the bottom
(JOHN, 1950; WEHAUSEN, 1971). Although frequency domain analyses may provide
useful information in early stages of design, only time domain analyses are accurate enough
to model the coupled nonlinear dynamics of floating wind turbines. Hence, the frequency
dependent first- and second- order hydrodynamic coefficients calculated in frequency
domain (usually referred to as the solution of the radiation/diffraction problem, illustrated
in Figure 5) are imported to a time domain solver, like FAST (JONKMAN; BUHL, 2005)
or OrcaFlex (ORCINA, 2021), using Cummins’ approach (CUMMINS, 1962; OGILVIE,
1964) for wave radiation effects. An alternative is to use a Boundary Element Method to
solve the flow directly in time domain, as the ones described by Korsmeyer, Bingham, and
Newman (1999), Watai (2015), and Ruggeri (2016), but they have the disadvantage of
being very time consuming, and the author is not aware of any work that employs such
methods to the coupled analysis of FOWTs.

Figure 5 — Superposition of the diffraction problem (incoming waves disturbed by the
structure, considered to be fixed) with the radiation problem (waves generated
by body motions, considering the sea to be perfectly calm).

Excitation loads Added mass
Damping and Restoring
forces and moments

Source: Faltinsen (1993).

The second approach is to consider the body to be composed of slender cylinders
under the action of long waves, in the sense that their diameter D is small compared to
their draft d and to the incoming wave length A. In this condition, it is reasonable to assume
that the incoming waves are not disturbed by the structure, so that the flow characteristics
(velocity, acceleration, pressure) can be promptly obtained from the undisturbed incoming
wave potential. This allows the evaluation of the forces acting on each cylinder by means of

specific formulations, with the most common being the one nowadays commonly referred
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to as Morison’s equation (MORISON et al., 1950). Morison’s equation is a semi-empirical

formulation originally developed to calculate the forces exerted by surface waves on piles,

but which was later adapted to include the effects of the motions and inclination of the
cylinder. It expresses the forces acting on an infinitesimal section of the cylinder as:

7T'D2 81,113

dF = 14+C,)—

where p is the fluid density, C, is the added mass coefficient, C'p is the drag coefficient, u

. 1 ) )
—CaXB,p +épDOD(uP—XB,p)HuP—XB’pH (21)

is the flow velocity and xp and xp are the velocity and acceleration of the body measured
at the cylinder section, respectively. The index P indicates the component of the vector
that is perpendicular to the cylinder axis. The first and second terms are the inertial
hydrodynamic force, proportional to the accelerations, and the third is the drag force, due

to viscous effects.

Though Morison’s equation looks simple, it hides an intricate question regarding the
determination of the added mass and drag coefficients, which need to be chosen somehow.
As pointed out by Sarpkaya (2001, 2010), since the kinetic velocity of the flow is affected
by the flow separation, even the added mass coefficient C, needs to be determined, as it is
different from the one calculated considering potential flow. Due to the important role
played by cylinders in the offshore industry, there is a large number of experimental works
dealing with the case of a cylinder under the action of a sinusoidal flow, such as Keulegan
and Carpenter (1958), Sarpkaya (1986), and Venugopal, Varyani, and Barltrop (2006),
and it has been found that these coefficients are dependent on the ratio of immersed
length to diameter, surface roughness, Keulegan-Carpenter number KC', and Reynolds
number Re. However, it is not evident how to extend these results to the analysis of a
floating structure under the action of a real sea, and how to properly choose C, and Cp
in this case remains an open question. One possible alternative is to use experimental
coefficients obtained in forced oscillation tests in calm waters, and Carmo, Mello, et al.
(2020) obtained good results for the slow surge motion of a FOWT under the action of
bichromatic waves with coefficients obtained this way. The experimental results analyzed
in Chapter 6 are a continuation of that experimental campaign, and as the same approach
is followed to obtain the hydrodynamic coefficients of the floater, the utilization of the
added mass and drag coefficient from forced oscillations is explained in details in that

chapter.

Many of the numerical tools for the analysis of FOWT were developed as an
expansion of software that were previously restricted to onshore wind turbines. Probably
due to its simplicity and the geometry of offshore wind turbines, Morison’s equation was
the first approach chosen by most of them to include hydrodynamic loads and expand
their capabilities to analyze offshore wind turbines (JONKMAN, 2007). Although being a
restrictive approach, since it is not valid for analyzing hull shapes that are not exclusively

composed of cylinders, it can be applied to the majority of existing concepts of FOWTs.
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It is worth mentioning that the utilization of this approach is not exclusive to the
analysis of FOWTs. For instance, Hooft (1972) deduced an expression for the wave forces
on a small body that is very similar to the inertial part of Morison’s equation, except
for a term that accounts for potential damping that was later neglected for being too
small, which was used to analyze the motions of a drilling semi-submersible in waves and
validated through comparisons with experimental results. The resulting expression was
also compared with the exact analytical results for a bottom mounted cylinder (given by
Havelock (1940) for infinite water depth and MacCamy and Fuchs (1954) for finite water
depth), leading to an error of less than 4% when A/D > 5, which is the usual threshold
adopted for the validity of Morison’s equation. Another important conclusion was that the

influence of free surface effects on the added mass could be neglected.

The third approach, which seems to be the most common, as it is the one followed
by most of the participants of the OC5 project (ROBERTSON; WENDT, et al., 2017),
consists of a combination of the other two. The hydrodynamic coefficients computed
in frequency domain by radiation/diffraction codes are imported to time domain using
Cummins’ approach, and the quadratic drag term of Morison’s equation is added to the
other forces. Out of the 21 different software setups studied in the OC5 project, 3 used

the first approach, 6 used Morison’s equation only, and 12 used a combination of both.

The importance of second-order wave forces in FOW'Ts has been reported by
several authors (COULLING et al., 2013; GUEYDON; DUARTE; JONKMAN, 2014;
LOPEZ-PAVON et al., 2015; SIMOS; RUGGERI, et al., 2018), evidencing that they
should be taken into account by comprehensive numerical tools for the analysis of floating
wind turbines. Just like for oil and gas platforms, one is frequently only interested in the
low-frequency part of the second-order wave forces. However, while for O&G platforms the
focus is usually on the low-frequency horizontal motions, with a few exceptions where the
vertical degrees of freedom are relevant (for example, the ones discussed by Rezende, Chen,
and Ferreira (2007) and Matos, Simos, and Sphaier (2011)), it seems that for FOWTs
the vertical motions induced by second-order wave forces are frequently important (e.g.
Robertson, Wendt, et al. (2017) and Gueydon, Duarte, and Jonkman (2014)). Besides,
while good agreement between experiments and numerical simulations is generally observed
for the mean and slow-drift motions of O&G platforms, important discrepancies have been
reported for FOWTs. This is illustrated by the OC5 project (ROBERTSON; WENDT,
et al., 2017), during which large differences between numerical and experimental results of
the slow motions of a FOWT under the action of waves only have been attributed to the
low-frequency second-order loads, and this is currently under investigation in the OC6
project (TOM et al., 2019). Recent studies that have analyzed the same floater with CFD
indicate that real flow effects are important not only for the damping of the platform, but
also for the low-frequency second-order loads (LI; BACHYNSKI-POLIC, 2021a,b,c).
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Most works evaluate the second-order wave loads using radiation/diffraction theory,
with time-domain codes either importing the full Quadratic Transfer Functions (QTFS)
or using Newman’s approximation (NEWMAN, 1974), which consists in evaluating the
difference-frequency second-order forces from the mean component, both pre-computed in
frequency domain. As the mean wave forces depend only on the solution of the first-order
problem, Newman’s approximation is extremely useful, but it requires deep water and
large natural periods of motion to provide good results. These conditions are usually met
by O&G platforms, but as FOWTs are located in shallower waters with lower natural
periods induced by the mooring, Newman’s approximation may be unsuitable in many
situations (SIMOS; RUGGERI, et al., 2018). Other approximations have been proposed,
for example Pinkster’s approximation (PINKSTER, 1979), which approximates the second-
order potential by a clever manipulation of the first-order potential, or the white-noise
approximation (ARANHA; FERNANDES, 1995; SIMOS; CARMO; CAMARGO, 2018;
CARMO; CAMARGO; SIMOS, 2018), which benefits from the narrow bandwidth of the
response function of body motions to reduce the required number of frequency pairs of

the QTFs.

2.2 Slender-body approximation for second-order wave loads

Another line of thought would be to use a slender-body approximation similar to Morison’s
equation to model the second-order loads, which may be useful in sea conditions where
effects due to wave radiation and scattering can be neglected. As the drag term is
proportional to the square of the fluid velocity, it is of second-order in wave height, but the
inertial term is originally of first-order for being linear with respect to the fluid acceleration.
Some works have included additional non-linear effects by considering second-order (or
even higher) wave kinematics and wave stretching techniques (ROBERTSON; WENDT,
et al., 2017; AGARWAL; MANUEL, 2011), but it has been shown in the past that these
are not the only modifications needed to model second-order loads. In fact, in order to solve
the forces up to second-order with a slender-body approximation, it would be necessary to
replace Morison’s inertial term by a more complete expression that is able to describe the

potential-flow part of the wave forces up to second-order.

A first improvement follows from Lighthill (1986), who affirms that although in
uniform flow the Morison inertia term coincides with potential flow loads, the same is not
true for non-uniform flow. In this case, indeed, the “virtual mass force proportional to
the horizontal component of the accelerative force exerted on the mass of water displaced
by the pile” given by Morison et al. (1950) should include the convective acceleration
of the fluid. This is the only change needed for a body that is small (with respect to
the non-uniformity of the flow) in all relevant dimensions, for example a small diameter

sphere (three dimensional problem) or a small diameter horizontal cylinder parallel to the
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wave crest (two-dimensional problem). Isaacson (1979) extended Morison’s equation to
include additional nonlinear inertial terms for circular cylindrical piles, but his expression
is not correct, as he assumed all body dimensions to be small relative to the length scale,
and this is evidenced by a discrepancy with the force derived by Lighthill (1992 apud
RAINEY, 1989)! for a fixed circular vertical cylinder, which is correct. Lighthill’s result
was first generalized to the case of a moving inclined circular cylinder in a nonuniform
unsteady potential flow of infinite extent by Madsen (1986), who derived an expression
that includes the convective acceleration and two additional terms that are due to the
three-dimensionality of the flow. One of them arises from the inclusion of the variation of
body velocity along the cylinder axis due to its rotation, while the second one, which was
later called axial divergence in other works, comes from including the longitudinal velocity
gradient to the water particle acceleration. Manners and Rainey (1992), who analyzed a
fixed cylinder in the same flow conditions as Madsen, discuss the axial divergence term
in details, demonstrating that its mathematical origin is the three-dimensional feature of
a ‘zonal harmonic’ that produces a convective acceleration. They also present a possible
physical interpretation on the grounds that it is related to the rate of extension of the
flow in the z-direction, leading to a change in the associated momentum, in such a way
that the axial-divergence acceleration acts as if the added mass is changed. The reader is

referred to their paper for a more thorough explanation.

Rainey (1989) extended Madsen’s result to the case of a cylinder with general cross
section using an approach based on energy arguments (Madsen derived his expressions
by integrating the pressure on the body surface). Besides the forces along the length of
the cylinder, his formulation includes additional point loads at the extremities and at the
intersection with the waterline, which are correct when the diameter tends to zero. The
rotation term obtained by him is slightly different from the one by Madsen (1986), and
in a later work Rainey (1995) asserts that his expression is correct and that there was a
factor 2 missing in Madsen’s rotation term. This was corroborated by Manners (1992),
who obtained the same result as Rainey via pressure integration (thus the same approach
followed by Madsen). The resulting expression is deduced in Section 3.3 following the
same approach as Manners (1992). This formulation is commonly referred to simply as
Rainey’s equation (MA; PATEL, 2001; MOLIN; CHEN, 2002; JURADO; BREDMOSE,

2020), unfortunately neglecting the contribution of the other researchers.

Motivated by the fact that the free-surface contribution to the second-order
difference-frequency wave force is usually much less important than the contribution
from other sources (KIM, 1992), Kim and Chen (1994) employed Rainey’s formulation
(neglecting the point loads) to develop a slender-body approximation to the computation

of second-order difference-frequency wave forces. The incoming flow was described by

ILighthill, J. Waves and hydrodynamic loading. BOSS 1979 1st International Conference on the
Behaviour of Offshore Structures. London, U.K., 1979.
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the analytical difference-frequency second-order incident wave potential, obtained by the
solution of the second-order bichromatic wave problem, and they showed that every term
in the resulting expression has its counterpart in traditional diffraction theory. The approx-
imation was applied to the analysis of an articulated loading platform, and the resulting
pitch moment QTFs were compared with the ones computed with complete second-order
diffraction theory, both considering the body fixed. The results agreed very well, except
for high frequencies, for which diffraction effects become important. As reported by the
authors, their approximation is several orders of magnitude faster than the second-order

diffraction method. The effect of body motions is briefly discussed in an appendix of their
paper.

A similar approach has been employed by Taylor, Rainey and Dai (1992 apud
KIM; CHEN, 1994)% to the analysis of double frequency wave loads acting on a TLP in
regular waves. The results obtained with the slender-body theory agreed with second-
order diffraction theory for survival sea conditions, except, again, for short waves. This
disparity was attributed to the free-surface forcing terms present in the second-order sum-
frequency diffraction formulation, which in this case are not irrelevant as in the second-order
difference-frequency problem. Due to this difference, Kim and Chen (1994) point out that
the application of the slender-body approximation to the analysis of sum-frequency wave

loads is more restrictive than that for difference-frequency loads.

Other examples of applications of the slender-body approximation are given by Ma
and Patel (2001) and Jurado and Bredmose (2020). The former analyzed the second-order
forces on an O&G spar platform under the action of regular and bichromatic waves,
showing the relevance in some wave conditions of the axial-divergence and rotation terms
from the slender-body expressions, while the latter developed an accelerated method
to compute second-order inviscid wave loads based on Rainey’s equation, but without

accounting for the effects of first-order body motions.

Neither of the works cited above used the slender-body approximation to evaluate the
response of a floating structure under the action of a real sea directly in time domain, and
the author is not aware of any work that has done so. They either neglected body motions
(KIM; CHEN, 1994; JURADO; BREDMOSE, 2020) or considered regular/bichromatic
waves (TAYLOR; RAINEY; DAI, 1992; MA; PATEL, 2001). This is probably because the
formulation proposed by Madsen (1986), Rainey (1989), and Manners (1992) evaluates the
forces at the instantaneous position of the cylinder, but this is unpractical for numerical
simulations with a large number of waves such as the ones required by analyses considering
a real sea. Since the position of the body at each time step is unknown at the beginning

of the simulation, it would be necessary to directly sum the contribution of each wave

2Taylor, R. E.; Rainey, R; Dai, D. Non-linear hydrodynamic analysis of TLP’s in extreme waves:
Slender body and diffraction theories compared. BOSS 1992 6th International Conference on the Behaviour
of Offshore Structures. London, U.K., 1992.
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component at each time step, which is very computationally expensive. If, however, the
forces were evaluated considering the mean body position, it would be possible to use
an Inverse Fast Fourier Transform (IFFT) algorithm to compute the time series of wave
kinematics much faster. For this reason, this thesis combines Rainey’s equation with the
formulation proposed by Pinkster (1980) to modify the original slender-body approximation
in order to evaluate the second-order wave loads at the mean body position, hence allowing
a computationally efficient evaluation of the second-order wave loads in a real sea condition

directly in time domain.
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3 Slender-body approximation for second-

order wave loads

The numerical tool developed in this thesis employs a slender-body approximation to
evaluate the hydrodynamic forces, up to second order, on a floating structure directly
in time domain. The advantage is to calculate the hydrodynamic forces concomitantly
with the other forces acting on the body, in opposition to the common approach of using
hydrodynamic coefficients that need to be pre-computed in frequency domain. Due to
the assumptions held by the approximation, this method is well suited to the analysis of

floating offshore wind turbines under the action of long waves.

The present chapter is devoted to the derivation of this approximation. It starts
with the formulation proposed by Pinkster (1980) for the low-frequency second-order wave
forces on floating structures, which are obtained through direct integration of the fluid
pressure on the instantaneous wet surface of the body (Section 3.1). This is followed by
the description of the incoming wave field in Section 3.2, which is given by the velocity
potential of undisturbed waves. As the focus is on the low-frequency second-order loads, it
is sufficient to consider the difference-frequency second-order wave potential associated
with bichromatic incident waves, as well as the first-order velocity potential of each regular

wave component.

The slender-body approximation itself is developed in Section 3.3. The floating
body is considered to be composed of an assembly of slender cylinders under the action of
long waves, in the sense that their diameter D is small compared to their draft d and to the
incoming wave length A, a restriction that is satisfied by several of the existing concepts of
FOWTTs in many relevant sea conditions. The effects of the interaction among the cylinders
are disregarded, so that the total hydrodynamic forces acting on the floater are given by
the sum of the forces on each cylinder. These hypotheses reduce the problem of studying
the flow over a complex geometry to the fundamental one of a cylinder, in such a way that
the formulation proposed by Madsen (1986), Rainey (1989), and Manners (1992) for the
forces per unit length can be used. As a consequence of the long wave assumption, effects
due to wave scattering and radiation are lost in the process, while end effects due to the
extremities of the cylinder are discarded by the slenderness approximation. Nevertheless,
some of the hydrodynamic loads acting on the extremities of the cylinder are very relevant,
specially for the vertical motions of structures with vertical columns, and hence they can
not be neglected. This is dealt with in Section 3.3.3 by including the point load at the
immersed end proposed by Rainey (1989) and additional axial forces that are similar to

the ones usually included when modeling floating structures with Morison’s equation (e.g.
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Robertson, Jonkman, Masciola, et al. (2014)).

The slender-body approach, as originally proposed, evaluates the forces at the
instantaneous position of the cylinder, which requires fluid kinematics to be computed
by directly summing the contribution of each wave component at each time step. This
is a computationally expensive operation that makes analyses with a large number of
waves, such as the ones considering a real sea, prohibitive. However, by combining Rainey’s
equation with Pinkster’s formulation, the surface integrals presented in Section 3.1 can be
simplified into an integration along the length of each member, in such a way that the
original slender-body approximation is modified to evaluate the second-order wave loads
at the mean body position instead of considering the instantaneous displacements. With
this modification, the fluid kinematics that are needed to evaluate the wave loads up to
second-order can be computed much faster with an IFFT algorithm, hence allowing the
adoption of the slender-body approach even when a large number of wave components is

required. This modification is presented in Section 3.3.4.

Section 3.4 discusses viscous effects and their inclusion in the model, done so by
adding the quadratic drag term from Morison’s equation (MORISON et al., 1950), a
semi-empirical superposition of forces that is justified by 70 years of good results obtained

with this equation.

Section 3.5 deals with the hydrostatic forces, and it benefits from the simple
geometry of a cylinder to calculate the displaced volume and hydrostatic stiffness matrix

of the structure without meshing it.

Finally, Section 3.6 presents the final expressions of the hydrodynamic forces,
grouping the force components discussed in the previous sections in a more concise way.
They are dependent on empirical added mass and drag coefficients, just like Morison’s
equation, and Section 3.7 discusses the challenge of properly choosing these values for the
analysis of floating bodies, an intricate question that remains unsolved despite the many

works regarding the issue.

3.1  Wave forces on floating bodies

This sections deals with the deduction of the low-frequency second-order wave forces acting
on a floating body by direct integration of the pressure on the hull, following the steps
presented in Chapter 3 of Pinkster (1980) but with some modifications to the resulting

equations in order to solve them with a slender-body approach in time domain.

The theory is developed assuming that the flow is irrotational and the fluid inviscid,

homogeneous and incompressible, allowing the fluid velocity U to be obtained by the
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gradient of a velocity potential ¢:
U=Vo¢X,Y, Zt) (3.1)

where (XY, Z) are the coordinates relative to an earth-fixed coordinate system and ¢ is

the time. The velocity potential ¢ is composed of two parts:

p=0+¢ (3.2)

with ¢ representing the undisturbed incoming flow and ¢ the perturbation caused by the

presence of the body.

Following classical hydrodynamic theory, the equations are derived using perturba-
tion methods. All quantities related to the flow, such as the velocity potential ¢, the wave
elevation 7, fluid pressure p and body motions £ can be expanded in a power series with

respect to a small parameter € < 1. The fluid pressure, for instance, is written as:
p=p" +ep +p? + O(?) (3.3)

in which p© is the static value, ep™) the first-order perturbation and £2p® the second-
order one. Thus, first-order quantities are preceded by e, second-order quantities by &2,
and so on. O(&?) indicates that higher-order terms are also present in the series expansion,
but they will be neglected due to the interest of this work being restricted to second-order

effects.

For the problem at hand of a body under the action of waves, the first-order
quantities are oscillatory at the frequency of the incoming waves, while second-order
quantities contain, in the general case, both low- and high-frequency components. Since
the objective is to model the mean and slow-drift forces acting on the structure, the
high-frequency components of the second-order solution are of no interest for the present
work, and they will be neglected. Hence, the second-order quantities oscillate in a frequency

that is lower than the wave frequencies.

Hereafter, the parameter € will be omitted in some expressions when only first- or
second-order quantities are involved. In these cases, the order of the quantity will still be
recognizable by the affix ©, M or @) or by the fact that a component is the product of
lower-order quantities. For example, |[V¢™M||?, as the product of two first-order quantities,

is recognized as a second-order quantity.

One important remark is that the equations presented hereafter assume that the
low-frequency motions induced by the second-order forces are small in relation to the first-
order motions. As pointed out by Pinkster (1980), this is not always true, as low-frequency
second-order motions are resonant and, usually, weakly damped, leading to large dynamic
magnifications. Nevertheless, if the wave height is assumed to be infinitesimal, i.e. ¢ — 0,

the motions induced by the low-frequency second-order forces are guaranteed to be small
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in face of the first-order motions, so this assumption should be kept in mind when studying

body motions using second-order wave theory.

3.1.1 Coordinate systems and body motions

The following different right-handed coordinate systems are employed, as illustrated in

Figure 6:

Figure 6 — Systems of coordinates.

e The earth-fixed coordinate system FXY Z, with the origin F and the axes X and
Y lying on the mean free surface. The Z axis is positive upwards. The unit vectors
along the axes (X,Y, Z) are denoted {E;, Ey, E3};

e The coordinate system GX'Y’Z’, with origin in the center of gravity G of the body
and axes parallel to those of the EXY Z system. In other words, it follows the

translation of the body, but does not rotate with it;

e The coordinate system GzyZ of body-bound axes, with origin in the center of gravity
G of the body, 2 axis vertically upwards in the mean position of the vessel and the

positive z axis in the longitudinal direction. In the mean position, the z, § and 2
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axes are parallel to X, Y and Z. Basically, it follows the translation and rotation of

the body. The unit vectors along the axes (Z, 9, 2) are {1, &y, é3};

e [or a body composed of an assembly of cylinders, a coordinate system O;z;y;z; is
defined for each cylinder j. The axes are oriented by the unit vectors es;, ey; =
E; ANesj and e; ; = ey A eg;, with ez ; directed along the axis of the cylinder. In
these conditions, the inclination of the cylinder with respect to the vertical is given
by a rotation around the local y axis, which is quite useful to express some of the
equations presented in the following sections. If the cylinder is vertical, this vector
basis is flawed, as E3 A e3 ; would be zero, and in this special case the axes are taken
as parallel to those of the EXY Z system. The origin of this coordinate system, O;,
is taken on different points along the center line of the cylinder as convenient, and

this is indicated when O;z;y;z2; is used.

The position of a point P on the surface of the hull is described by the vector
r = (P — G) = r18; + ryé&y + r3é3, while the orientation of a surface element is given by

the outward normal vector n = n1&; + n9€y + n3és.

If the motions induced by both the first-order and the low-frequency second-order

wave forces are small, and neglecting third-order components, the position of the point P
is given by:

(P—E)=Xp =X 4 exP) +2xP (3.4)

where ng) is the mean position vector, Xg) the first-order oscillatory motion and Xg)

the low-frequency second-order oscillatory motion:

X0 = x4y (3.5)
XW =x8 +a®Ar (3.6)
Xg) = Xg) +aP Ar (3.7)

in which X(Gl) and X(GQ) are the first- and second-order oscillatory motions of the center
of gravity, o) and a® are the first- and second-order oscillatory angular motions of
the body, assumed to be small, and A denotes the cross product. For conciseness, the
vectors that describe translation and rotation of the body will be aggregated in a single

six-component vector £, which will lighten the notation in some parts of this text:

&) = GVE + §VEs + VB = XY/ (3:8)
&p) = &VE + §VEs + §VBy = oV (3.9)

with analogous expressions for &%,
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As the outward normal vector n rotates with the body, it is also an oscillatory

quantity with respect to the earth-fixed coordinate system:

n=n"4+en® 4 0@ (3.10)

with
n® = ¢W An® (3.11)
n® = ¢2 An© (3.12)

note that n(® written in the EXY Z (or GX'Y'Z’) coordinate system is simply n in the
GzyZz coordinate system, as their axes are parallel at zeroth order. In other words, by
denoting n(® = Nl(O)El + N2(0)E2 + N?EO)Eg, and reminding that n = n,&; + ny@&y + nsés,
it follows that Nl(o) =ny, NQ(O) = ng and Néo) = ns.

3.1.2 First- and second-order wave forces

The hydrodynamic forces and moments acting on the body are obtained through direct

integration of the fluid pressure on the instantaneous wet surface of the body (direct

F:—//pndS (3.13)
S

MG:—//p(r/\n)dS (3.14)

pressure integration method):

where the instantaneous wet surface S is composed of the mean wet surface Sy, which is
the surface of the hull below the mean waterline when the structure is at its mean position,
and an oscillating part s = es(M) 4 252 + O(e®) up to the instantaneous wave profile
along the body (see Figure 6). The subscript G in Mg indicates that the moments are
calculated with respect to the center of gravity of the body.

The pressure at a point in the fluid domain is given by:

96 1
P = Pam = P9Z — Py — 5/)I|V¢II2 + C(1) (3.15)

with paum the atmospheric pressure, Z the vertical position of the point and C'(t) a function
that depends on time only. Without loss of generality, p.. and C(t) may be taken as zero
(NEWMAN, 1977).

Equations 3.13 and 3.14 require the pressure to be calculated on the surface of

the hull, but as those points are part of the body, they undergo first- and second-order
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motions. Applying Bernoulli’s equation to the instantaneous position of a point on the
surface of the hull yields:

9

0o
ot o

p

1
p=—pg(Z20+ez2W122®) —¢p = Spl Vo x| (3.16)

X(t)
which is not completely of second-order, as the derivatives calculated at the instantaneous
position of the point introduce higher-order effects. This can be fixed by applying a Taylor

expansion around the mean position of the point:

1 1) (1)
5 ¢ =c 9¢ +e2XW .y 9% +O(e) (3.17)
ot |xw ot |x, ot |x,
(2) (2)
g 9¢ = ¢? 9¢ O(e?) (3.18)
ot |xw ot |x,
eVl |xw = eVoll|x, + O(?) (3.19)

substituting these expressions in Equation 3.16, and retaining only terms up to second

order, leads to:

Do)
p=—pg(Z29 +2W +22P) —¢p 5
Xo
e e X (3.20)
2 ~r(1) 2 (1) 2
— e pXW .V ——| ¢ — e 5[V x|l
ot Ix, ot Ix, 2 ’
which can be rephrased as
with
pO = —pgz® (3.22)
DM
pM = —pgzM — o (3.23)
Xo
0oV 0o 1
@ = _)ez® _ )XV .y _ — ||V e 2
p Py p p PV x|l (3.24)
ot |x, o g, 2 ’

Substitution of the pressure p and the normal vector n in Equation 3.13 leads to:
Fo_ / / (P + 2p® + 2p®) (0 + en® 4 2n?) dS
So
(3.25)

_ / / (0 + ep + £2p®) (0 4+ en® 4 2n®) d5

resulting in
F=FO9 4 FO 4 2F? 4 0(c?) (3.26)
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with

I
So

_ // _p(O) n®ds = // ng(O) n®ds = pgVoEs3 (3.27)
SU SO

/ / Pl — p@n®)ds (3.28)

// p@ 0 — p@ M _ 5O @Y qg 4 // (3.29)
s(D)

96® 1 oM
//p (% + 5||vgzs<1>||2 +XW.v gt +gZ(2)> n® ds
So

‘%(1) W) 0 (2)
dS + + gZ n dS + ER A ngOEg

(1 > n®ds + S%) A pgVoEs

where V) is the volume of fluid displaced by the body at its mean position. The expressions

for the moments are very similar, so they are omitted.

The second-order wave force given by Equation 3.29 leads to the five force compo-

nents proposed by Pinkster (1980). The procedure is described in his thesis, and results in:

// ( + gZ(l)) n® ds + Sg) AFW

NP WIC)
//[ LRI RS G Aot SNCPE

(3.30)

The first difference with respect to the expressions presented by Pinkster (1980)

is the term 53%) A FY instead of 55? A mé(Tl), which is because here other forces may

be acting on the body (aerodynamics, mooring, among others), in such a way that the

first-order forces can not be replaced by the mass times the first-order acceleration as

done by Pinkster. The other difference lies in the term due to the varying wet surface,

which in his case is further developed into a line integral at the intersection with the mean

waterline, but in here it is better to keep it as shown above for the developments presented

in the following sections The hydrostatic terms are not included in Equation 3.30, except

for the integration on s(V), but instead are given separately in Section 3.5 as an hydrostatic

stiffness matrix that multiplies the body motions.
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Likewise, the moments are given by:

o)
M(G?)://p( 0 +gZ<1>) (rAn©@)ds + &) AMY

ot
s()
(3.31)
1 Do) D2
- 1))2 M. (0)
+//[2p||v¢ 1%+ pX™ .V 5 TP (r An')dS
So

These expressions are very general and could be applied to any hull geometry.
However, the dynamic pressure remains unknown, as it is still necessary to solve the
boundary value problems to obtain the first- and second-order velocity potentials. If the
analysis is restricted to bodies composed of slender cylinders and if the interaction among
them is neglected, it is possible to solve the boundary value problem using the formulation
proposed by Madsen (1986), Rainey (1989), and Manners (1992), in such a way that the
surface integrals above are simplified into an integration along the length of each cylinder

plus point loads at its extremities, as detailed in the following sections.

3.2 Description of the incoming wave field

The incoming flow is due to surface waves freely propagating on the ocean, a classic
problem whose solution to second order is well known. Just like in the previous section,
the incoming velocity potential ¢ can be expressed as a perturbation series in the small

parameter ¢ < 1, which represents the wave steepness, as follows:

P(X,Y, Z,t) = epM(X,Y, Z,1) + 2P (X, Y, Z,t) + O(?) (3.32)

Since this thesis aims at modeling the second-order difference-frequency wave
forces acting on the structure under the action of a real sea, solving the problem up to

second-order is enough.

The solution of the first-order problem, known as Airy wave, can be found in
Newman (1977), Dean and Dalrymple (1991), or any textbook in marine hydrodynamics.
For N waves with complex amplitude A;, angular frequency w; and propagating with a

direction (3, the first-order wave potential is given by:

N N .
Ajcosh (ki (Z+ D)) o xu.
(XY, Z,t) = E DX YV.Z1)=R E _194 J i(kj-X—w;t)
EQ ( IR 7) 9 (,0] ( y Ly 7) w; cosh (kjh) e

j=1 j=1

(3.33)
where X = XE; + YE; + ZE3, g is the acceleration of gravity, h is the water depth,
and k; = kj(cos §,E; + sin 5;E,), with k; the wave number satisfying the dispersion

relationship w? = k;jgtanh (k;h). The mathematical deduction of the expression above
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assumes infinitesimal wave height to deal with the non-linear boundary condition at the

free surface, in such a way that Equation 3.33 is valid only for Z < 0.

While the linearity of the first-order problem allows the solution to be simply the
sum of individual regular wave components, this is not the case for the second-order
problem, which requires the simultaneous presence of more than one wave component to
be taken into account. It is sufficient to consider the combination of bichromatic waves,

and the solution is composed of two parts:

N N
POX,Y, Z, 1) =D 0n(X, Y, Z,1) + (XY, Z,1) (3.34)

j=1 1=1

in which the component i is the difference-frequency potential, acting at a frequency
wj = wj — w, while cp;rl is the sum-frequency potential, with a frequency wﬁ = w; +w.
These two components can be solved independently, and the complete solution is presented
in Kim and Yue (1990). The well known second-order uniform Stokes wave corresponds to

the sum-frequency potential for j = [.

As the objective is to model the low-frequency second-order loads, the sum-frequency
component is neglected, and only the difference-frequency component ¢ is considered. It
is given by:

oSS aarage ] 399
7j=1 [=1

where the asterisk denotes a complex conjugate, 3t the real part and

cosh (|[k; — ki[|(z + h))

i(kj—k;)-x
e 3.36
cosh(ij—leh) ( )

2oy == (v +57)

DN | —

ig k2[1 — tanh®(k;h)| — 2k;k [1 + tanh(k;h) tanh(kh)]

1 o (e — g — K — ki tanh (] — k) (3.87)

as for Equation 3.33, Equation 3.35 is valid only for Z < 0.

One important point is that the expressions above for ") and ¢~ are written in
the global coordinate system, EXY Z, but the results obtained in the following sections
require the evaluation of their derivatives with respect to a moving coordinate system such
as Oxyz. Any vector q can be converted between these two coordinate systems by the

change of basis matrix:
q = q1€1 + @ex + gze3 = Q1E; + QaEs + Q3E3

@1 e By e Ei e3-Ei| g (3.38)
Q2| = |e1-Ey e Ey e3-Ey q2

Q3 e -E; e E; e3-Ej q3
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Takingq=x=ze; +yes + ze3 = XE; + YE,; + ZE;3 leads to:
X =zu(e;-Ei) +y(es-Ey) + z(es- Ey)
Y = x(el : EQ) + y(62 . EQ) + 2(83 . Eg) (339)

Z = f(el'E:a) +y(92'E3) —|—z(e3-E3)

So, derivatives with respect to the local coordinate system are equivalent to:

0 0 0X 0 Y 0 07 0 0 0
9o 9Xor Tovar "9z~ (O Egx e Bt (e Ba) 5z

0X oY
900X oo 907
y 0X 0y 0Y 0y 0Z Oy
9 _ 00X ooy 907
0z 0X 9z OY 0z 0Z 0z

0 0 0
= (62 . El)a_X + (e2 . Eg)a_y + (62 . Eg)a—Z (340)

0 0 0
= oy Bu) o+ (0 ) ot (o )

3.3 Slender-body approximation

A common practice in offshore engineering is to apply Morison’s equation to evaluate wave
loads on structures composed of slender cylinders, in the sense that their diameter is small
compared to their length and to the length of the incoming waves. By assuming that the
hydrodynamic interaction among the cylinders is negligible, it is possible to evaluate the
hydrodynamic forces acting on the whole structure by simply summing the forces acting

on each cylinder, simplifying the problem significantly.

Morison’s equation is composed of two parts: the inertial term, which is proportional
to the fluid acceleration, and the quadratic drag term, which is proportional to the square
of the fluid velocity. This means that the quadratic drag term is of second-order in wave
height, while the inertial term is of first-order (considering the original formulation proposed
by Morison et al. (1950), in which only the local acceleration of the flow is taken and a
linear incoming wave field is considered). One may be tempted to extend this approach to
solve the forces up to second-order by simply considering second-order incoming waves,
but this is not strictly correct. As reviewed in Chapter 2, there has been quite a number
of works showing that it is necessary to replace the original inertial term from Morison’s
equation by a more complete expression in order to properly do so. To present this more
complete version of Morison’s equation, this thesis follows the deduction path described by
Manners (1992), who derived the hydrodynamic forces per unit length on a moving circular
cylinder in a general potential flow by pressure integration. The procedure is outlined in
this section, and the interested reader may find a more detailed description in his paper.

The resulting expression for the hydrodynamic forces per unit length are used to simplify
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the surface integrals obtained in Section 3.1 into an integration along the length of each

cylinder that is part of the body.

The expression presented by Manners (1992) is identical to the one obtained by
Rainey (1989, 1995) using an energy conservation approach, except for additional point
loads at the immersed end of the cylinder and at the intersection with the free surface,
which are not captured by Manners’ procedure. The missing force at the immersed end is
added to the formulation in Section 3.3.3, along with additional axial forces to partially
model the effects of the axial flow, in a similar way to what is usually done when modeling
floating structures with Morison’s equation (e.g. Robertson, Jonkman, Masciola, et al.
(2014)). The point load at the intersection of the cylinder with the free-surface is discarded

for being of third-order in wave height for the applications considered in this work.

3.3.1 Potential flow round a moving cylinder

The problem at hand is to evaluate the hydrodynamic forces on a cylinder immersed in a
general unsteady potential flow. Due to the geometry of the body, it is natural to work
with cylindrical coordinates (r,0,z), with © = rcosf, y = rsinf and the (z,y, z) axes
chosen in such a way that z is parallel to the cylinder axis and (z,y) = (0,0) lies on its
center line. Like before, the unit vectors along the axes (z,y, z) are denoted {eq, e, €3},
while the ones along the global fixed axes (XY, Z) are {E;, Eo, E3}. The origin of the
local coordinate system, O, is taken as the center of the section where the forces will be
evaluated, which is an arbitrary point along the center line of the cylinder. The problem is

illustrated in Figure 7.

Figure 7 — Segment of length dz of the cylinder, illustrating the global and local coordinate
systems.

Source: Adapted from Madsen (1986).

Following the same path as Manners (1992) and Manners and Rainey (1992), the

velocity potential of the incident flow, ¢, can be expressed as a Taylor series around the
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point O:
O ) Oy 1 0%p| o, 10%| , 1% ,
L %_l—axo 9y |, y+82 Z+2 8;1:20I+2 8y20y 28,2202 ( )
3.41
N 9 1 &% N 1 9%
= Ty + = xz+ = z
2 0x0y |, Y73 0r0z |, 2 Oyoz Oy

where only terms of second order with respect to the cylinder radius were kept (i.e. terms
of O(r3) were omitted from the expression above). From Laplace’s equation, 8%¢/0y? =

—0%p/0x® — 0*p/Dz?. Substituting this relation and using polar coordinates gives:

Op 1 &% 9 9
Y =¢o+ 8—‘ +1@ (227 — 1)
8% 2
© i 0%p :
- 0 - 0 42
(8 8:1682 z)rcos +<ayo+ayazoz)rsm (3.42)
2
%( 590 )T COS29+%8850 r? sin 26
oy |,

The motions of the body are described by the translation velocities of the point

O, denoted by %x; = @ze; + yz€s + Zzes, and by the angular velocities w, = —0y,/0z and

wy = 015/0z. As potential flow is assumed, a rotation around the z axis is irrelevant.

Hence, the radial velocity of a point on the cylinder surface with coordinates (r = R, 0, z)
is:

T, = (s + wyz) cos O + (Y — wyz) sind (3.43)

The total velocity potential ¢ (defined in Equation 3.2) must satisfy the following
boundary condition at the surface of the body:

d¢

— =&, = (5 + wyz) cos O + (Y — wyz)sind (3.44)
or r=R

which expresses the impermeability of the body surface. By assuming that the disturbance
due to the cylinder, ¢, vanishes with radial distance and that all other boundaries are
far enough from the cylinder section that they can be neglected (which is troublesome
regarding the free surface, as discussed later), Manners (1992) provides the following

solution for the total potential:

- Dip 1 8 2 2 2
¢—900+82 Z+4 (22 r“+2R"Inr)
2 2 2
{—('0 z+R—(a—('0 _x,B)+ZR_(8g0 —a@)}cos@
0 o r \ Ox|, r \ 0x0z|,
Op R? Op ) R? 8290 .
— — [ = - — 4
{8 8y82 et r <8y 5 yB) e r \ Oyoz O+w$ sind (3.45)
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(r2 + —2> sin 20
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which, however, is valid for a coordinate system that is fixed in space, thus it demands

Ly
2 0xdy

a special treatment to be derived with respect to time. The same expression is given by

Madsen (1986).

The assumption that the cylinder section is far from any other boundary conditions
is good enough for parts of the cylinder that are far from its extremities and from the
intersection with the free surface, but it is clearly increasingly wrong as the point O
approaches these regions. Rainey (1989, 1995) treats this issue rigorously using an energy
approach, showing that these end effects generate pressures that are relevant only for a
distance of O(R) around these boundaries, in such a way that they become point loads
in the limit R — 0. Then, if the radius is small in face of the length of the cylinder, it is
possible to use the velocity potential ¢ given by Equation 3.45 to evaluate the forces along

the whole span of the cylinder, while these point loads can be simply added separately.

In this work, only the additional point load at immersed ends of the cylinder is
considered (Section 3.3.3), while the point load at the intersection of the cylinder with
the free-surface is discarded. The latter originates from the wavy lid assumption that
Rainey (1989) introduces to deal with the boundary condition at the free surface. For a
vertical cylinder, this load is of third order in wave height, but it is of second order for an
oblique surface intersection, and hence should be included in the formulation proposed in
this work. However, since most of the surface-piercing elements of FOW'Ts are vertical or
slightly inclined columns, with the exception of structural braces that are usually much
more slender than the columns, this load is neglected. This is in line with other works
that used Rainey’s formulation for the evaluation of low-frequency second-order loads that
have neglected the free-surface point load as well (KIM; CHEN, 1994; MA; PATEL, 2001;
JURADO; BREDMOSE, 2020). Based on the comments made by Rainey (1995), this
load is important, for instance, for problems involving slamming and ringing of offshore

structures in steep waves, which are out of the scope of this thesis.

3.3.2 Forces along the length of the cylinder

The fluid force acting along the segment of length dz of the cylinder is given by:

2
dF = pdz/ (g—f - %HWHZ + gZ) n Rdf (3.46)
0

with n = cosfle; + sin fe,. For conciseness, the expressions presented in this section will

be restricted to the force along the x direction, as the ones for the y direction are very
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similar.

For now, the objective is to obtain the force per unit length acting on the section

with center O, dF,, which, from the expression above, is the sum of the following three

integrals:

2

dF,; =dz / pgZ Rcosfdb (3.47)
0
2

dF,; =dz / %p”V(ﬁ\F Rcos0df (3.48)
0
2

dF, 5 = dz/p%R cos 6 df (3.49)

0

The contribution of the hydrostatic pressure field, dF};, is simple to evaluate,
yielding:
dF,; = —prR*g - e, dz (3.50)

with g = —gEj3 the gravitational acceleration.

The part due to the velocity squared requires the following three integrals:

21 a 9
/(a—f) dg =0 (3.51)
0

71 (06\? 9 B

/ﬁ <%) df = 27 R {[(1 + Co)uo — Coiip] a—“; + [(1+ Co)wo — Cats] a—“;

(3.52)

1.\ Ow,
G0 i) 5
2m

/ <%>2 df = 27 R {wo <(1 + Ca)aa—“; - Cawyﬂ (3.53)

with u, = w,e; + wes + woes = V|, the undisturbed incoming fluid velocity evaluated
at the point O. The empirical added mass coefficient, C,, is introduced multiplying all
the terms that originate from the perturbation potential, as usually done with the inertial

term of Morison’s equation. With the integrals above, the component dF, ; results in:

dFl’,ii = pﬂ-RQ |:[(1 + Ca)uo - Oal"B} 88_7“;0 + [(1 + Ca)Uo - CayB} aa_uyo

0 1 0
+wp, ((1 + C’a)a—tO — C’awy) + C, (uo - §x3) %} dz

(3.54)
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The component dF} ;; can not be so readily evaluated, as the velocity potential
¢ given in Equation 3.45 is valid for a space fixed coordinate system. This results in a
somewhat lengthy procedure to derive it with respect to time that is not reproduced
here, as it does not provide any relevant insight to this text, and the reader is referred to
Madsen (1986) and Manners (1992) for a detailed description of the mathematical steps.
Fortunately, the final expression is quite concise due to evaluating quantities at the point
O, for which z = 0, and to most of the terms being products of trigonometric functions
that vanish in the integration from 0 to 27:
o < iy . Oug

Tp

2
99
dF, s =d — O RdO = 211 0) — a —
i, Z/(‘)tRCOS R prR* | ( +C)(‘9t +C, e
0

1
—wy(wo — 225) — =iy GIZO)} dz

which is the result that would be obtained using Morison’s equation plus a rotation and

convective-like terms that are second-order and which would be absent if the body was

fixed.
The total force per unit length, dF, = dF,; + dFy; + dF} i, is then:

ﬂ—(l—{—C) @+ %+ @4_ %
prR2dz J\or T or U@y Yoz
(3.56)
—Ca[iB—(u—iB)g—zj‘i‘Qég,(w_Z‘B)]_g'el

where w, was replaced by &5, which is possible because the body is considered rigid, and

the index O was omitted to lighten the notation.

Looking at the different terms above, one can readily recognize the inertial part
of Morison’s equation (the ones with the temporal acceleration, du/dt, and the body
acceleration, Z5). As could be anticipated, the convective acceleration is present when the
slender-body formulation is extended to include higher-order effects, but two additional
terms that could not be easily foreseen are also present. The simplest of them is the term
2&5(w — %), which is the x-component of the Coriolis acceleration and accounts for the
variation of the acceleration along the axis of the cylinder due to its rotation, having
fundamentally the same interpretation as the inertial part of Morison’s equation. The
other one, the so-called axial-divergence term, (u — @ )0w/0z, is not so easily understood,
and Manners and Rainey (1992) devote a good deal of their paper to explain its nature
and physical interpretation. The authors demonstrate that its mathematical origin is the
three-dimensional feature of a ‘zonal harmonic’ that produces a convective acceleration.
They also present a possible physical interpretation on the grounds that dw/0z represents

the rate of extension of the flow in the z-direction, leading to a change in the associated
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momentum, in such a way that the axial-divergence acceleration acts as if the added mass
is changed. The reader is referred to their paper for a more thorough explanation and to

Kim and Chen (1994) for a brief discussion on a controversy regarding this term.

3.3.3 Forces at the extremities of the cylinder

Besides the forces acting along the length of the cylinder, the point loads at an immersed
end obtained by Rainey (1989) are added to the formulation:

Fonde = CopmR*(ue — o) (we — Z¢) (3.57)

Fenay = Capm R (ve — ge) (we — ) (3.58)
8(70 2 1 2 .\ 2 L\ 2

Fena. = o +pgZ. | TR® — §Cap7rR [(ue — xe) + (ve - ye) ] (3.59)

where the index e indicates that quantities are evaluated at the extremity of the axis of
the cylinder (for a completely submerged cylinder, the forces on both extremities need to
be calculated). The forces Finq, and Feng, are the same as the one presented by Newman
(1977), Section 7.3, for the lateral force on a slender body moving in unbounded still fluid.
The force Fina . is the integration of the fluid pressure over the end face of the cylinder,
which for the slender-body limit is simply the pressure evaluated at the center of the circle
times its area, and is directed inwards to the body surface. The pressure is taken as the
hydrostatic and Froude-Krylov components minus a second-order correction to account for
the pressure drop due to the flow velocity (the (V¢)2 term from Bernoulli’s equation). In
a later work, Rainey (1995) proves that the forces at end loads deduced in Rainey (1989)

are actually valid for joints between members as well.

Rainey (1995) treats the end effects as point loads because he assumes that R — 0,
in such a way that the cylinder is reduced to a line with hydrodynamic properties. However,
though in some cases the diameter can indeed be considered small compared to the length
of the incoming waves, it is usually not sufficiently small in order to completely neglect
the added mass associated with its axial motion. For these reasons, the axial force given

by Equation 3.59 is modified to include an axial added mass term:
)

Fend,z = (_aa_gtp
(3.60)

with C,, the axial added mass coefficient, made dimensionless using the reference volume

1 AT R3 D
4 pgze> 7R Copr B[ (=) "+ (v.~3.)’] +p”TRCaZ (D—f

47 R3/3. This additional term is simply an extrapolation of the approach recommended by
Robertson, Jonkman, Masciola, et al. (2014), with the difference that in here the relative
acceleration with respect to the body is calculated considering the total water particle

acceleration.
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It is important to highlight that the limit R — 0 assumed by Rainey (1989,
1995) imposes a restriction not only on the ratio between the wave length and cylinder
diameter, A/D, but also on the ratio between the cylinder length and its diameter, L/D.
In other words, even if \/D is large enough to neglect wave scattering and radiation, the
approximation would perform poorly for a short cylinder (small L/D), as end effects would

not be reasonably modeled by the end loads presented here.

3.3.4 Modifications to evaluate the forces at the mean body position

In their formulation, Madsen (1986), Rainey (1989), and Manners (1992) evaluate the
forces at the instantaneous position of the cylinder, but, as already mentioned this is
unpractical for numerical simulations with a large number of waves such as the ones
required by analyses considering a real sea. Alternatively, the expressions for the forces
along the length of the cylinder and the point loads at its extremities can be used to
simplify the surface integrals presented in Section 3.1, which are evaluated at the mean
body position, into integrals along the mean wetted length of the cylinder. As pointed
out in that section, this approach requires small body motions, as usually assumed, for

example, when using boundary element method to solve the problem.

Following the same reasoning presented in Section 3.1, the first step to do so is
to expand the quantities from Equation 3.56 into a power series with respect to ¢, i.e.
u = eu™ + £2u® + O(£?), and again retaining terms only up to second order, leading to

the following for the forces along the length of the cylinder:

ar ou® 3
m = (1 + Ca)w — Cafﬂlgl) —g- egl) (361)
2 _
dr? ou 1y OuV

ou® ou®
T - 1) mz=
prR2dz (1+Ca) ( ot " o T T C%U(O))
(3.62)
owW

020

- Cu |88 - @ ) TG+ 280 (= )] - gof?
in which only the difference-frequency part of the second-order acceleration, v~ is con-
sidered. As they are evaluated at the mean body position, the forces above are along the

. I . . (0)
mean x axis, whose unit vector 1s e; ’.

Integrating arV along the mean wetted length of the cylinder, L, yields the

following first-order force components:

ou®
Fi), =prR2(1+C) [ ——de (3.63)
Lo
F}((liz = —p7TR2C'a/jU'é1) dz (3.64)

Lo
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where the contribution of the hydrostatic pressure field is not included because it is treated
separately in Section 3.5. Likewise, integrating ar? along L, provides the following

second-order forces:

@ _ _p2 ou~
F® = prR2(1+C,) / AR (3.65)
Lo
ou® ou® ou®
2 2 1) 1) 1)
Fconv,:v — pﬂ-R (1 + Oa)/ <U 81‘(0) +v ay(o) +w az(o)) dz (366)
Lo
F& = prR*C, [ (u® —Jb(l))aw—(l) dz (3.67)
axdv,z p a B 82(0) .
Lo
F®, = —prR2C, / 260 (w® — V) dz (3.68)
Lo

which correspond to the force components II (pressure drop due to velocity squared) and
V (contribution of the second-order potential) from Pinkster (1979). The added mass part

of the second-order force is treated separately later.

The same procedure applied to the forces at the extremities of the cylinder yields:

DM 4rR? - Ow
r = R> C.. 3.69
qs( ),z 8t . ™ + P 3 at . ( )
4 3
) = —p 20,50 (370
Do~ 47 R3 ow™
F» — 27 | rR? C.. 3.71
o7 ar | TS ot |, (3.71)
AR ow® ow® ow®)
@) ) 1) (1) oW’
conv.z = P g s (“ 00 | TP gp@ | T 520 ) (3.72)
1
Fe(j()iyz = _5 aerZ[(ugU _ Z‘.él))Q i (Uél) _ yél))Q} (3.73)
F2) = Copr R (ul) — ) (w — 20 (3.74)

As presented in Section 3.1, the effects introduced by body motions are modeled by
three force components. The first of them is due to the first-order variation of the normal

vector due to the body rotation, which is modeled by rotating the first-order force:
2 1 1 1
Fol = €0 A (PG + Fi) (3.75)

with Fg% the first-order hydrostatic force (see Section 3.5). This is equivalent to the force
component IV from Pinkster (1979), but without replacing the hydrodynamic forces by
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the body mass times its acceleration because other forces may be acting on the body

(aerodynamics, mooring, among others).

The second component is caused by the motion of the body in the pressure field,
which results in a term containing the product of the first-order motions and the gradient
of the first-order pressure (force component III from Pinkster (1979)). For the force along
the length of the cylinder, this is equivalent to:

) 2 D o out!
Fx, = prR*(1+ Ca)/X( ).V TRE (3.76)
Lo
and, for the force acting on the extremities of the cylinder:
O AT RS dul)
ng)d,)CV,z = WRZ (—V % ’ Xél)> +p ﬂ:?) Caz (v ](;;t : Xg(gl)> : egO) (377)

The last one is due to integrating the first-order forces along the varying wetted
length of the cylinder, which requires the evaluation of the incoming wave field above the
mean water level. But since the equation that characterizes the first-order incoming flow
(Equation 3.33) is deduced assuming infinitesimal wave height, the resulting kinematic
field is valid only for Z < 0. This could be solved by employing a stretching technique,
such as Wheeler’s stretching (WHEELER, 1970) or other existing method (STANSBERG;
GUDMESTAD; HAVER, 2008), that allows the calculation of wave kinematics up to
the wave elevation. However, the alternative followed in this work is to perform a Taylor
expansion around the mean waterline, F'(Z) = fOZ f(Z)dZ = F(0) + f(0)Z + O(Z?), in a
similar way as done by Kim and Chen (1994) and Jurado and Bredmose (2020), yielding:

Do) ouV
Féiﬁ—/ / o (22 4 g20) 00 as = prR2n® (14 ) L2
ot ot
s(1)

-g- egl)] (3.78)
I

with 77,(«1) = 77?) — Z}l) the first-order relative wave elevation evaluated at the intersection
of the cylinder axis with the mean waterline, denoted by [I. This force is traditionally
modeled as a waterline integral in diffraction theory and corresponds to component I of
Pinkster (1979). It is shown by Rainey (1989) that both approaches provide the same
result, and this can be exemplified by a cylinder that is vertical at its mean position, as in
this case solving the waterline integral is somewhat simple. Its component along the z

direction is:
27
1 2 1 2
Flfl);r = _509/ (77(1) - qull)) ngo) dl = —Epg/ (77(1) — Zﬁ) R cosfdb (3.79)

wl 0

where the first-order elevation is given by n") = —9¢™ /0t and Z,,; = Z}l) - fél)RCOSG +
fil)R sin #. Substitution in the expression above yields:

2m
1 (1) 6u(1)

—§pg/77(1)2 Rcosfdf = prR*(1 + C,)n; 5

(3.80)

1
0
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2

1 2
—§pg/Zq(Ull) Rcosfdf = pgﬂRQZp)ﬁél) (3.81)
0
2T 9 (1)
pg/n(l)qull) Rcosfdf = prQZﬁ” [-W?Pfén — (1+Ca) - Z}l)l (3.82)
/ ot |,
ou®
LB, = pr R {(1 +Ca) | - géé”} (3.83)
I
which is the same as Equation 3.78 for small rotations, as g - egl) = —gE3 - egl) ~ gfél).

One important absence in the second-order forces above is the contribution of the
(2

body acceleration, F; ), and the reason for this is that a different approach is followed for
this force component. The acceleration of a point on the body is related to the rigid body

motions of the structure by:

%p=Er+ER AT+ ER N (ExAT) (3.84)

where the first two terms are linearly proportional to the accelerations of the body, x; =
ET+ER/\r7 and the last term is the centripetal acceleration of the point, Xct, = ER/\ (éR/\r).
As described in Appendix A, the component X; yields a force and a moment that can
be written as the product of an added mass matrix and the body acceleration vector.
In other words, the first-order load due to the body acceleration, given by the sum of
Equations 3.64 and 3.70, can be stated as:

FO _ —Aé(l)

X

(3.85)

with A = A© the added mass matrix of the body calculated with the expressions of
Appendix A considering the mean body position and 7—'5.}) = [Fg); M(Gl)x} a six-component
vector that groups the forces and moments with respect to the center of gravity. The

equivalent second-order load is given by:

FP = (AP -a) £V —ag” 4 FO (3.86)

X

with A(Tl ) the time varying added mass matrix, also calculated with the expressions of
Appendix A but considering the instantaneous first-order position of the body instead
of its mean position. The first term takes into account the first-order variable wetted
length and the first-order variation of the normal vector simply by taking the difference
between Agrl ), which can be easily evaluated at each time step, and A. The second term is
equivalent to Equation 3.85, but considering the second-order motion of the body, while
the last one is the force due to the centripetal acceleration. This approach is followed
because the evaluation of the forces due to the body acceleration does not require fluid

kinematics, hence the added mass matrix can be evaluated at the instantaneous first-order
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body position (the term A(Tl )) without significant computational cost. Thus, the procedure
introduced above to evaluate the forces at the mean body position is not necessary for
this force component.

(2)

The loads due to the centripetal acceleration, F .,

depend on the velocity of the
body and are as follows along the length of the cylinder

FO . = / prR?C, (3 - e”)el” dz (3.87)

Lo

and as follows for the contribution at the cylinder extremities:

4 R3
2 . (1 0)7..(0
Fiine = =05 [Cozsiy, - €] (3.88)

These expressions for the forces due to the acceleration of the body are particularly
useful because they make it easy to isolate the terms containing € from the others, allowing
the equations of motion to be written as q = f(¢, q) and numerically integrated directly,
as detailed in Chapter 4. More specifically, the part of F §.j) and F ;2) given by A€ M and

A€ ® are grouped with the inertia of the body in the left side of the equations of motion,

while the other components are kept as forcing terms on the right side.

To ease the notation later in this text, the part of F ;2) that is due to the first-order

variation of the added mass matrix is denoted by:

FO = (s —a) Y

1
AQ

(3.89)

The expressions for the moments corresponding to the force components above can
be obtained simply by including the cross product between the force per unit length and

the vector r = (P — (), where P is the integration point.

3.4  Viscous effects

The hydrodynamic forces presented in the previous sections were obtained considering
potential flow!, and, consequently, they result in zero net force (though not necessarily zero
net moment) if the flow is permanent and uniform, a clear contradiction with experimental
evidence that is classically known as d’Alembert’s paradox. This is actually no paradox
at all, but simply a consequence of neglecting fluid viscosity and the associated flow
separation. Following the model proposed by Morison et al. (1950), a simple workaround

is to add a quadratic drag force to the forces obtained in the previous sections. It consists

IStrictly true if the added mass coefficient was taken as C, = 1, but slender-body approaches such as
Morison’s equation and Rainey’s formulation are frequently applied with C, obtained in conditions where
viscous effects are relevant, thus incorporating indirectly these effects in the evaluation of the inertial
forces.
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of a force per unit length along the cylinder, which acts perpendicularly to its axis, plus

an axial drag force concentrated at each extremity:

1
Fdrag,P = / §pDCD | ‘ug) - XPH (u(P}) - XP) dz (390)
Lo
Fdrag,z - %PWR2 CDz |U}£1) - ZB‘ (wgl) - ZB)e;(g()) (391)

with u%) = u(l)ego) + v(l)eéo), xp = igel” + yBego), wt" the axial fluid velocity calculated

at the corresponding end point, C'p the empirical drag coeflicient associated with the
flow perpendicular to the cylinder and Cp, the axial drag coefficient of the extremity of
the cylinder. Note that the total velocity of the body is considered in order to damp the
motions induced by both the first- and second-order forces, and though this approach
leads to the inclusion of higher-order terms, it can be seen as an extension to the current
practice of using the quadratic drag term in first-order time domain simulations. As the
drag force is a higher-order quantity, the expressions above are evaluated considering the

mean body position.

3.5 Hydrostatic forces

The forces originating from the hydrostatic pressure field, which is the one exhibited by
the fluid when it is at rest, are responsible for the equilibrium and stability of a floating
body, constituting one of the oldest and most fundamental disciplines of naval architecture.
In principle, they are quite simple: the hydrostatic force acting on a body, be it floating or
submerged, is the force that was acting at the volume of fluid that had to be displaced
to make room for the body. Hence, its magnitude is equal to the weight of displaced
fluid; it is directed upwards; and its center of application is equal to the center of mass of
the displaced fluid. This fundamental result of fluid mechanics is known as Archimedes’

principle.

The same conclusion is obtained by developing the hydrostatic terms in Equa-
tions 3.27, 3.28 and 3.29. The procedure is detailed in Newman (1977), Lee (1995) and in

numerous textbooks on marine hydrodynamics. The resulting zeroth order contribution is:

Fg% = pgVoEs (3.92)
MO = pgVo(§E; — 2,E») (3.93)

where V) is the volume of fluid displaced by the body at its mean position and ;, and g,
are the coordinates of the center of buoyancy in the GZyZ coordinate system. If the body
is at equilibrium, the center of buoyancy is vertically aligned with the center of gravity,
hence Z;, and 7, are zero in that case (it is worth reminding that the origin of the local

coordinate system is at the center of gravity).
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Assuming that body motions are small (as already done in Section 3.1), the first-

order hydrostatic forces and motions are equal to a symmetric stiffness matrix that

multiplies the first order motions, F g)s = —Kpys€W, given by:

00 0 0 0 0 |

00 O 0 0 0

00 S Sy —Sz 0

Kus = pg R o . ! A (3.94)

0 0 Syr Sy +Vob — Sy Vol

0 0 —Szy — Sy Szz + Vo2 —VoUs

00 0 Vo —VoUs 0 |

with S the waterplane area, S; the first waterplane moments (e.g. S; = ffsa?dS), Sji
the second waterplane moments (e.g. Sz; = ffs 2y dS), and &y and gy the coordinates
of the center of flotation, defined as &y = S;/S and y; = S;/S. In naval architecture,
the contribution due to the weight of the body is traditionally added to the hydrostatic
moments, but since in here they are given with respect to the center of gravity, this

contribution is zero.

The second-order hydrostatic loads are obtained by multiplying the same hydrostatic

matrix and the second-order motions, ]:g)s = —Kpys€®.

Since the body is considered to be composed of cylinders only, the hydrostatic
matrix can be evaluated by computing the contribution of each cylinder, which can be
done analytically, and then summing them up appropriately. Considering a cylinder with
the origin of the local coordinate system Oxyz located at its bottom and with a rotation
of v with respect to the vertical, which is always around the local y axis of the cylinder
due to the way that Oxyz is defined, the quantities needed from each cylinder to evaluate

Kpys can be expressed as follows:

Vo = mR?Ly
7T R*tan o R%tan®? o + 4L2
" -0 - 0 3.95
o 4V Yo & SLo ( )
mR2 1 1 mR*
S = S.w = —TR* Syy = —
Ccos 47T YW 4cosa

as these quantities are given with respect to the local coordinate system of each cylinder,
they need to be transformed to the body coordinate axes, GxyZz. This is quite simple for
the center of buoyancy, while the necessary formulae for the moments of area can be found

in Franca and Matsumura (2011).

The equations above consider the case of a cylinder crossing the mean waterline in
such a way that one of its end faces is completely submerged and the other is completely

above the water; in other words, the case where the end faces of the cylinder are crossed
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by the mean waterline (a floating horizontal cylinder, for example) is not covered. If
the cylinder is completely submerged, the waterline integrals are all zero, while the

determination of the submerged volume and its center is trivial.

3.6 Total hydrodynamic forces acting on the floater

The hydrodynamic forces and moments acting on a structure composed of N, cylinders
are given by the sum of the different components presented in this chapter, as summarized

below. They are divided into the following components:

FO = F (3.96)
FO — _pY _ge® 4 FO (3.97)
o FAey; .

. 2
FO =AY —KED 4 Fog + FO + FQ + FO + FO + FO,
T

(3.98)
2 2
+FD 4 FO 4+ FRo+ FO

in which J is the six-component vector of loads, with the first three elements corresponding
to the forces and the remaining three to the moments with respect to the center of gravity,
ie. F = (Fy; Fy; F3; Mga; Mg o; Ma 3).

The terms of the equations above are the sum of the forces integrated along the
length of each cylinder and the loads at both their extremities. The end of the cylinder
that coincides with its bottom is identified by the affix ‘b’ (for bottom), while ‘t” (for top)
is related to the opposite extremity, and the local z axis is taken as positive pointing from
the bottom of the cylinder to its top. It is understood that if an end of the cylinder is

above the mean waterline, the associated load is zero.

Each cylinder j has its own diameter D;, local unit vectors {e; j, e, ;,es;}, drag
coefficient Cp ;, etc. However, keeping the subscript j is somewhat cumbersome, so it is

omitted.

Forces due to body acceleration: besides the terms —Aé(l) and —Aé(z), body acceler-
ations also leads to a second-order force due to the first-order variation of the added mass
matrix:

_7:(2) _ A(l)—A (1)
= (a -a)¢

with the added mass matrix calculated with the formulae presented in Appendix A. The

(3.99)

force due to the centripetal acceleration of a point of the body is included in component
F2 (the last to be discussed in this list).

rem

Drag: groups the quadratic drag force along the length of the cylinder with the one
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concentrated at each cylinder end, as presented in Section 3.4.

Fdrag Z/ pDC’DHu —XPH —Xp) z (3100)

1
+ §p7rR2 (CDz,b }wél) — z" (wél) — z") +Cpay ‘wt(l) — ZB| (wt(l) — ZB)> ego)

A common element in FOW'Ts are heave plates, which are flat disks attached to the
bottom of columns to increase added mass and damping in the vertical degrees of freedom.
They can be modeled as cylinders with a very short height, and the expression above can
be implemented in two ways: set Cp, to the desired value of Cp., while Cp,; is taken as
zero; or set Cp,p = Cp.+ = 0.5Cp,. Both approaches should yield similar results provided
that the thickness is indeed small.

The moments with respect to the center of gravity, GG, associated with Fg,,, can be
obtained by simply including the cross product with the position vector r in the integration

along the cylinder and in the forces at its ends:

1
Mdrag:Z/ngODHug)_XPH [I‘ (ugg)—Xp)] dz

1 3.101
+ 5,07TR20DZ71) |wl(]1) — z"‘ (wél) — 23) (rb A ego)) ( )

b ROy uf? — 2] () — 25) (r A )

The expression of the moment will be omitted in the remaining components, as it

is basically the same as the corresponding force.

Component due to the first-order incoming flow:

&)
Z/PWRQ 1+ C,) Kagt : §°’) el” + (%-ef)) eg@] dz (3.102)

D) 4m R ou” ou”
7TR2 ( Ld ) +p 7T3 (Caz,b a; + Caz,t 8; ’ ei(& : eé())
b

ot
where C,,;, and C,,, are the axial added mass coefficients associated with each end of

D)

+ ot

t

each cylinder, and the same observations made above regarding the axial drag coefficients

are applicable to them.

Component due to the second-order wave potential: very similar to the previous
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component, with the difference that it corresponds to the second-order incoming flow.

Z/,O?TR2 (1+Cy,) [(8; (10)) e’ ) + (% : eéo)) (0)] dz (3.103)

3 — —
{ R2 (ag; ) + p47TR (Ca % +C, ai) . eI(SO):| e:()’O)
b

3 ot = ot
in which only the low-frequency second-order part of the incoming flow is considered. It

_ 9
ot

t

corresponds to the force component V from Pinkster (1980).

Component due to the convective acceleration:

Z/ (1) [(a e el? ¢ (a2 o) o] a

(3.104)
AT R3
+p 7T3 |:(Caz,b ag?b) + Caz,t az(:,zt)> ’ ei(’;O):| ei(’)O)
with
a® = (u - V)ul (3.105)

Component due to the axial-divergence acceleration:

F;idv Z/WT {[(u(l) % )) -eg )] ego) + [(u(l) _ 5((1)) 50)} } dz

(3.106)
with dw™® /02 given by:.

ow® oul® ou® Hu)
52 = [( 5% .eg))) B ( v 'eéo)) E: + ( o ;0)) Eg} o0 (3.107)

Component due to the acceleration induced by body rotation:

PO =Y [ 2R, [(@® - x0) o] [(&7 o) el - (€7 -el”) ef’] as

(3.108)

where the affix “rslb” stands for “rotation slender body” in order to distinguish this force

from the one due to the rotation of the normal vector.

Component due to the wave elevation:

N
2 2 (1) out o e e
= RV | (1+Co)— —g-el’ e

ou®
+((1+ca) ‘a‘t et —g- <1>)eg°>]

(3.109)
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with 77,(«1) = ng) — Zl(l) the first-order relative wave elevation evaluated at the cylinder axis.

Component due to the rotation of the normal vector:

Nc
2 1 1 1
Fon = & A (FY) + Fi) (3.110)

Component due to body motions inside the pressure field:

Fiy = Z/pr2 140, [(axv eg0>) e© (ag?v eS”) e;0>] dz (3.111)

At R?
[ (T X0 = X0 4 T (Consalli, + Conealfe) | o el

with

XM (3.112)

and pél) and pgl) the first-order dynamic pressure evaluated at the bottom and top

extremities of the cylinder.

Remaining force components: during the test cases analyzed in this thesis, some force
terms that could not be grouped with others have been found to be negligible, namely the
force due to the centripetal acceleration, the perpendicular point load at the immersed
ends of the cylinder and the quadratic pressure drop from Rainey’s formulation. As the
number of force components is already quite large, these remaining terms are grouped in a
single component F?) | given by:

rem?’
R -3 /mm (500 e”)el + (50 ool L

AT R3
3

-p [(Oaz bX((:‘tp b + Caz txci;)) t) : ego)] eéo)

b Capr B (ul? — ) [l = a)el® + (uf? — 3§")el?] (3.113)
 Copr R (w® — 2 [(u,ﬁ) #§)e® 1 (oY — §M)e (o>]

1 : , : ,
= gm0 [ =)+ (7 ) = =) o = al)] o)

which, based on the test cases, could be discarded with no significant loss to the results.
Nevertheless, it is possible that there may be situations where this force component is

important.

Most of the integrals presented in this chapter are evaluated numerically, but the
¢><1) and F© ¢><2
ering the wave potentials given by Equations 3.33 and 3.35, as described in Appendix B.

forces F{! , and their respective moments have analytical solution when consid-
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3.7 The choice of C, and Cp

Though they look simple, the real difficulty with a slender-body method such as Morison’s
equation or any other that uses the empirical coefficients of added mass and drag lies in
the proper determination of these coefficients. As pointed out by Sarpkaya (2001, 2010),
since the kinetic velocity of the flow is affected by the flow separation, even the added mass
coefficient C;, needs to be determined, as it is different from the one calculated considering
potential flow. These coefficients are dependent on several parameters that describe the
flow, such as the geometry of the body, surface roughness, Keulegan-Carpenter number
K (', and Reynolds number Re. This is a major complication, as each analysis requires C,
and Cp to be chosen somehow, normally from experimental tests. Due to the resonant
nature of the slow-drift motions of floating structures, proper determination of the drag
coefficient is of paramount importance, as it directly impacts the damping levels and,
consequently, the amplitude of the slow-drift motion, while the added mass coefficient can

have a large influence on the natural frequencies.

A further complication lies in the fact that these coefficients are actually time
dependent quantities that depend both on the instantaneous kinematics of the flow and
on its history. For a periodic motion such as the one experienced by a floating structure
under the action of regular waves, an approach that works well is to use Fourier averaged
coefficients (KEULEGAN; CARPENTER, 1958; SARPKAYA, 2001), but this is not
necessarily true when the incoming flow is composed of more than one frequency, as is the
case for a real sea, and when body motions are a combination of periodic components with
very different frequencies, for instance the superposition of wave-frequency and slow-drift
motions of a moored FOW'T. This is an important topic in current research regarding
floating wind turbines, as exemplified by the OC5 project (ROBERTSON; WENDT, et al.,
2017), in which one of the hypothesis to explain the large discrepancy observed between
numerical and experimental results regarding low-frequency motions is that the drag
coefficients were overestimated in the numerical analyses, and this issue is currently under

investigation in the OC6 project.
In one of the works that was developed during this thesis (CARMO; MELLO, et al.,

2020), two possible methods to estimate the coefficients, namely decay tests and forced
oscillations (both in still water), were analyzed in order to verify whether proper values of
force coefficients could be obtained. The results were verified by comparing experimental
slow surge motions of a FOWT under the action of bichromatic waves with the ones
calculated using WAMIT considering two different external damping values: one calibrated
from the decay tests and the other from drag coefficients measured in the forced oscillations.
The damping levels obtained with the latter were lower than the ones evaluated from the
decay tests, resulting in larger motions in the corresponding numerical simulations. Bearing

in mind all the simplifications involved and the uncertainties related to the experimental
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tests, the agreement between numerical simulations and the experiment was very good,
with better results using the damping values from forced oscillations, though a general
trend of under predicting the slow-drift motions was observed. This test campaign is better
detailed in Chapter 6, as it was an earlier phase of the experiments presented therein.
Since the same floater was tested in both phases, the results of the same forced oscillations
are used to calibrate the added mass and drag coefficients of the numerical simulations

discussed in that chapter.

Besides the problem of tuning the hydrodynamic coefficients, it would also be
possible to change the formulation of the drag force. For instance, while the original
quadratic drag term employed in Morison’s equation considers the total instantaneous
relative velocity between the fluid and the body, it would be possible to separate the velocity
due to the slow-drift motion from the one at the frequency of the waves, associating different
drag coefficients to each of them (MOLIN, 1993; EMMERHOFF; SCLAVOUNOS, 1996).
This so-called ‘independent’ form of Morison’s equation allows the separation of the wave
and low-frequency viscous loads, but Molin (1993) points out that there are no physical
evidences to choose between these two versions of the drag force. Based on experimental
results, he concludes that neither is strictly correct, but also points out that the traditional
form of Morison’s equation (called ‘dependent’ in his work) can overestimate the low-
frequency damping. Investigating different drag formulations is not among the objectives of
this thesis, as the focus is on the inertial part of the hydrodynamic forces, but it would be an
interesting continuation to improve the slender-body approximation and even simulations

where quadratic drag is added to the forces calculated with radiation/diffraction solvers.



73

4 Numerical method

This chapter describes the numerical implementation of METiIS (Morison Equation
Time Domain Simulation), a numerical tool for the analysis of floating offshore wind
turbines. More accurately, it describes the first steps of the development of the software,
which is intended to be continued in the future with the contribution of other members
of the research group in order to make it a comprehensive tool. At the current stage, it
is capable of evaluating the first- and second-order wave loads on the floater using the
slender-body approximation presented in this thesis and the aerodynamic loads on the
rotor with Blade Element Momentum Theory (BEMT), which are then used to solve the

equations of motion in time domain.

It starts by discussing the numerical evaluation of the hydrodynamic forces discussed
in Chapter 3, followed by a brief explanation of BEMT and the inclusion of other forces
relevant to this text, namely a simple linear stiffness matrix to model the restoring forces
imposed by the mooring system and a constant linear damping matrix for the cases where
wave radiation damping is relevant. Then, the equations of motion of the FOWT, which is
considered to be a single rigid body, are presented along with the numerical scheme used
to solve them (a standard 4™ order Runge-Kutta method). Finally, the overall structure
of the software is summarized, and the methodology used to post process the results in

the remaining chapters is detailed.

The software was written in C++ using Armadillo (SANDERSON; CURTIN, 2016)
and Intel® Math Kernel Library (WANG et al., 2014).

4.1 Evaluation of the hydrodynamic loads

The hydrodynamic forces given in Chapter 3 involve the evaluation of wave kinematic
properties at the extremities of the cylinder and along its length, with the latter requiring

these quantities to be integrated. The contributions of the first- and second-order fluid
1)
o)
integrated numerically using Simpson’s rule:

acceleration, F' /, and F((;_), are integrated analytically in Appendix B, but the others are

As n/2—1 n/2

[ 1@ @z~ T2 10042 Y flea) 43 Seam) + D) (1.1

with z following the axis of the cylinder with origin at its bottom (like in Chapter 3) and

n the number of sub-divisions of the cylinder, which needs to be an even number.

The functions that need to be numerically integrated are all products of first-order

quantities. The ones related to body motions are obtained at each time step as a result of
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the equations of motion, while an arbitrary first-order wave kinematic quantity Q) (1),
given by:
N
Q(l)(t) - {Zq](l)e—iwjt} (4.2)
5=0
with N the number of wave components, can be readily evaluated using an Inverse Fast

Fourier Transform (IFFT) algorithm, i.e.:
QW(t) = R{IFFT(¢\")} (4.3)

As mentioned before, this is the reason why the slender-body approximation
proposed by Madsen (1986), Rainey (1989), and Manners (1992) was modified in order
to allow the evaluation of the wave loads considering the fixed body position, since the
whole time series of wave kinematics can be determined very efficiently at the beginning
of the simulation. Indeed, in order to avoid signal repetition, an irregular wave simulation
with time step At and total simulation time T, = NAt requires a frequency resolution
Aw =27 /(NAt) (assuming that Aw; = w;+1 — w; is constant). Hence, in order to directly
sum the contribution of each wave component, a number of frequency components of
O(N) would be necessary to cover the whole range of the wave spectrum, leading to a
computational complexity of O(N?) because this operation would need to be performed
at each time step. Meanwhile, performing an IFFT of the signal has a complexity of
O(Nlog, N) (PRESS et al., 1992), which is a huge difference. For example, the 3h
irregular sea simulations presented in Chapter 6 required N ~ 10°, meaning that the IFFT
is roughly 6000 faster than the direct summation.

The force due to the second-order potential, F( ), is a little trickier. While the
other second-order forces are due to products of first- order quantities, this one requires

the evaluation of the following double sum:

N N
_ (2) —i(wj—w
= %{ YD D e l>t} (4.4)

j=0 1=0

but this is so computationally inefficient that even moderate values of N become prohibitive,
as the cost would be of O(N?). However, as detailed by Agarwal and Manuel (2011), it is
possible to rewrite the double summation as a single summation by grouping the complex

amplitudes £ ol

o(2) 2
fo )= Z S® e (4.5)

7=0 l=j+k
which, following the usual convention of representing second-order quantities as matrices, is
equivalent to summing the coefficients of each diagonal. After this procedure of rearranging

terms, the force F?

oo can be rewritten as a single sum:

FO - {Zf¢ et } (4.6)
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with Aw; = jAw. This expression can be evaluated using an IFFT algorithm, thus the
force due to the second-order potential can be calculated with the same cost of the first-
order quantities after the reorganization of the coefficients given by Equation 4.5. This
reorganization, however, represents a computational cost of O(N?), which is still somewhat
costly. Nevertheless, it represents a reduction of O(N) from the direct sum, which is very

significant.

4.2 Other forces acting on the structure

4.2.1 Aerodynamic forces on the rotor

The aerodynamic loads, F e, are computed using Blade Element Momentum Theory
(BEMT), a very common method to evaluate aerodynamic loads on the rotor of a wind
turbine. Its widespread use is due to its simplicity and capability of providing fast and
good results. It is implemented in METIiS based on the numerical code developed by
Pegoraro (2018), where details concerning the theoretical background of BEMT and its

implementation can be found.

In short, the method combines momentum theory and blade element theory to
evaluate the forces per unit length acting along the blades, which are integrated to obtain
the total loads acting on the rotor. Besides the characterization of the geometry of the
blades (chord, twist angle, etc), it requires the lift, drag and moment coefficients of each
section of the blade as a function of the angle of attack. The core of the method is to
determine the so called axial and tangential induction factors for each of these sections,
assumed to be independent from the others. These factors measure the perturbation of
the incoming wind flow when it approaches the rotor, and are sufficient to calculate the
local inflow angle (and, by consequence, the local angle of attack) and velocity. With the
angle of attack and the local inflow velocity, which are evaluated taking into account body
motions, the forces and moments acting on each section of the blades can be determined
using the known lift, drag and moment coefficients. Except for a few elementary cases, the
evaluation of the induction factors needs to be performed numerically, which in METIS is

done using the procedure proposed by Ning (2014).

The incoming wind flow is considered horizontal and constant in time, but height

dependent following a power law profile:

Uo(Z) = Uy, (Zé)p (4.7)

where Uy is the wind speed at the reference height, Z,., and p is the power law exponent.

As body motions are considered in the aerodynamic calculation, the aerodynamic

forces are a function of the displacement and velocity of the FOWT. If control of the
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blades was included in the model, the aerodynamic loads would also be a function of body
acceleration in the above-rated regime (SOUZA; BACHYNSKI, 2019), but this is not the

case here.

4.2.2 External hydrodynamic damping

A known drawback of a slender-body approach such as Morison’s equation is that the
quadratic drag alone is not sufficient to properly reproduce the damping levels in some
cases where damping due to wave radiation is relevant. For instance, one of the analyses
presented in Chapter 6 concerns a FOW'T under the action of bichromatic waves with
small amplitudes, which has shown to be a situation where neglecting radiation damping
leads to a poor estimation of the vertical motions around their natural frequencies. This
is specially troublesome in this work because it makes it hard to tell whether occasional
differences in the comparisons of second-order forces/motions presented in the following
chapters, both with other software and experiments, are due to the force model developed
in this thesis or simply a consequence of getting the first-order motions wrong. As an

workaround, a frequency-independent external linear damping matrix is used:
chxt = _Bexté (48)

with the terms of B, set to match the radiation damping at the resonance frequency of
each degree of freedom, which can be calculated using, for example, WAMIT (WAMIT,

2004) or other similar software.

4.2.3 Mooring forces

One important subsystem of FOWTs are the moorings, which are used to keep the
excursions of the structure within reasonable limits. For doing so, it induces forces and
moments that act on the sense of restoring the structure to its equilibrium position.
There is a myriad of approaches for modeling the mooring system with varying levels
of complexity and fidelity, and this work uses the simplest of them, which is to consider
a linearized mooring model consisting of a linear stiffness matrix, K,;, and a constant

force/moment, F ), to account for the weight of the moorings:
Fu=-Kyé& +.7_'-M (49)

which requires the values of K;; and F); to be known beforehand, using, for example,
the formulation proposed by Pesce, Amaral, and Franzini (2018) and Amaral (2020).
Although the linear model is considered to be sufficient for this work, as the focus is on the
hydrodynamic model, improving the modeling of the mooring system is one of the main
steps for the future development of the software, not only for a more accurate calculation
of the motions of the FOWT, but also because the analysis of the mooring dynamics itself

is a particularly important application of a numerical tool such as the one developed here.
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4.3 Solving the equations of motion

A floating offshore wind turbine consists of different bodies with relative motions among
them. For instance, the nacelle, which is able to yaw around the tower, or the hub, which
rotates around the low-speed shaft, are separate bodies from the floater. These relative
motions induce important effects in the dynamics of the FOWT, such as the gyroscopic
yaw moment induced by the combination of rotor rotation and pitch motion (JONKMAN,
2007).

Although the effects induced by these relative motions are important, they are not
modeled in the numerical method yet, and including them is one of the next steps of the
software development. At present, the whole system is considered to be a rigid body. In
this case, the equations of motion are well known (MA; PATEL, 2001):

mép =F (4.10)

Q
]IGC(li—t + QA2 = Mg (4.11)

where F and Mg are the total forces and moments acting on the structure, I is the

inertia matrix around the center of gravity and €2 is related to the rotation &, by:

d€r
T—% = 4.12
” (4.12)

with T a matrix formed by Euler angles following a rotation order of roll, pitch and yaw:

coséscosés  sin&g 0
T = |—cos&sin& cos& 0 (4.13)
sin &5 0 1

As the computation of the second-order wave forces requires the first-order motions
to be obtained in advance, the equations above are applied in two steps. First, the first-
order motions are solved considering only the linear terms of the equations of motion, i.e.
the term QW ATIQW is disregarded for being of second-order and the rotation velocity is

QW = ég), resulting in the following equations for the first-order motions:

(1) (1)

M+A)EY = Bt — (Kirs + Ku))ED + Farag(€") + Faeno (€0, )+ FU. (4.14)

o1

where the forces are the ones presented in the previous sections. Even though the aero-
dynamic and drag forces are not linear, they affect the first-order motions. Instead of
linearizing them as usually done to include these forces in frequency-domain analyzes, the
approach that was followed in this work was simply to incorporate them in the solution of
the first-order problem, but considering E M and & () in their evaluation. The matrix M is

obtained by assembling the mass of the body m and the inertia matrix around the center



78 Chapter 4. Numerical method

of gravity Is:

m 0 0 0
0 m 0 0
m— |0 O™ 0 (4.15)
0 0 0 Ly Ly L.
0 0 0 Ly, I, I
0 0 0 L. I, L.

After solving the first-order motions, the second-order forces can be evaluated. But
instead of solving the second-order motions separately, the approach followed in this work
is to sum all the forces and calculate the total motions of the body. For doing so, the

equations of motion are written as follows:

d .
(M + A) d? - _Bext£ - (K + KM)€ + j:'aero + fdrag + f((;()l) + ff()l) _'_ '7:;)2 f((ZiZlV
0
+ FOL A FO +FO 4+ FO + FRo + FR, - [ W
&R /\I[GSR
(4.16)
13
Tg =Q (4.17)
R

where the drag force is neither of first nor second-order because of the utilization of the
total body velocity, which introduces higher order terms. Likewise, the aerodynamic forces,
which are calculated considering the instantaneous body position and velocity, can not be

classified as first or second-order as well.

Equation 4.14 can be organized as a set of coupled first-order ordinary differential
equations (ODEs), just like done for Equations 4.16 and 4.17, following the general form
q = f(t,q). There is a large number of methods to numerically integrate a set of ODEs,
and a 4" order Runge-Kutta method (RK4) (PRESS et al., 1992) with fixed step is chosen

in this work due to its simplicity. The solution is given by:

1
q(t + At) = q(t) + é(k1 + 2k + 2k3 + ky) + O(AP)

Atf( 5 k;) (4.18)

Atf(t+ o k2>
2
= Atf(t + At, q(t) + k)

In order to avoid impulsive responses, the incident wave amplitude and wind velocity

are multiplied by a time ramp r(¢), so that the forces acting on the structure increase
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smoothly instead of starting with a sudden large value:

1{1—005 (W—t)] ift <1,
r(t) =< 2 1, (4.19)
1 ift>"1T,

4.4  Outline of the numerical method

The present version of the numerical method consists of the following steps:

. Reading of the input data: the data concerning the FOWT (e.g. inertia matrix,
properties of the cylinders that compose the floater such as C, and Cp, charac-
terization of the blades, moorings, among others), the environmental conditions
(acceleration of gravity, characterization of the waves, wind speed, etc) and numerical
parameters (time step, total simulation time, etc) are provided to the software by an
input text file, as exemplified in Appendix C. The input is verified to guarantee that

all the required data was provided and whether they are valid;

. Calculation of the added mass and hydrostatic stiffness matrices: based on
the position of each extremity of the cylinders, the added mass matrix A is computed
using the equations presented in Appendix A, while the hydrostatic stiffness matrix

K is calculated with the equations from Section 3.5;

. Evaluation of wave kinematics: the amplitudes of the waves that compose the
incoming sea are used to compute the whole time series of wave kinematics at points
of interest with IFFT. These points are nodes along the length of the cylinder, which
are used to integrate the forces numerically, or selected locations at the fluid domain
(e.g. a point on the free surface that acts as a wave probe). The time series of F ((;()1)
and F ((;(),)m which are integrated analytically, are also computed;

. Calculation of the first-order motions: the forces from Equation 4.14 are
evaluated based on first-order wave kinematics and the FOW'T position 551121 and
velocity 57(11—)1 obtained in the previous time step. They are then used to calculate
the first-order motions using the RK4 method;

. Calculation of the total motions: the forces from Equation 4.16 are evaluated

based on wave kinematics, the FOWT position &,,_; and velocity én_l obtained in
.. 1

the previous time step, and the first-order acceleration Efl) computed in the current

time step. They are then used to calculate the total motions using the RK4 method.

The simulation ends when the total simulation time is achieved. In order to save

memory and avoid complete loss of data in possible crashes, the results of the simulation
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are written to an output file at the end of each time step. The numerical method is outlined

in Figure 8.

Figure 8 — Flowchart with the main steps of the numerical method.
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5 Low-frequency wave forces on a surface-

piercing cylinder

One of the most fundamental applications of the method presented in this thesis is the
analysis of a surface-piercing cylinder, be it bottom mounted or floating. Due to its
simplicity, this particular case allows a detailed examination of the different hydrodynamic
force components, leading to interesting conclusions about the physics of the slender-body

approximation.

The first part of this chapter is about the difference-frequency second-order wave
forces acting on a bottom mounted cylinder, a classic hydrodynamic problem with analytical
solution for both diffraction theory (KIM; YUE, 1990) and the slender-body approximation,
and it is centered around comparisons of the forces due to bichromatic waves for different
values of the dimensionless parameters that characterize the problem. For simplicity,
the analysis is restricted to long-crested waves. Since the objective is to evaluate the
importance of potential flow effects such as wave diffraction, the quadratic drag term
from the slender-body formulation is not considered; besides, as extensive comparisons of
Morison’s equation and diffraction theory already exist in the literature (see, for instance,
Hooft (1972)), first-order wave forces are kept out of the analysis. It is shown that the
slender-body approximation predicts very well the imaginary part of the second-order force,
but it fails to capture its real part, which seems to be related to diffraction effects. On
the other hand, Newman’s approximation shows an opposite behavior, modeling only the
real part of the force, indicating that it may be possible to combine both approximations
without accounting for the same effects twice. Though these conclusions have already been
noted by Molin and Chen (2002), the analysis is expanded here to include comparisons on
the different components that constitute the force and to relate them to the incident and

diffracted waves.

The complexity of the test case is increased in the second part of the chapter, in
which two different floating cylinders are analyzed in order to assess the impact of the
first-order motions on the second-order loads. Since this case does not have an analytical
solution, the solution with the slender-body approximation is obtained with METiS, while
WAMIT is used to solve the problem with radiation/diffraction theory. In opposition to the
fixed case, the second-order force calculated with METiS has a non-zero real part, in such
a way that the complementarity between Newman’s and the slender-body approximation

is not as easy to be exploited.

Both test cases show the relevance of the convective acceleration, axial-divergence

and rotation terms from Rainey’s formulation, evidencing that the common practice of
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analyzing second-order loads by simply applying Morison’s equation with second-order
wave kinematics is not strictly correct, as these additional terms should not be disregarded

before verifying their impact on the results.

5.1 Bottom mounted vertical cylinder

The problem at hand, which is illustrated in Figure 9, is to evaluate the low-frequency
second-order wave forces and moments acting on a fixed vertical cylinder with constant
diameter extending from the sea bottom and crossing the mean water surface, with enough

freeboard so that the extremities of the cylinder are unimportant.

Figure 9 — Illustration of the bottom mounted vertical cylinder under the action of a
bichromatic wave.
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Assuming potential flow and long crested waves, the nondimensional forces can be

completely described as functions of the following dimensionless parameters:

- h Wwj — wy

k.= k:R h=— n— 5.1
j j R Wi 9/h (5.1)

with R being the cylinder radius, k; and w; the wave number and angular frequency

associated with the j** wave component, h the water depth and ¢ the acceleration of
gravity. All the other relevant dimensionless quantities can be obtained from these three,

for example:
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kih tanh kjh = | /k;jhtanh k;h — @, (5.3)

kj tanh l;)]il (54)

Wi
Va/h
the nondimensional time, ¢ = t1/g/h, is not necessary to describe the force amplitudes,

but will be included in some of the expressions presented hereafter.

Though this section is about a fixed cylinder, the low-frequency second-order wave
loads are usually only important for floating structures, as they may excite the natural
frequencies of some degrees of freedom. However, it is reasonable to expect that the
qualitative conclusions that can be drawn from this simpler case should also apply in some

degree to a floating cylinder.

Therefore, the ranges of k;, h and wj; of interest are given by the values that are
typically observed for floating structures. Thinking about floating offshore wind turbines,
the water depth is usually between 50 m and 300 m; the typical natural period of surge for
spread moored units ranges between 60s (in shallower waters) and 120s (in deeper waters);
and the waves of interest have periods ranging from a few seconds to about 20s. Giving
some margin to the values, h is expected to be between 3 for large diameter cylinders
in shallow waters and 60 to slender cylinders in intermediate water depth; w;; should be
in the range 0.1 — 0.6; and k; between 0.05 and 0.95 (alternatively, A\;/D = 7/k; in the
range 3 — 50). Different values are expected as the concepts evolve to be installed in deeper
waters or when slow pitch, whose natural period is usually significantly lower than the

ones for surge, is of interest.

The nondimensional expressions of the forces are provided in the following sections
following three different approaches: the semi-analytic solution considering diffraction
theory presented by Kim and Yue (1990), which is exact to second-order in the context of
potential flow; the slender-body approximation discussed in Chapter 3; and Newman’s
approximation, which consists in evaluating the difference-frequency second-order forces
from the mean wave forces. The results obtained with these three approaches are then
compared, evidencing the conditions in which each of the approximations better reproduces

the exact solution.

As the comparisons are made considering the complex force amplitudes, it is
important to understand the physical meaning of their real and imaginary parts. For such,
consider the difference-frequency second-order velocity potential of waves propagating

along the positive x direction:

N N o
PN {ZZAJ Z‘cpﬂe_w”t}

j=1 1=1



84 Chapter 5.  Low-frequency wave forces on a surface-piercing cylinder

with
cosh (k;]_l(Z + h))

cosh (k;lh) e (5:5)

(’le + f)/lj )

l\DlH

P =

ﬂk‘? [1- tanhz(k‘jh)] — 2k;k; [1 4 tanh(k;h) tanh(kh)]
2w, wy’/g — kj tanh (k3;h)

Vi =~ (5.6)

It can be shown that |v;,| < [y;;| when w; > w;, meaning that the complex amplitude
of the second-order potential for unitary wave amplitude, ¢, is a positive imaginary
number at z = 0. As expected, the contrary occurs when w; < w;, because since the pairs
jl and [j actually correspond to the same wave, their contributions to ¢~ must be the

same, meaning that ¢ = (Pfj*- Other quantities of interest have the following phases:

e The second-order incoming wave elevation is given by:
N N
{33 e "7
j=1 I=1

with S
W5 Py

wjen (w7 + wp) OO

— 1 1 1)*
gﬂ:—@vﬁﬁv@>— 1 W+ (5.8)

and (pgl) the complex amplitude of the first-order incoming wave potential, given in

Equation 3.33. The resulting (; ; is a negative real number when evaluated at x = 0;

e The amplitude of the second-order horizontal fluid acceleration due to the incoming
wave is obtained from @, by deriving once with respect to x (multiplication by kit )
and once with respect to ¢ (multiplication by —wy -1). Thus, it is a positive imaginary

number at z = 0, which is equivalent to a —90° phase with respect to ¢; ;;

e The difference-frequency second-order pressure due to the incoming wave, which is

calculated as follows:

=1 [I=1

where X
Prj= —ZPW’;D Ve + W@y (5.10)

is a negative real number at x = 0, hence in phase with the second-order wave

elevation;
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5.1.1 Solution with three different approaches

The difference-frequency second-order wave load at a given degree of freedom « has the
following form:

N N )

FO@) =R {Z > CAA; fo e_“"ﬂt} (5.11)

j=1 i=1
where f, ; is the difference-frequency force /moment quadratic transfer function (QTF)
at the degree of freedom «. In the particular case treated here, there is only a horizontal
force acting along the direction of the waves, & = 1, and a corresponding turning moment,

a = b.

Since the cylinder is fixed, the force (or moment) QTF is given by:

fji = f;VQ,jl =+ fév{ﬂ =+ f;ﬂ%ﬂ + fJ;JMJ =+ f;¢<2),jl =+ f;@(?),jl (512)

with [ indicating the part of the force related to the undisturbed incident flow and P
the one associated with the perturbation caused by the body. The index V? identifies
the force due to the first-order velocity squared, while 7 is the one due to the first-order
wave elevation and ¢® the one originating from the second-order potential, as detailed
ahead. Strictly speaking, there is also an additional free surface forcing term, but since
it is known to be negligible in this case (KIM; YUE, 1990; KIM; CHEN, 1994; MOLIN;
CHEN, 2002) and its computation is very complex, it is discarded. These components can

be computed with the three approaches below.

5.1.1.1 Diffraction theory

The incident part of the horizontal forces are given by:

0 27

Frvey = —g// (Vol" Vo) Reoshdsdz (5.13)

~h 0 ;
_ W,w .
Jrma = _,04] l / (cpﬁ” (Pl(l) >T:R Rcosfdo (5.14)
g g 2=0
0 2w

f;(z,(z)JZ :ipw//(pjl Rcos0dfdZ (5.15)

“h 0

with (pgl) the complex amplitude of the first-order incident wave potential for unitary
wave amplitude, i.e. 90§1) =R {Aj (pg.l)e_iwjt}. The corresponding components due to the

perturbation caused by the body are:

Fove = Tve = Trve (5.16)
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Fpagt = Fogt = Jrag (5.17)
0 2w
f;¢(2> 0= i,ow//(f)j_l RcosfdfdZ (5.18)
~h 0

where fi, ; and f, ., are the forces due to the total first-order potential, obtained consid-

ering q)él) = (pgl) + (f)y) instead of (pg-l) in Equations 5.13 and 5.14.

These integrals have semi-analytical solutions in terms of infinite series of Bessel
functions, as presented in Appendix D. The resulting force is the same as the ones obtained
by Kim and Yue (1990), with the difference that in their work the components [y j and
fn’ ;1 are not given separately, and it is not clear which part of their expression is due
to each of these components. Besides this distinction, in Appendix D they are further
split into the components due to the incoming flow, I, and to the body perturbation, P.
Furthermore, the expression for the pitch moment with respect to the intersection with

the mean waterline, point F/, are also given.

As the loads are given in terms of an infinite series, it would be necessary to perform
a convergence analysis in order to choose the number of modes n. Fortunately, this work
was already conducted by Kim and Yue (1990), and a number of modes n = 10 is more
than enough for all the cases analyzed in this thesis. Actually, fewer modes would be
enough, but since the computation time required to calculate these expressions is negligible,

reducing n is unnecessary.

The resulting nondimensional total difference-frequency force, fﬁ = [;1/(pgR), and
moment, m; = m/(pgRh), amplitude QTFs are given in Figure 10 for &} = 0.300 and
different values of h, while Figure 11 presents the results for h = 15 and some values of
wj;, with and without accounting for the contribution of the second-order potential. For
visualization purposes, the results are given as a function of \;/D instead of k;. The graphs
illustrate that the loads due to the second-order potential are increasingly important as
the nondimensional water depth reduces or as the nondimensional difference-frequency
increases, in such a way that the QTFs in long waves can be comparable or even larger
than the ones observed in short waves, which are more affected by diffraction effect. Due
the slower depth attenuation of the second-order potential, this is more pronounced for

the moment, as it is given with respect to Z = 0.

The separate contributions to the QTF of the different force components are given

in Section 5.1.2 in the comparisons with the results from the other two approaches.
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Figure 10 — Nondimensional force and moment QTFs calculated with diffraction theory
for w;; = 0.300 and different values of h.
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Figure 11 — Nondimensional force and moment QTFs calculated with diffraction theory
for h =15 and different values of w;.
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5.1.1.2 Slender-body approximation

Since the cylinder is bottom mounted, there are no hydrodynamic forces acting at its
extremities and no effects due to body motions, hence only four of the second-order
components presented in Section 3.6 need to be considered. The necessary kinematic
quantities are obtained from the first- and second-order incident wave potentials given by
Equations 3.33 and 3.35 considering that the waves are propagating along the positive X
direction, i.e. 8; = 0. The procedure is way simpler than the one presented in the previous
section, as only an integration along the Z axis is needed, hence only the final expressions

are given below:

Force due to the first-order incoming flow: recalling Equation 3.102 and retaining
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only the force component along the X direction:

—iw;t 2 / 81,6(1)
(1) = ZA f ) e = prR /(1 —i—Ca)de (519)

—h

0

o out)
¢<1> = {ZA m¢<1> w”t} = pm R’ /(1 +Ca) - 2dZ (5.20)

~h
leading to
7(1) f(z(,h))’j - L7
foi ;= R = —in(1 + C,) tanh (k;h) (5.21)
) m((j)l()l)J 4 sech (k;jh) — 1
My 5 = g Feh = —in(1+ CQ)T (5.22)

which acts at the frequency of the incoming waves, as expected from a first-order quantity,

and does not contribute to the low-frequency second-order wave loads.

Force due to the second-order incoming flow: same as above, but for Equation 3.103:

N 0
* f— —iw 8U(2)
= %{ZZAJAZ f(i)_,jle jlt} :pﬂ-R2/<1+Ca)W dz (523)

j=1 =1 ey
N 0
(2) w = —iwt 2 ou®
M2 =RINN A Aimy e it b = prR /(1+0a)72dz (5.24)
j=1 I=1 “h
with
. fq;— y T w A 4l tanh|k | 1 ]_f_
="l = i1+ Cy) (5.25)
o7 pgR 2 \kﬂh\tanh\kﬂh\ 2 h \kﬂ\
o My i T Aﬂ(sech‘k h‘ —1) 1 1
— = —7—(1 —_—— = 2
eIt pgRh R >|k h|tanh k3 h| — w3 |k h| A (5:26)
and
Ay = (wi _ wil> (k) () [1 + tanh (K,7) tanh (=iF)]
J
(5.27)

(R (mh)
2 \ @; cosh® (kjh) @, cosh® (kih)
which results in zero loads when j = [, thus they do not contribute to the mean force and

moment. As only the second-order potential at the difference-frequency was considered,

there are no loads at the sum-frequencies.
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Force due to the convective acceleration: from Equation 3.104:

£ {zzw A }

7j=1 1=1
0 o) ) (5.28)
=t [ e (W05 w2 az
—h
N .
cozl)w = {Z ZA A* conv_yl € Bt + Aj Almconv_]l e’ jlt}
j=1 I=1
0 ) ) (5.29)
= p7TR2/(1 +C,) <u(1) gx + w® SZ ) zZdz
Retaining only the difference-frequency part of the force, one obtains:
] fomgt (k;h) (kih) tanh (k;R) + tanh (fih)
- =Tl (14 (O — k- 5.30
fconv,]l /)gR Z4< + ) ijl l{;h gl ( )
o Mg T (k;h) (kih) 1 1 — cosh (kjh)
Meonvat = “popp, — a0 T )0 h (k;h) cosh (k;h N
0g i@ cosh (kjh) cosh (kb)) (k4h)
(5.31)
Force due to the axial-divergence acceleration: from Equation 3.106:
N N -
R D3 S
j=1 I=1
. (5.32)
= prR? / c, g’ uM dz
z
~h
N N N
Ma(i()iv = {ZZA A* axdv]l € Zw it + A Almaxdv]l € B jlt}
7j=1 [=1
0 - (5.33)
:pﬂRZ/C’a g} uV Z2dZz
2z
—h
with
_ - k;h) (kih) k;jhtanh (kjh) — kb tanh (kh) -
Frsug = L2200 _ 7 g, Bsf) () ks tanh (1) U (& )kﬂ (5.34)
pgR 4 oy (kj h) kﬂh)
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o - m;de,jl _ —ZEC (I%JB) (Elh) _ _
axdvigl = pgRh 8 % @@  cosh(k;h) cosh (kh)
o (5.35)
[1 — cosh (k']_lh) N 1 — cosh k:+h
' T_7\2
(kﬂh) k;+h
Force due to the wave elevation: finally, Equation 3.109 yields:
N N
— % A AF - —iw A R as iw '.'zt o R2 1 C (1) au(l)
= ;; j lfn,jle A+ lfmle 1o = prRY(1 4 Ca)n ot |._,
(5.36)
where
- = @ = _ﬂ(l + Co) k3, (5.37)
3L pgR 4 at

with the corresponding moment with respect to the mean water line equal to zero.

It is remarkable that the force amplitudes calculated with the slender-body approx-
imation are purely imaginary numbers, and an immediate consequence is that they do
not contribute to the mean force, a clear contradiction with the non-zero result that is

obtained with their counterparts from diffraction theory.

As discussed in Chapter 3, the part of the force that is multiplied by C, originates
from the flow perturbation due to the presence of the body. Besides, both the force due to
the convective acceleration and the one due to the axial-divergence acceleration originate
from the (V¢)2 term of Bernoulli’s equation. Hence, the force amplitudes above can be

rearranged to match Equation 5.12 as follows:

_ fo
L6 = (T4 Cy) (5.38)
] (5.39)
P,¢(2),jl (1 + Ca) :
r— fc;nv, il
fI,VQ,jl = (1 +_C]'a) (5.40)
r— (;)nv, il o
fP,V2,jl =Ca ((14-—6{(1) + faxdv,jl) (5.41)
_ f*l
frna = (1 _:_”Ca) (5.42)
a Oaf_‘l
fong = 0+C) +78a) (5.43)

where the added mass coefficient is taken as C, = 1, which is the value calculated with

potential theory neglecting the effect of the free surface. The same applies for the moments.
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One interesting aspect of the slender-body approximation is that it allows the direct
examination of the contribution of each force component along the length of the cylinder,
as illustrated in Figure 12, which evidences the slower decay of the component due to
the second-order potential with respect to the others. It also shows the axial-divergence

acceleration acting in the opposite direction of the convective acceleration, reducing the

resulting f PV I

Figure 12 — Nondimensional force per unit length along the cylinder for h = 10, wj; = 0.300
and k; = 7/10 (i.e. \;/D = 10).
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5.1.1.3 Solution using Newman’s approximation

Among the existing approximations for the evaluation of the difference-frequency second-
order wave forces, Newman’s approximation (NEWMAN, 1974) is probably the most used.
By assuming that the difference-frequencies wy; of interest are small compared to the
average frequency w;.g /2, the approximation evaluates the low-frequency forces [ from

the mean forces f;; and f;; as follows (I denotes the imaginary part):
_ _ fii +he
EFE{fjl} = 3%{flj} =R {MT” (5-44)

S{fir =3{f;3 =0 (5.45)

which greatly reduces the complexity of the problem, as the mean forces do not depend
on the second-order velocity potential. This can be further simplified by approximating
the double summation from Equation 5.11 by the square of a single series, but this is not

necessary for the purposes of this chapter. The expressions for f;; are given in Appendix D.
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Since the low-frequency forces are obtained from the mean forces, whose imaginary
part is zero, only the real part is captured by the approximation, in opposition to the
results calculated with the slender-body approximation (MOLIN; CHEN, 2002).

5.1.2  Comparisons considering bichromatic waves

The forces acting on the cylinder calculated with each of the three different methods
discussed in the previous sections are compared in Figure 13 and Table 1, for w; = 0.300,
h =20 and A;/D from 0 to 20. This combination of parameters was chosen for visualization
purposes only, but the observations below are valid for all the combinations within the
ranges that were tested, which are 0.05 < Wy < 1,1<h<60and0< A;/D < 60. They

are probably valid for larger ranges, but these are the ones that were verified.

The first graph of Figure 13 shows that the real part of the exact solution, which is
completely insensitive to the second-order potential, is practically identical to the force
calculated with Newman’s approximation, except for small discrepancies in waves shorter
than one diameter. On the other hand, the slender-body approximation matches very well
the imaginary part of the force, though it fails to capture a broad peak around \;/D =~ 3,
whether the second-order potential is included or not. As illustrated by the absolute value of
the force, given in the second graph of Figure 13, the slender-body approximation performs
better as the wave length increases and the real part of the force becomes increasingly
irrelevant, in opposition to what is observed for the correspondence between Newman’s
approximation and the force calculated without the second-order potential. Though the
ranges of \;/D for which each approximation performs better are dependent on wj; and h,
as they impact the relative importance between the real and imaginary parts of the force,
it seems that A\;/D > 10 is a good general threshold for the validity of the slender-body
approximation. The best results are obtained by summing both approximations, as in this

way both the real and imaginary parts are well captured.

A better understanding can be gained by analyzing the different components that
constitute the force, as illustrated in Figure 14. The forces due to the undisturbed incident
waves are purely imaginary numbers, and the values calculated with the slender-body
approximation are practically equal to the exact solution using diffraction theory, even in
short waves. The contributions of the first-order perturbation potential, however, have
a real part that increases as the waves get shorter and wave scattering becomes more
relevant. Since the perturbation predicted by the slender-body approximation is obtained
neglecting the boundary condition at the free surface, it is natural that it fails to model
this effect. As scattering effects are negligible for the second-order potential, the real part
of f¢(2) is practically zero. The agreement of the imaginary part of the perturbation forces
is not as good as for the incident part, as they diverge in short waves, and this explains

the differences noted in Figure 13, specially for the peak around \;/D = 3 that originates
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Figure 13 — Nondimensional horizontal force acting on the bottom mounted cylinder calcu-
lated with diffraction theory, the slender-body and Newman’s approximations
for w; = 0.300 and h = 20.
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Table 1 — Selected points from the first graph of Figure 13 to ease the comparisons.

Diffraction - Real Diffraction - Imag. Slender Body Newman’s
N/D O w/6D wjod®  w/6®  wjod®  w/6®  wjod®  approx.
5 0.384 0.384 0.157 -0.010 0.127 -0.040 0.384
10 0.063 0.063 0.087 -0.032 0.091 -0.028 0.065
20 0.008 0.008 0.067 -0.022 0.069 -0.020 0.008

from the force due to the wave elevation.

As the added mass coefficient is C,, = 1, the perturbation forces obtained with the

slender-body approximation are equal to their counterparts caused by the undisturbed
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incident potential, except for fi2. In this case, the difference between the incident and
perturbation parts is the contribution of the axial-divergence acceleration, and the fact
that this difference actually appears in the results is proof that this force component, whose
existence is not intuitive, is indeed correct (again, the reader is referred to the article of
Kim and Chen (1994) for a brief discussion on a controversy regarding the axial-divergence

term).

Figure 15 presents similar results, but for varying values of h, while the other
parameters are kept fixed. For visualization purposes, the force due to the second-order
potential is not included in the graphs for these small values of h, but they can be verified in
Table 3. It is clear that the importance of the second-order potential, which is well modeled
by the slender-body approximation, increases as h is reduced, meaning that better results
are obtained as the water gets shallower. Once again, this behavior is complementary to
Newman’s approximation, which should not be used in shallow waters due to neglecting

the second-order potential.

Figure 16 illustrates an equivalent analysis, but for varying values of wj;- It can be
seen the second-order potential is increasingly relevant as the difference-frequency increases,
which is due to the consequently larger second-order fluid acceleration, and that the results
for the imaginary perturbation part of f¢(2) start to slightly diverge at large values of Wi
a consequence of the length of the second-order wave becoming smaller. The real part of
the second-order perturbation potential remains negligible (though different from zero)
for all the analyzed values of the difference frequency, while for the other components it
increases as wy; is reduced. As a consequence, the slender-body approximation performs
better as w;; gets larger, which, again, is the opposite of Newman’s approximation, which
requires low values of the difference frequency to assure that they are evaluated close to
wj; = 0.

The same conclusions can be drawn for the moment with respect to the mean water
line, with the difference that there is no contribution of the wave elevation and that the
second-order wave potential is more relevant than for the force, improving the performance
of the slender-body approximation and worsening that of Newman’s approximation, as

illustrated in Figure 17.
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Figure 14 — Components of the nondimensional horizontal force acting on the bottom
mounted cylinder calculated with diffraction theory and the slender-body
approximation for w; = 0.300 and h = 20.
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Table 2 — Imaginary part of the forces at selected points of Figure 14.
~ Diffraction - Imag. ) Slender body B
Aj/D Jo@ Jve In fo@ fre In
*g 5 0.084 0.080 -0.080 0.084 0.080 -0.080
% 10 0.060 0.055 -0.055 0.060 0.055 -0.056
= 20 0.044 0.036 -0.037 0.044 0.036 -0.037
2 5 0.083 0.038 -0.048 0.084 0.040 -0.080
g 10 0.060 0.033 -0.065 0.060 0.028 -0.056
A 20 0.044 0.019 -0.040 0.044 0.017 -0.037
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Figure 15 — Components of the nondimensional horizontal force acting on the bottom
mounted cylinder calculated with diffraction theory and the slender-body
approximation for w; = 0.300 and A;/D = 10.
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Table 3 — Imaginary part of the forces at selected points of Figure 15.
B B Diffraction - Imag. B Slender body B
h fo@ Jve In Jo@ fv2 e
g 1 -2.157 -0.246 -0.251 -2.186 -0.250 -0.254
% 2 2.108 0.128 -0.130 2.115 0.129 -0.131
= 60 0.034 0.033 -0.033 0.034 0.033 -0.033
< 1 -2.329 -0.003 -0.270 -2.186 0.000 -0.254
é 2 2.190 0.010 -0.150 2.115 0.007 -0.131
A 60 0.034 0.020 -0.038 0.034 0.016 -0.033




98

Chapter 5.  Low-frequency wave forces on a surface-piercing cylinder

Figure 16 — Components of the nondimensional horizontal force acting on the bottom

mounted cylinder calculated with diffraction theory and the slender-body
approximation for h = 20 and \;/D = 10.
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Table 4 — Imaginary part of the forces at selected points of Figure 16.

~ Diffraction - Tmag. ) Slender body B

(D;l f¢>(2) fV2 fn f¢(2) fV2 fn
*é 0.100 0.030 0.026 -0.026 0.030 0.026 -0.026
% 0.500 0.151 0.107 -0.112 0.152 0.107 -0.112
= 1.000 0.383 0.149 -0.179 0.385 0.150 -0.180
< 0.100 0.030 0.015 -0.031 0.030 0.013 -0.026
é 0.500 0.152 0.057 -0.130 0.152 0.048 -0.112
A 1.000 0.393 0.059 -0.202 0.385 0.051 -0.180
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Figure 17 — Nondimensional moment, with respect to the mean water line, acting on the
bottom mounted cylinder calculated with diffraction theory, the slender-body
and Newman’s approximations for w; = 0.300 and h = 20.
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5.2  Floating cylinder

The problem of evaluating the second-order forces on a floating cylinder is considerably
more complicated than that for a bottom mounted one, as it is necessary to take into
account the effects due to the immersed extremity and to the first-order body motions.
The importance of the end effects is related to the submerged length of the structure, given
by the nondimensional draft, d = d/R, while the motions are described by the first-order
surge and heave response amplitude operators (RAOs) and the pitch motion amplitude,

21 = Z1j/A;, B35 = Z3;/A; and =5, with £, = %{Zﬁv Eqj € “i'} (as an angular quantity,
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the pitch motion is already nondimensional). As the low-frequency motions are relevant
only due to their resonant nature, the difference-frequencies of interest are usually the ones

that correspond to the natural frequencies of surge, heave and pitch, w,;, wyz and w,;s.

Since an analytical solution to this problem is unknown, numerical methods are used
to solve it. The solution using the slender-body approximation is obtained with METiS,
while WAMIT is used to solve the problem with radiation/diffraction theory. Since the
numerical solutions take far longer than evaluating the analytical expressions of the bottom
mounted cylinder, analyzing a large number of combinations of the relevant dimensionless
quantities is not practical. Hence, to narrow down the number of simulations, this section
focuses on two particular cases: a deep draft cylinder (90m) in deep waters (150m)
with large natural period of surge (82s), which are favorable conditions for Newman’s
approximation; and a shorter cylinder (40 m) in shallow waters (60 m) with a lower natural
period of surge (60s), so that Newman’s approximation is not expected to perform so
well. The same radius of 7.5m is considered for both structures, thus the nondimensional
draft is considerably reduced from the first case (d = 12) to the second (d = 5.3). The
natural periods of heave were chosen to be within the range of the simulated waves, so
that significant vertical motions can be observed. To ease the distinction between them,
the first cylinder will be referred as “long” and the second as “short” (even though it is not

actually short, but only shorter than the other), and their properties are given in Table 5.

Table 5 — Properties of the floating cylinders.

Long cyl. Short cyl.

Mass 16302t 7245t
Displacement 15904 m3 7069 m?
Pitch gyradius about center of mass 40.0m 30.0m
Radius 7.5m 7.5m
Draft 90.0 m 40.0m
KG 34.5m 15.0m
KB 45.0m 20.0m
BM 0.2m 0.4m
GM 10.7m 5.4m
Water depth 150 m 60 m
Surge natural period 82.0s 60.0s
Heave natural period 19.5s 13.4s
Pitch natural period 30.0s 28.0s
Nondimensional draft () 12.0 5.3
Nondimensional water depth (h) 20.0 8.0
Nondimensional surge natural frequency (i, 1) 0.300 0.259
Nondimensional heave natural frequency (w, 3) 1.258 1.157
Nondimensional pitch natural frequency (i, 5) 0.827 0.555

Only the loads acting at the difference frequencies of surge and pitch are analyzed,
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since no significant slow heave was observed in the conditions that were analyzed, and
the simulated waves corresponding to each cylinder are specified in Tables 6 and 7. The
difference in the quantity of simulated waves is due to removing pairs with wave periods
above 25s, which is already a significantly large value.

Table 6 — List of the bichromatic waves simulated for the long cylinder for each wy;. Each
component has an amplitude of 1 m.

&7 = 0.300 @5, = 0.827
T, \/D N/D| T, T, \/D A\/D
BICOL | 22 23 05 05 |22 24 05 06
BICO2 | 44 47 21 23 |44 52 21 28
BICO3 | 59 63 36 42 |59 73 36 56
BICO4 | 70 7.7 52 62 | 7.0 92 52 88
BICO5 | 80 89 67 82 |80 11.0 67 125
BICO6 | 89 10.0 83 104 | 89 127 83 16.7
BICO7 | 9.7 11.0 9.8 126 | 97 144 98 213
BICO8 | 105 12.0 11.4 149 | 105 16.0 114 26.3
BICO9 | 11.1 12,9 12,9 17.3 | 111 17.7 129 315
BICIO | 11.8 13.8 145 19.7 | 11.8 194 145 36.8
BICI1 | 124 14.6 16.0 221 | 124 21.2 16.0 42.2
BICI2 | 13.0 155 17.6 24.6 | 13.0 23.0 17.6 47.6
BIC13 | 13.6 16.3 19.1 27.0 | 13.6 248 19.1 53.1
BICI4 | 141 17.1 207 295 | - - - -
BICI5 | 147 17.9 222 319 | - - - -
BICI6 | 152 18.7 23.8 344 | - - - -
BIC17 | 15.7 194 253 368 | - - - -
BICI8 | 162 20.2 269 393 | - - - -
BIC19 | 16.7 21.0 284 417 | - - - -
BIC20 | 17.2 21.8 30.0 441 | - - - -
BIC21 | 18.3 23.6 33.3 494 | - - - -

5.2.1 Numerical models

For conciseness, some of the procedures will be illustrated for the short cylinder only, as
they were the same that were employed to model the long cylinder.

5.2.1.1 WAMIT

WAMIT simulations were performed with version 6.106S of the software, which is capable

of doing complete second-order hydrodynamic analyses, such as the calculation of sum- and
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Table 7 — List of the bichromatic waves simulated for the short cylinder for each wj;. Each
component has an amplitude of 1m.

@5, = 0.260 @5, = 0.555
T, T, \;/D N/D| T; T, A\/D \/D
BICO1 | 22 23 05 05 |22 24 05 06
BICO2 | 44 48 21 24 |44 53 21 29
BICO3 | 59 65 3.6 44 | 59 75 36 58
BICO4 | 7.0 80 52 66 | 70 94 52 91
BICO5 | 8.0 93 67 89 |80 113 67 127
BICO6 | 8.9 105 83 112 | 89 131 83 163
BICO7 | 98 11.7 98 135 | 98 150 98 199
BICOS | 10.6 12.8 11.4 158 | 106 17.0 114 23.7
BIC09 | 11.4 14.0 129 181 | 114 191 129 27.6
BIC10 | 122 153 145 204 | 122 215 145 317
BICI1 | 13.0 165 160 228 | 13.0 241 160 36.3
BIC12 | 138 17.9 176 252 | - - - -
BICI3 | 146 193 191 27.7 | - - - -
BIC14 | 154 20.7 207 303 | - - - -
BIC15 | 162 222 222 330 | - - - -
BIC16 | 17.1 239 238 358 | - - - -

difference-frequency QTFs, second-order RAOs, among other quantities. The submerged
part of the hull was represented by a higher-order mesh, meaning that the body is described
by B-splines and quantites are continuous inside each patch (WAMIT, 2004). Due to the
symmetry of the problem, only one quadrant needs to be discretized, as illustrated in
Figure 18. Only two patches were actually needed, but an additional one was used to

discretize the interior free surface in order to remove irregular frequencies (ZHU, 1994).

The higher-order method allows a straightforward automatic subdivision of the
patches into panels by specifying their approximate maximum length via a panel size
parameter. Its value was chosen based on a convergence analysis that considered three
different meshes: a coarse one, with panel size 5.0; a medium mesh, with panel size 2.5;
and a fine one with panel size 1.25, as illustrated in Figure 19. The results show that
differences between the fine and medium mesh can still be observed for very short waves,
but as only the BICO1 wave is inside this range, the panel size equal to 2.5 was considered

good enough. This value was adopted in all the results presented ahead.

The potential damping of a vertical cylinder such as the one analyzed here is very
small. For instance, the term Bsz obtained with WAMIT for the short cylinder corresponds

to less than 0.5% of the critical heave damping, which leads to very large and unrealistic
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Figure 18 — Higher-order mesh of the cylinder with d = 5.3.

Figure 19 — Mean surge force acting on the cylinder with d = 5.3 for different panel sizes.
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motions close to the natural frequency. This is due to neglecting viscous damping, which
can be included in WAMIT by an external linear damping matrix. As only heave and
pitch have natural frequencies within the range excited by first-order loads, only the terms
B and BES' are considered. They were set in order to approximately match the motion
RAOs obtained with METiS, which considers a drag coefficient C'p = 1.0 and an axial
drag coefficient C'p, = 4.0 for both cylinders. As evidenced by the results presented in
Section 5.2.2, this is achieved by considering the values given in Table 8 in WAMIT.
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Table 8 — External linear heave and pitch damping considered in the WAMIT simulations.

External damping Critical damping Damping level

%~ Heave (N.s/m) 5.08E+05 6.78E+06 7.5%
= & Pitch (N.m.s/rad) 8.47E408 3.39E+09 2.5%
e — Heave (N.s/m) 5.12E+05 1.11E+07 4.6%
S € Pitch (N.m.s/rad) 5.53E+08 1.60E+10 3.5%

The second-order force QTFs were calculated considering the influence of the
second-order potential, but without the free-surface forcing terms in the second-order
problem. This is a very useful approximation because it allows the problem to be solved
without meshing the free surface, and it is justified based on past works that found out
that these terms are negligible for similar structures (KIM, 1992; MOLIN; CHEN, 2002;
SIMOS; RUGGERI, et al., 2018). The influence of the free-surface forcing terms for a
more complex structure composed of four vertical cylinders is analyzed in Section 6.3.1,

with the same conclusion that they are unimportant.

5.2.1.2 METiS

The cylinders were modeled in METIS considering a drag coefficient of Cp = 1.0, which is
within the range of values adopted in the literature (SARPKAYA, 2010), and an axial drag
coefficient Cp, = 4.0, which was established in order to keep the heave motions within
reasonable limits. This criterion for setting C'p, is acceptable because this test case is used
simply to verify the slender-body approach and not to reproduce a real structure, in such
a way that the most important is to guarantee that the first-order motions obtained with
METiS and WAMIT are similar.

Since the added mass terms of the slender-body approximation neglect three-
dimensional effects, the added mass coefficient C, is constant along all the length of
the cylinder. Thus, divergences with respect to the results obtained with WAMIT are
expected, specially concerning the pitch added mass and the short cylinder. Considering
that a reasonable comparison of the second-order loads demands that first-order results be
similar, it is reasonable to impose that the natural periods of motion obtained with both
software be the same. Besides, the second-order loads are only relevant because they excite
the natural frequencies of motion, which further emphasizes the importance of properly

matching these frequencies.

This is achieved for the surge motion by setting the added mass coefficients to
C, = 0.89 for the short cylinder and C; = 0.95 for the long cylinder, while the natural
period of heave requires C,, = 0.48 for both of them. As illustrated by Figure 20, the
added mass coefficient needed to match the added mass calculated with WAMIT would
actually be a frequency-dependent quantity, but this effect is lost in the slender-body
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Figure 20 — Added mass coefficients needed to match the added mass terms computed
with WAMIT for the long (left) and short (right) cylinders.
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method when radiation effects were neglected. The graph also shows that the term Ass of
the added mass matrix is not well reproduced, a consequence of adopting a constant C|,
along the whole cylinder span, as already pointed out. For the long cylinder, the difference
is about 7% at the natural frequency of pitch, but it is around 30% for the short cylinder.
Nevertheless, these discrepancies induce small errors in the natural period of pitch because
the moment of inertia I,, of the body is far larger than Ass. Indeed, since the natural
periods provided in Table 5 were calculated with the slender-body approach, the difference
in Ass causes the natural pitch period obtained with WAMIT to be 0.7s larger for the
long cylinder (corresponding to a difference of 2.5%), while for the short cylinder it is
0.28 s larger (difference of about 1.0%). In any case, since the natural period of pitch is
outside the range of the waves analyzed, this effect does not have a significant impact on

the results.

In order to keep the excursions of the cylinder within reasonable limits and to
obtain the desired natural frequency of surge, an external stiffness term K;; was adopted
to emulate the action of the mooring system, with the following values for each of the
cylinders:

1.50e5N/m  for the short cylinder

Ky = (5.46)
1.86e5N/m for the long cylinder

and without any additional stiffness in the other degrees of freedom.

Two different convergence analysis were performed to set the numerical parameters

of the METIS model. The first was to establish the number of sections for the numerical
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integration along the length of the cylinder, done so by comparing one of the second-
order force components with its analytical solution. In fact, as the cylinder adopted in
this analysis is vertical, most of the forces presented in Section 3.6 could be integrated
analytically, but they are integrated numerically in order to verify the numerical tool. As
illustrated by Figure 21, which presents the force due to the convective acceleration acting
on the short cylinder for the BIC01 wave and w;; = 0.555, using cylinder sections of 0.50 m
is enough, as the difference with respect to a finer discretization and to the analytical
solution are negligible. This value of Az was adopted for both the short and the long

cylinder.

Figure 21 — Horizontal force due to the convective acceleration calculated with METiS
for the short cylinder under the action of the BICO1 wave and @w; = 0.555 for
different discretizations.
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The second convergence analysis concerns the time step, which was established by
analyzing the test case with the fastest dynamics, namely the short cylinder for the BICO1
wave and wj; = 0.555. Three different time steps were verified, as presented in Figure 22,
and since the differences between a time step of 0.10s and 0.05s were very small, the value

At = 0.10s was deemed good enough.

Since METIS is a time-domain software, each wave condition corresponds to a
different simulation that results in time series of forces and motions. For each of the
bichromatic waves, these time series are composed of components acting at three different
frequencies: the ones of the two incoming waves, w; and wy, which are due to the first-order
wave forces; and the difference frequency, w™ = w; — wo, associated to the second-order
wave forces. As these frequencies are known, the complex amplitude of a component acting

at a given frequency w, I'(w), can be obtained by projecting the signal v(t) onto a sine
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Figure 22 — Surge motion of the short cylinder for the BIC01 wave and @w; = 0.555 for
different time steps.
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which is quite convenient because both the amplitude of motion and the phase with respect
to the incoming wave can be readily evaluated from the complex amplitude, allowing a
straightforward comparison with results computed in frequency-domain with WAMIT.
Ideally, Ty and T} would encompass an integer number of cycles with frequency @, but this
is rather impractical. Instead, good results can be obtained by considering a large number
of cycles, in such a way that the error is diluted. To do so, the simulations were performed
for a total simulation time of 3000s with a time ramp of 200s (see Equation 4.19), which
was more than enough to achieve a steady-state response, and only the last half of the
signal was used to compute the amplitudes in order to avoid the transient response to
affect the results. Since this procedure provides the force acting at a given frequency, the
result was divided by two in order to be directly compared with the QTF values computed
with WAMIT, as it would be the sum of the components acting at the frequencies wj; and

wy; that are output by the latter.
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5.2.2 First-order forces and motions

Figures 23 and 24 present, respectively, the nondimensional first-order wave loads and the
corresponding motion RAOs calculated with WAMIT and METiS.

Regarding the surge force and pitch moment, the behavior is quite similar to the one
previously observed for the second-order loads acting on the bottom mounted cylinder, i.e.
the slender-body approximation matches very well the imaginary part of the force/moment,
except for short waves, but it predicts a null real part of the loads (except for numerical
errors in the process of evaluating the complex amplitude) for any wave frequency, which
is only acceptable in long waves. For A\/D > 5, which is the threshold commonly adopted
for the validity of Morison’s equation, the amplitude of the surge and pitch loads predicted

with both software are within 5% of each other.

Concerning the heave loads, the opposite is observed, with METiS being able to
reproduce the real part of the force instead of the imaginary part, a consequence of the
90° phase shift between the horizontal acceleration and the fluid pressure. In this case
the agreement is even better, as the loads acting at short waves are negligible due to the
exponential decay of the fluid pressure. Nevertheless, this behavior is dependent on the
relation between the wave length and the draft of the cylinder, \/d, which is not analyzed

in details here, and different conclusions might be drawn for a shallow draft structure.

Given the differences for the loads in short waves, it is indeed remarkable that the
first-order RAOs match quite well for all the wave range. The reason is that the dynamics
of the body in short waves (thus high frequency) is dominated by inertial effects, in such a
way that the overestimation of the first-order load is compensated by an overestimation of
the added mass. In other words, the fact that the added mass factor C, is not corrected
to account for wave scattering (using, for instance, the formulation due to MacCamy and

Fuchs (1954)) impacts similarly both the forcing and the inertia of the dynamic system.

Due to this good agreement, it is possible to compare the second-order loads in the
next section bearing in mind that occasional differences are due to the force models, and

not to discrepancies on the first-order motions that feed them.

5.2.3 Second-order forces

The nondimensional second-order horizontal forces calculated with WAMIT, METiS and
Newman’s approximation are compared in Figures 25 and 26, with the forces calculated
for a difference-frequency corresponding to the natural frequency of surge and the results
given as a function of the nondimensional length of the shortest wave of the pair. In order
to evidence the effects due to body motions, results considering the body fixed are also
included in the graphs. As expected, the slender-body approximation performs poorly in

short waves, but there is a general good agreement, with some remarks, for A\;/D > 10,
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loads for the long (left) and short (right) cylinders.
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Figure 24 — Surge (top), heave (middle) and pitch (bottom) RAOs for the long (left) and
short (right) cylinders.
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which is the threshold indicated by Rainey (1995) for the validity of his formulation.

Figure 25 — Amplitude of the nondimensional second-order horizontal force acting on the
long (left - @;; = 0.300) and short (right - w; = 0.259) cylinders calculated
with and without first-order motions as a function of the length of the shortest
wave of the pair.
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Figure 26 — Real and imaginary parts of the nondimensional second-order horizontal force
acting on the long (left - &3 = 0.300) and short (right - w3 = 0.259) cylinders
as a function of the length of the shortest wave of the pair.
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Regarding the long cylinder, however, Figure 26 shows that the imaginary part of

the force calculated with METIS presents a small offset for a wave range roughly between
A;/D =10 and \;/D = 25, while the results for the short cylinder have a better agreement,
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which may seen unexpected at first sight. The explanation comes from inspecting the force
components computed with the slender-body approximation, given in Figure 27. Since this
issue is presented by the long cylinder even in waves for which the heave motion is very
small (\;/D < 15), in such a way that almost all of the force components are basically the
same as for the fixed cylinder, which, on its turn, shows a good agreement in this wave
range, it must come from the only exception, namely the force due to the acceleration
gradient, ng?v (the equivalent of component IV from Pinkster (1979), see Section 3.6). For
A\j/D < 15, Fg?v is due to the horizontal displacement of the points along the cylinder
axis (as the vertical displacement is negligible), and this seems to be the source of this

discrepancy.

Though the short cylinder has the same problem regarding Fg??v, it is much less
relevant than for the long cylinder because heave motion, whose effects seem to be well
modeled by the slender-body approximation, is relevant for a significant part of the range
of the wave lengths that presented this issue (the natural periods of heave, which is caused
simply by the pressure integration at the bottom surface, correspond to A\/D = 37 for the
long cylinder and A/ D = 17 for the short one). Besides, as the cylinder is shorter, the pitch
motion induces smaller displacements along the cylinder, reducing the influence of Fg?v in
the total force. These results show that, once body motions are included, it is not a simple
task to determine the conditions in which the slender-body approximation presented in
this thesis is acceptable, since different effects seem to follow distinct thresholds in terms

of A\;j/D and of the other dimensionless quantities that describe the problem.

Concerning Newman’s approximation, it reproduces the force calculated with
WAMIT for the short cylinder quite well, except close to a peak of the imaginary part
of the force that corresponds to frequency pairs that match the natural frequency of
heave. For the long cylinder, it performs very well except in very long waves, for which
it underestimates the horizontal load due to neglecting the imaginary part of the force;
on the other hand, the slender-body approximation overestimates the force in the same

conditions.

As the forces obtained with the slender-body approximation have a non-null real part,
it is no longer possible to directly sum the results with the ones obtained with Newman’s
approximation, as part of the effects would be computed twice. Nevertheless, the results in
Figure 26 apparently indicate that it still would be possible to sum Newman’s approximation
with the imaginary part of the force calculated with the slender-body approximation.
However, it is not clear how to do that in time domain, but some suggestions on possible
ways of exploiting this complementarity between these two approximations are given in
Chapter 7.

It is noteworthy the relevance of the force due to the rotation term from Rainey’s

formulation, Fgl)b, as illustrated in Figure 27. It was already shown in the analysis of the
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Figure 27 — Amplitude of the components of the nondimensional second-order horizontal
force acting on the long (left - w; = 0.300) and short (right - w; = 0.259)
cylinders calculated with METiS as a function of the length of the shortest
wave of the pair. The definition of each component is given in Section 3.6.
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bottom-mounted cylinder that the force due to axial-divergence acceleration, F needs

to be added to the one due to the convective acceleration, F?) in order to match the
force component that results from the pressure drop due to the quadratic velocity term
of Bernoulli’s equation (force component II from Pinkster (1979)). Hence, the common
practice of analyzing second-order loads by simply applying Morison’s equation with second-
order wave kinematics is not strictly correct, and the additional terms from Rainey’s

formulation should not be disregarded before verifying their impact on the results.

Finally, Figure 28 compares the amplitudes of the second-order moment with respect
to the mean water line, but this time for the difference-frequency corresponding to the
natural frequency of pitch of each cylinder. Though the results obtained with METiS
follow the same trend as the ones computed with WAMIT, the agreement is not as good
as the ones observed for the horizontal force, with discrepancies that are comparable to
the ones obtained with Newman’s approximation. The reason for this is that end effects,
both related to the incoming flow and to the first-order pitch motion, are more relevant

for the moment than for the force, as they are magnified by the lever arm.

As both the vertical acceleration and the pressure have a 90° phase with respect to
the horizontal acceleration, it follows that the vertical force predicted with the slender-
body approximation has a real amplitude when the body is not allowed to move, in
opposition to the purely imaginary amplitude of the horizontal force. The same conclusion
is presented by Molin and Chen (2002) for a horizontal cylinder, which is a case where

both Rainey’s formulation and Newman’s approximation provide the same results. Thus,



114 Chapter 5.  Low-frequency wave forces on a surface-piercing cylinder

Figure 28 — Amplitude of the nondimensional second-order moment, with respect to the
mean water line, acting on the long (left - w; = 0.827) and short (right -
w;; = 0.555) cylinders calculated with and without first-order motions as a
function of the length of the shortest wave of the pair.
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the complementarity between these approximations observed for the horizontal loads can
not be exploited to analyze vertical forces. As pointed out by Molin and Chen (2002), this
behavior suggests that while Newman’s approximation models the part of the force that
could be obtained with a far-field method, the slender-body approximation models local

effects.
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6 Analysis of the JPK floating wind turbine

The JPK floating wind turbine was developed during a joint project between the University
of Sao Paulo and the University of Tokyo that aimed at designing a FOWT for Brazilian
waters (GONCALVES et al., 2018). It consists of a semi-submersible hull with a 15m
diameter central column attached to three 9 m diameter columns arranged as an equilateral
triangle, with the NREL 5MW reference turbine (JONKMAN; BUTTERFIELD, et al.,
2009) mounted on top of a tower of height 69.5 m, as illustrated in Figure 29. Among the
objectives of the project was studying fundamental aspects of the dynamics of FOW'Ts,
such as the impact of heave plates on floater motions (MELLO; MALTA, et al., 2021), the
estimation of damping levels for slow-drift surge (CARMO; MELLO, et al., 2020) and the
inclusion of rotor acrodynamics in wave tank tests (AMARAL et al., 2021).

Figure 29 — Illustration of the JPK floating wind turbine.

/’?\

The project included two experimental campaigns conducted at the wave basin of
the Numerical Offshore Tank of the University of Sao Paulo (TPN-USP) that comprised
decay tests, regular, bichromatic and irregular waves. They both used the same hull model,
built in a 1:80 scale, but they differ in that the first campaign considered waves only
and a simple horizontal mooring system composed of springs, while the second one was
moored using chain-polyethylene catenary lines and employed a wind actuator to model
aerodynamic forces on the rotor using a software-in-the-loop approach. Moreover, the first
phase included forced oscillations of the floater to evaluate hydrodynamic coefficients,

which were not repeated in the second phase due to the hull being the same. The elastic
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properties of the prototype were not preserved in model scale in neither of the phases.
Pictures of the models analyzed in each phase are given in Figure 30 (note the absence of

heave plates, which is explained ahead).

Figure 30 — Pictures of the models analyzed in the first (left) and second (right) phases of
the project.

This thesis analyzes the results obtained in the second experimental campaign,
comparing the motions of the floater under the action of waves calculated using the
slender-body approximation with the ones measured in the experiments, as well as the ones
computed with WAMIT and OpenFAST, a widely used open-source tool for the analysis of
floating wind turbines that was formerly known as FAST (JONKMAN; BUHL, 2005). The
results of the forced oscillations are used to assess the drag and added mass coefficients
that are considered in the numerical models. Though heave plates are an important
part of the design that has been extensively studied in the project, the presence of such
structures is an unnecessary complication for the purposes of this thesis, as they render
the flow more complex and make it harder to compare the slender-body approximation
with radiation/diffraction theory. Besides, because the second-order module of WAMIT is
incompatible with dipole panels, which are needed to properly represent thin elements such
as heave plates, their inclusion would require workarounds that would further complicate
the comparisons. Hence, only the version of the JPK FOWT without heave plates (which

were built to be detachable) is analyzed here.

A software-in-the-loop scheme was used to emulate the aerodynamic forces on the

rotor, but the results showed an unexpected change in the natural period of pitch that
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could not be explained yet. The main hypothesis is that the control loop is introducing a
phase shift between the calculated force and the one that is actually applied by the rotor,
but this still needs to be verified. Since explaining this phenomenon, which did not appear
in the numerical simulations, is not part of the objectives of this thesis, the experimental
results considering the concomitant action of waves and wind are, unfortunately, discarded.

Thus, only numerical results are presented in the comparisons considering wind effects.

6.1 Model properties and experimental setup

The experimental campaign was conducted at the wave basin of TPN-USP, shown in
Figure 31, which is a squared 14m x 14m x 4m (length, width, depth) tank equipped
with 152 active-absorption flap-type wave generators that can generate the incident waves
with peak periods from 0.8s to 2.5s (equivalent to about 7.2s and 22.4s in full scale) and
absorb part of the ones produced by the model (MELLO; CARNEIRO, et al., 2013).

Figure 31 — Wave basin of the Numerical Offshore Tank of the University of Sao Paulo.
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Source: Amaral et al. (2021)

The hull of the model was built in a 1:80 scale considering Froude scaling, and its
main properties are given in Table 9. The inertial properties were obtained by placing fixed
ballast weights inside the columns, and their locations were established using Edtools®?,
as illustrated in Figure 32. Due to removing the heave plates, the natural periods of heave

and pitch are quite low.

Before placing the model in the tank, four wave probes were positioned to calibrate

the waves, with one of them located at the origin of the coordinate system (the center of

LA software developed by Technomar Engenharia Oceanica https://www.technomar.com.br/
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Table 9 — Main properties of the JPK FOWT. Natural periods were obtained from decay

tests of the moored model without wind emulation.

Full scale Model Scale (1:80)
Mass 6936.0t 13.55kg
Displacement 7351.3m? 14.36 dm?®
Diameter of central column 15.0m 188 mm
Diameter of side columns 9.0m 113 mm
Pitch/roll gyradius about center of mass 21.9m 274 mm
Yaw gyradius about center of mass 20.3 m 254 mm
Draft 20.0m 250 mm
KG 15.6m 195 mm
KB 10.0m 125 mm
BM 8.9m 111 mm
GM 3.3m 41 mm
Surge/Sway natural period 86.3s 9.65s
Heave natural period 9.8s 1.09s
Pitch/Roll natural period 21.0s 2.35s
Yaw natural period 47.0s 5.25s

Figure 32 — Isometric and top views of the Edtools model showing the position of the
ballast weights inside the columns.
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the tank). During the tests, the central wave probe was replaced by the model, but the

other three were kept to measure the wave elevation and verify that they corresponded

to the expected one. The motions of the model were measured using Qualisys® optical

tracking system, consisting of four infrared cameras located on the instrumentation bridge

that tracked the position of six markers attached to the model, with a sampling frequency

of 100 Hz (which corresponds to a time discretization of 0.0894 s in full scale).
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6.1.1 Rotor-nacelle-assembly (RNA)

The JPK FOWT was designed considering the NREL 5MW reference turbine, which is
described in details in Jonkman, Butterfield, et al. (2009). In the experiments, the RNA
was represented by a wind actuator that modeled the aerodynamic thrust on the rotor
using a software-in-the-loop approach, and even though the experimental results with wind
are not discussed in this text, the ones obtained with numerical simulations are presented.
As the inertial and elastic properties of the RNA were not preserved in the experiments
(the total inertia of the FOWT is correct), only the geometric and aerodynamic properties
are relevant. The main properties of the RNA are summarized in Table 10. Since only one
wind speed was analyzed (U, = 7.8m/s) and control of the rotor was not modeled, the
rotor speed was kept constant and equal to 9.07 rpm (it was turned off during the tests

with waves only).

Table 10 — Main properties of the RNA.

Rating 5 MW
Number of blades 3
Rotor diameter 126 m
Cut-in; rated; cut-out wind speed 3m/s; 11.4m/s; 25m/s
Cut-in; rated rotor 6.9rpm; 12.1rpm
Rotor speed at U, = 7.8m/s 9.07 rpm
Hub height' 81.48 m
Hub diameter 3m
Overhang 5m
Shaft tiltf 0°
Precone 2.5°
Blade length 61.5m

fThe NREL 5MW reference turbine has a tilt angle of 5° and a hub height
of 90m, but the values above were considered in the tests.

6.1.2 Mooring system

The model was moored using three catenary mooring lines made of chain (bottom) and
polyethylene (upper) segments, as illustrated in Figure 33. The fairleads were located at
the center of the bottom of the side columns, thus 30 m distant from the axis of the central
column, the anchor radius was 543 m and the water depth 302.8m. Table 11 summarizes

the main characteristics of the mooring system.

6.1.3 Environmental conditions

Three sets of waves are considered in this work: a white-noise wave, which is used to
obtain the first-order motion RAQOs; ten bichromatic waves, for the analysis of low-

frequency surge motions (chosen in such a way that the difference-frequency between
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Figure 33 — Isometric and top views of the Edtools model illustrating the mooring lines.
The chain segment is in blue, while the one made of polyethylene is in red.
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Table 11 — Main properties of the mooring system.

Full scale Model scale (1:80)

Anchors depth 302.8m 3785 mm
Anchors radius from center 534.1m 6789 mm
Fairleads depth 20m 250 mm
Fairleads radius 30m 375 mm
Bottom segment material Chain Chain
Length 280 m 3500 mm
Mass density 1103.4kg/m 0.172kg/m
Volume-equivalent diameter 0.10m 0.0013m
Adopted drag coefficient 1.0 1.0
Upper segment material Polyethylene Polyethylenef
Length 347.6m 4345 mm
Mass density 70.0kg/m 0.011kg/m
Volume-equivalent diameter 0.10 m 0.0013 m
Adopted drag coefficient 1.0 1.0

fMore specifically, a multifilament polyethylene braided fishing line.

frequency pairs matches the natural frequency of surge observed in the decay tests, i.e.
wn1 = 0.073rad/s, which corresponds to T,,; = 86.3s); and four JONSWAP waves. Their
characteristics are given in Tables 13, 14, and 15. Besides analyses considering waves only,
the FOWT is also analyzed under the concomitant action of waves and wind (except for
the bichromatic waves). Only one wind condition is considered, consisting of a constant
speed of U,, = 7.8 m/s (measured at a height of 81.48 m above the mean water surface)

with an exponential profile with exponent 0.2, as summarized in Table 12.
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In this text, most of the analyses consider an incidence of 180° (i.e. coming from
+x to -x) for both the waves and the wind, except for a brief set of results concerning
the first-order forces for a wave incidence of 210° (a counterclockwise rotation of 30° with

respect to 180°) that are presented in Section 6.5.1.

Table 12 — Wind condition considered in the tests.

Wind speed 7.8m/s
Ref. Height 81.48m
Exponent 0.2

Air density  1.225kg/m3

Table 13 — White-noise wave characteristics.

D Full scale Model scale
Tin (8)  Thmax (8)  Hg(m) Duration (8)  Tiin (8)  Tmax (8)  Hs (mm) Duration (s)
WHIO1 6.5 25.0 0.50 1270 0.73 2.80 6.25 142

Table 14 — Characteristics of the bichromatic waves (w; — wy = 0.073rad/s). Each compo-
nent has a height equal to 1 m.

Full scale Model scale
T1 (S) T2 (S) T1 (S) Tg (S)

BICO1 897 10.00 1.00 1.12
BICO2 9.76 11.00 1.09 1.23
BICO3 10.00 11.30 1.12 1.26
BICO4 10.54 12.00 1.18 1.34
BICO5 11.00 12.60 1.23 1.41
BICO6 11.30 13.00 1.26 1.45
BICO7 12.00 13.93 134 1.56
BICO8 12.05 14.00 1.35 1.57
BIC09 13.00 15.29 145 1.71
BIC10 14.00 16.70 1.57 1.87

ID

Table 15 — Characteristics of the JONSWAP waves analyzed. They were tested for a
duration of 3h in full scale (1207s in model scale).

D Full scale Model scale Nondimensional
T,(s) Hs(m) T,(s) Hs(mm) ~  Aver. Steepness
JONO1 8.0 1.0 0.894 13 2.31 1.00%
JONO2 12.0 2.0 1.342 25 1.89 0.89%
JONO3 18.0 4.0 2.012 50 1.55 0.79%

JONO4 18.0 8.0 2.012 100 1.55 1.58%
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6.2 Forced oscillations

A set of forced oscillation tests of the whole floater in different conditions was performed to
evaluate the added mass and drag coefficients to feed the numerical models. For doing so, a
linear actuator was assembled at the center of the tank, as shown in Figure 34. The model
was attached to the actuator and forced to move either horizontally (surge and sway) or
vertically (heave) following a prescribed sinusoidal motion with six different amplitudes
and two distinct periods, as listed in Tables 16 and 17. The period of 12s was chosen to
represent a typical value of ocean waves, while 84.4s is sufficiently close to the natural
period of surge (it is the natural period of a version of the model equipped with heave
plates, which was the focus of the experimental campaign). Since the largest period is of
interest only for the surge motion, it was included in the horizontal oscillation tests only.
The force exerted by the actuator was measured using four load cells with a capacity of

10 kgf each assembled between two parallel plates, with a sampling rate of 100 Hz.

The amplitude of motion and the period of oscillation can be made nondimensional

as follows:
21 A
KC=— 6.1
i (61)
5= Re B D? (6.2)
- KC Ty '

with A the motion amplitude, D a characteristic length, v = 1.009E-6 m?/s the kinematic
viscosity of the water, T" the period of motion and Re the Reynolds number. The resulting
quantities KC' and  are, respectively, the Keulegan-Carpenter number and the frequency
parameter (SARPKAYA, 1976), which are known to be the main nondimensional numbers
that characterize the hydrodynamic coefficients of circular cylinders in sinusoidal flow
(SARPKAYA, 2010). While KC' is simply a length ratio that measures the relative
importance between drag and inertia forces, being related to the relevance of separation
effects, the frequency parameter accounts for dynamic aspects of the flow. Due to the
adoption of Froude’s scaling, the values of 5 from the experiment are not representative of

the full scale case.

Both the nondimensional parameters above were originally introduced for the
analysis of cylinders, but only forced oscillations of the whole floater were performed in
this work. While for the cylinder the choice of characteristic length is evident, this is not
the case here, and there could be some debate regarding the correct length to be chosen in
this case. For the horizontal motion of the cylinder, one reasonable choice of characteristic

length is the mean diameter of the columns:

N
1
Dy =+ ;Di —=10.5m (6.3)
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Figure 34 — Pictures of the setup of the horizontal (left) and vertical (right) forced oscilla-
tion tests.

Table 16 — Motion amplitudes of the forced oscillations and corresponding K C' values.

Amplitude (m)

KC, KC,
Full scale Model scale

0.800 0.010 0.48 0.23
1.600 0.020 0.96 0.46
2.400 0.030 1.44  0.69
3.200 0.040 1.91 0.93
4.000 0.050 2.39 1.16
4.800 0.060 2.87 1.39

Table 17 — Motion periods considered in the forced oscillations and corresponding (3 values.

Full scale Model scale
Period (s) Be 3. Period (s) Be 8.
12.0 9.11E+06 3.85E-+07 1.34 1.27TE+04 5.39E4-04
84.4 1.29E+06 - 943 1.81E+03 -

with D; the diameter of each column. For the vertical motions, the diameter of the circle

whose surface is equal to the projected area of the hull (in the z direction) is adopted:
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Besides the definition of the characteristic length, it is also necessary to choose
a characteristic volume and area to define the added mass and drag coefficients in the
horizontal and vertical directions. Following the same convention established in Chapter 3,

the volumes and areas below are considered:

N
_ 7 2 3
Ve =d > D} =17351.3m (6.5)

i=1

N 3
y, = am > (&) —2912.3m° (6.6)

3 £\ 2
N
S, =dY» D;=2840.0m’ (6.7)
=1
T N
_ 2 _ 2
S.=1 ; D? = 367.6m (6.8)

with d being the draft.

6.2.1 Results

The coefficients obtained from the forced oscillations with the procedure detailed in
Appendix E are plotted in Figure 35, which also includes the added mass coefficients
obtained with WAMIT at the corresponding period of motion.

Concerning C,,, the experimental values are within 7% of the solution considering
potential theory, which is quite a good agreement. The experimental values of C,., however,
are considerably different from the one obtained with WAMIT, with differences ranging
from 17% to 43% with respect to the potential value C,, = 0.50. This can either indicate
that viscous effects significantly affect the vertical added mass or that this larger relative

difference is simply due to the measured vertical force being smaller.

The Cp, values of both frequencies are quite similar around 1.5 < KC < 3, but
the values diverge as KC' is reduced. The general trend is very different from the one
observed by Sarpkaya (1986) for circular cylinders at low K C numbers, which would be
steady reduction of C'p as KC' increases up to a certain point, but this difference may be
attributed to the aspect ratios of the columns of the JPK floater (L/D = 1.33 for the
main column and 2.22 for the others) being far lower than that of the cylinders analyzed
in his work (L/D = 24, 12 and 6.85) and to interactions between the columns.

How to extend these results to the analysis of a structure under the action of waves,
however, is not evident. First, as only oscillations of the whole floater were performed, it
is difficult to establish the coefficients of each column of the hull. But, most importantly,

one may wonder how to account for the large array of wave frequencies that are present in
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Figure 35 — Added mass and drag coefficients obtained from the forced oscillations.
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a real sea and, if slow-drift is of interest, how to take into account the fact that the body
is simultaneously oscillating in very different frequencies (wave and slow-drift). Regarding
the added mass coefficients, a simple approach is to consider it to be the same for all the
columns. And though they have an impact on the forces calculated with the slender-body
approximation, it is more important to ensure that the resulting natural periods are
correct, which in this case is achieved within reasonable limits by considering C,, = 0.82
and C,, = 0.68 (calculated neglecting coupling effects). These values are within the range
observed in the forced oscillations, and are kept the same for all the wave conditions

analyzed in this work.

The choice of the drag coefficients, however, is not as simple. In a previous work
concerning the same model (CARMO; MELLO, et al., 2020), good results were obtained
for the slow surge of the JPK FOWT under the action of bichromatic waves by using
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Cp. obtained from the low-frequency forced oscillations, considered to be the same for all
columns. The procedure is based on calculating the K'C' number using the amplitudes of
slow surge motion measured in the experiments, A, i.e.:
_2mA,

KC,
D,

(6.9)

which corresponds to a Cp, value from the results given in Figure 35. As the numerical
analysis in that work used WAMIT, which is a frequency domain code, an equivalent
linear damping coefficient, Bfft, was calculated by imposing that it must dissipate the
same energy as the quadratic drag force at each motion cycle, resulting in the following

relation for a sinusoidal motion:
ex 8 —
Bllt = 37Twn1Ag; Bquad (610)

with Byyag = % pCp.S,: and wy,; the frequency of motion, which in this case is the difference
frequency of the bichromatic waves, chosen to be equal to the natural frequency of surge
motion. This B can be expressed in terms of the damping level, (;, defined as:
By

gl - Bfrit

(6.11)

where B{"'* = 1.90E+06 N.s/m is the critical damping in surge (considering C,, = 0.82).

This course of action was well suited to that work because the objective was to
verify the possibility of reproducing the experiments with waves using the results from
simplified model tests such as forced oscillations and decay tests. Since the tests with
bichromatic waves presented in this thesis have a similar objective, i.e. to assess whether
the force models are capable of reproducing the slow surge motion of the floater observed
in the experiments, that approach is also followed in this case. Besides, it is interesting to
make the other aspects of the problem, specially the first-order motions, as close as possible
to the experimental ones. For this reason, the same approach is followed to compute Cp.,
but this time based on the heave amplitude, given by AY = V2std(&3), where “std”
denotes the standard deviation. The resulting coefficients, including B$}* for the WAMIT
simulations, are given in Table 18. Note that some KC numbers are outside the range
analyzed in the experiments, requiring an extrapolation of the experimental data to obtain

the corresponding drag coefficients. For doing so, a cubic spline extrapolation was chosen.

On the other hand, the simulations considering a white-noise and JONSWAP waves
aim at testing METiS as a design tool, verifying its capability to reproduce the first and
second-order motions of the FOWT with and without wind. In this case, it would be
troublesome if the software required previous knowledge of the motion amplitudes to be
used, so a more predictive approach is employed to analyze these wave conditions. For the
cases considering a white-noise wave, only the first-order motions of the FOWT with and

without wind are of interest, and since heave, roll and pitch are the only degrees of freedom
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Table 18 — Motion amplitudes calculated from the experiments considering bichromatic
waves (incidence equal to 180°) without wind, with their respective Keulegan-
Carpenter numbers and resulting C,, C'p and (; obtained from forced oscilla-
tions.

Wave ID | A, (m) KC, Cp, G | AV (m) KC. Cp.
BICO1 1.7 102 068 1.6%| 14 040 1.42
BIC02 1.8  1.09 066 1.6%| 1.6 047 1.32
BIC03 1.6 094 072 1.6%| 14 042 1.38
BIC04 1.0 060 118 16%| 12 035 150
BICO05 1.0 059 120 1.6%| 11 032 1.58
BIC06 0.8 048 145 16%| 09 027 173
BICO7 0.6 033 1.95 1.6%| 09 026 1.80
BIC08 0.6 034 1.92 1.6%| 09 026 1.79
BIC09 04 024 235 13%| 07 020 2.04
BIC10 04 022 245 13%| 07 021 2.00

that have natural periods within the range of the incoming waves, only Cp, is actually
relevant (the impact of Cp, on roll/pitch is far smaller than that of Cp,). Besides, due
to the very low significant height of the sea (Hg = 0.50m), small motions are expected,
hence the coefficients should be chosen for low KC values. Considering the values at the
lowest KC' that were tested, a value of C'p, = 1.50 seems to be a good estimation, while

Cp, 1is taken as 1.0.

Though different drag coefficients are expected for different levels of motion, the
coefficients adopted for the WHIO1 wave are taken as a first estimation for the floater
in general conditions, including the JONSWAP waves, as listed in Table 19. These drag
coefficients, however, should be seen only as a reasonable estimation of the drag force
acting on the structure, and, when suitable, simulations considering other values are also
presented to assess their impact on the results. In these cases, the values adopted will be

indicated in the text.

Table 19 — Drag and added mass coefficients of the columns of the JPK considered in
general conditions, including the WHI and JON waves.

Cam Caz CDI CDZ
0.82 0.68 1.00 1.50
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6.3 Numerical models

Numerical analyzes of the JPK FOWT were performed using METiS, WAMIT and
OpenFAST. The objective is to compare the results obtained with the numerical tool
developed in this thesis not only with the experiments, but also with the responses
calculated by two state-of-the-art codes that are widely used in the analysis of FOWTs.
As each of these tools follows a different modeling approach, these comparisons evidence

the capabilities and limitations of each method.

6.3.1 WAMIT

Like in Chapter 5, WAMIT simulations were performed with version 6.106S of the software.
The submerged part of the hull was represented by a higher-order mesh and, due to the
symmetry of the problem, only one side of the body was meshed, as illustrated in Figure 36.
The interior free surface was also discretized in order to remove irregular frequencies.

There are some differences between the case without and with wind, namely an additional

is discussed at the end of this section.

Figure 36 — Higher-order mesh of the JPK floater.
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Similar to what was done in the case of the single cylinder, the panel size was set
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via the panel size parameter. Its value was chosen based on a convergence analysis of the
mean surge force with three different meshes: a coarse one, with panel size 5.0; a medium
mesh, with panel size 2.5; and a fine one with panel size 1.25. The mean surge force was
chosen to assess the numerical convergence because it is a second-order quantity that
depends only on the first-order solution, thus allowing a relatively fast evaluation of mesh
convergence. The results, illustrated in Figure 37, show that some variation between the

fine, medium and coarse mesh can be observed below 2s; but since there is no wave energy
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Figure 37 — Mean surge force on the floater for different panel sizes.
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below 4 s for any of the waves analyzed, a panel size of 5.0 would be enough. Nevertheless,

the panel size equal to 2.5 was chosen for a larger safety margin.

If WAMIT results were used only to provide first-order frequency-dependent hydro-
dynamic inputs for OpenFAST simulations (namely added mass, potential damping and
first-order diffraction loads), the specifications above would be enough. However, as the
simulations include second-order loads, it is important to properly model the first-order
motions of the body in the WAMIT analysis, meaning that mooring and viscous effects
need to be accounted for. The action of the mooring system was modeled by the following
external linear stiffness matrix, which was evaluated using the analytical formulation
proposed by Pesce, Amaral, and Franzini (2018) and Amaral (2020) around the mean
body position (taken as the initial body position, since mean drift was small for the cases

without wind):

(6.92 4 0 0 0 537¢5 0
0 6.92 cd 0  —537¢5 0 0
0 0 1.04¢5 0 0 0
Ky = 6.12
MG 0 —537¢5 0 1.07 €8 0 0 (6.12)
5.37¢5 0 0 0 1.07¢8 0
0 0 0 0 0 9.12e7

with G indicating that the moments are taken with respect to the center of gravity. The

units are kg, m and s.

Since WAMIT is a frequency-domain software, the only way to consider viscous
effects is via an external linear damping matrix. However, as viscous loads are modeled

in the other software by the quadratic drag from Morison’s equation, the damping levels
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corresponding to a given combination of drag coefficients is dependent on the amplitudes
of motions. This means that a different damping matrix should be considered for each
sea condition, but this is a very unpractical approach. Instead, for the sake of simplicity,
WAMIT simulations were performed considering one fixed external linear damping matrix
with terms B$3' and BgE' set to approximately match the first-order heave and pitch RAOs
calculated with the white-noise wave in OpenFAST, as presented later in Section 6.5.2.

The resulting values are given in Table 20.

Table 20 — External linear heave and pitch damping considered in the WAMIT simulations.

External damping Critical damping Damping level

Heave (N.s/m) 2.90E+05 1.15E+407 2.5%
Pitch (N.m.s/rad) 1.70E 108 2.37E 109 7.2%

The second-order results needed from WAMIT for the OpenFAST simulations are
the Quadratic Transfer Functions (QTFs) of surge, heave and pitch loads. They were
computed for frequencies ranging from 0.15rad/s to 1.80rad/s (roughly from 3.4s to 425s)
with a frequency resolution of 0.25rad/s. This range was chosen in such a way that the
QTF diagonals corresponding to a difference frequency close to the surge and pitch natural
frequencies (0.073rad/s and 0.299 rad/s, respectively) would encompass all the frequencies
with wave energy of the JONSWAP seas described in Section 6.1.3. As no significant slow

heave was observed, it was not taken into account to determine the frequency range.

A very useful approximation that significantly simplifies and speeds up the analysis
is to neglect the free-surface forcing terms in the solution of the second-order potential,
allowing the problem to be solved without meshing the free surface. Since this approxima-
tion is adequate for the case of a single cylinder, it is reasonable to expect that it is also
valid for the case of a structure composed of several cylinders. Nevertheless, in order to
verify whether this approximation is indeed applicable, the frequency pairs that are the
closest to a difference frequency equal to the natural frequencies of surge and pitch were
run considering the free surface mesh illustrated in Figure 38, which is a low order mesh
with 50362 panels that covers a radius of 120 m around the floater. As shown in Figure 39,
the impact of the free-surface is too small to justify the significantly larger computation
time?.

Hence, the QTFs that are considered hereafter are computed with the influence of
the second-order potential (WAMIT .12 file) but without the free-surface forcing terms,
and they are illustrated in Figure 40. The local peaks in the matrices around the natural
frequency of heave (w,3 = 0.641rad/s) can be easily seen, but it is also remarkable the

presence of peaks around the natural frequency of pitch (w,5 = 0.299rad/s) when looking

2The 119 frequency pairs took 38h when accounting for the free-surface forcing terms, while the 4489
pairs of the full QTF took 11h without the free surface using the same computer.
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Figure 38 — Free surface mesh used to check the relevance of the free-surface forcing terms
on the QTFs calculated with WAMIT.

Figure 39 — Surge and pitch QTFs at the difference frequency corresponding to their
natural frequencies 1) without the second-order potential, 2) with the second-
order potential, but neglecting the free-surface forcing terms and 3) with the
complete second-order potential.
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specifically at the diagonals that are the most relevant for the second-order heave and

pitch loads.

Besides the results that are used as inputs to OpenFAST simulations, the motions
calculated with WAMIT are also included in the comparisons considering white-noise and
bichromatic waves. As in the latter the resonance frequency of surge is excited, an external
linear damping term in surge direction, B{F', is also needed, and the procedure that was

followed to establish this value was already explained in Section 6.2.

For the simulations with nonzero wind speed, the aerodynamic loads induce addi-

tional damping and a mean displacement in both surge and pitch. Since the floater does
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Figure 40 — Color map of the nondimensional force/moment amplitude QTF matrices (left)
and their diagonals around the corresponding natural frequency of motion
for surge, heave and pitch (right). The frequency range with wave energy is
indicated in blue.
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not have an active ballast system to counteract the aerodynamic thrust, the resulting
mean inclination is not negligible, and it was shown by Amaral et al. (2021) (for the
same floater, but with heave plates) that it is indeed significant for the computation of
the hydrodynamic forces. Hence, these effects need to be considered when evaluating the
frequency-domain coefficients. In order to model them, the results of the white-noise wave
simulated in OpenFAST are used again, but this time considering the wind condition
and rotor speed specified in Sections 6.1.1 and 6.1.3. The resulting mean displacements
obtained with OpenFAST, shown later in this text to be equal to —4.7 m in surge, —5.1°
in pitch (with respect to the center of gravity) and negligible in heave, are considered
in WAMIT by displacing the mesh, as illustrated in Figure 41, and by recalculating the

mooring stiffness matrix at the displaced position:

[ 6.56 ¢4 0 —4.90¢3 0 4.72¢5 0
0 7.38ed 0 —6.19¢5 0 1.05¢5
—4.90e3 0 1.04¢5 0 —268¢5 0
K = 6.13
MG U 0 —6.19¢5 0 1.15c8 0 9.50 ¢6 (6.13)
47265 0 —2.68¢5 0 1.02¢8 0
0 1.05e5 0 9.50 €6 0 9.207|

with U, indicating that the matrix corresponds to the case with wind speed. The units

are kg, m and s.

Figure 41 — Higher-order mesh for the simulations with wind (inclination of —5.1° around

the global Y axis).

Since WAMIT is not used to assess second-order motions under the action of wind,

Top |v
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only the aerodynamic damping in pitch is relevant (it is negligible in heave and the natural
frequency of surge is outside the range of the first-order loads). A common approach for
estimating such damping effects (KVITTEM; MOAN, 2015; HEGSETH; BACHYNSKI,
2019; SOUZA; HEGSETH; BACHYNSKI, 2020) is to use a damping factor obtained by
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linearizing the thrust, Fr, with respect to the wind speed, U,,, measured at the hub:

B3 = ——(Znw — Za)? (6.14)
where the coefficient 3% can be obtained from the steady-state response of the turbine as
a function of the wind speed, given in Jonkman, Butterfield, et al. (2009) for the NREL
S5MW reference turbine. For U,, = 7.8 m/s, it is equal to 8.75e4 N.s/m. Since the vertical
distance between the hub and the center of gravity is 85.88 m, the expression above results
in B = 6.4535 e8 N.m.s, which corresponds to about 23% of the critical pitch damping.
As shown in Section 6.5.2, this value reproduces quite well the first-order pitch motion

calculated in the time-domain simulations.

Figure 42 compares the nondimensional amplitude of the force/moment QTFs
calculated with and without wind effects. For conciseness, only the diagonals that are the
closest to the corresponding natural frequency of each degree of freedom are compared.
Some differences can be observed in surge and pitch, specially around the peak of second-
order pitch moment related to the first-order pitch motion close to w; = w,5, but the most
remarkable change is the total absence of the peak of second-order heave force due to the
first-order pitch motion. However, since slow heave is unimportant in this case, the results
obtained considering either set of QTF matrices are similar, specially taking into account
the uncertainties involved in the evaluation of motions induced by second-order forces.
Nevertheless, the simulations with and without wind performed with OpenFAST consider

the QTF matrices calculated in the corresponding condition.

Figure 42 — Nondimensional force/moment amplitude QTFs (for the most relevant diago-
nals) obtained with and without wind effects.
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6.3.2 METiS

The floater was modeled in METiS by four cylinders, each representing one of the columns
of the FOWT. As already discussed in Section 6.2, the added mass and drag coefficients
are considered to be the same for all the columns, with their values obtained from the
forced oscillation tests. The ones given in Table 19 are considered in general situations and
the ones in Table 18 in the tests with bichromatic waves, with other values also adopted

in some specific conditions, as indicated when suitable.

To determine the spatial discretization for integrating the forces along the cylinders,
the horizontal drag force acting on the structure was compared for a regular wave with
incidence 180° and period of 3 s, which is one second lower than the lowest period with wave
energy in the test cases, considering three different spatial discretizations Az. The results,
given in Figure 43, show a difference of around 1% between the amplitudes calculated with
the coarse (Az = 1.00m) and the medium discretizations (Az = 0.50m), and a difference
of less than 0.1% between the medium and fine (Az = 0.25m) discretizations. Based on

that, a cylinder discretization of Az = 0.50 m was adopted.

Figure 43 — Horizontal drag force calculated with METIS for different discretizations.
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As the experimental sampling frequency is 100 Hz (model scale), the time series
obtained in the experiments has a time discretization of At, = 0.0894s. To ease the
comparisons, this value was adopted as the time step for the METIS simulations as
well. Other values were tested, namely At./2 and At./10, and the results, which are not

reproduced here, corroborate that At, is small enough to avoid numerical instabilities.

Due to the low wave amplitudes considered in some of the tests, the quadratic

drag alone is not sufficient to reproduce the damping involved in the first-order heave and
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pitch around their resonance frequencies. As already mentioned in Chapter 4, this is an
expected downside of neglecting radiation effects, but it is specially troublesome in this
work because it makes it hard to tell whether occasional differences in the second-order
forces/motions around the peaks of first-order vertical motions are due to the force model
or simply a consequence of getting the first-order motions wrong. For this reason, an

external linear damping matrix was included in the METIS simulations:
fBext = _Bexté (615)

with Beyt 33 = 1.85E+05N.s/m and Bey 55 = 2.66E+03 N.m.s/rad, which correspond to
the potential damping calculated with WAMIT at the natural periods of heave and pitch,
the only nonzero terms of the matrix. While Bey; 33 corresponds to 1.6% of the critical
heave damping, the value of Bey 55 is negligible in face of the critical pitch damping (which
is equal to 2.37E+09 N.m.s/rad), in such a way that it has an almost completely negligible

impact on the results.

In order to guarantee that the waves analyzed in the numerical simulations were
the same as the ones from the experimental tests, the records of wave elevation measured
at the center of the tank during wave calibration were used as input to the software for
each wave condition. As exemplified by the WHIO1 wave condition, illustrated in Figure 44,
the waves considered in the numerical simulations are indeed practically the same as the

ones measured in the experiments.

Figure 44 — Comparison between the wave elevation measured in the experiments and the
one simulated with METiS for the WHIO1 wave condition.
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The mooring system is modeled using the same stiffness matrices considered
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in WAMIT (given by Equations 6.12 and 6.13) and a constant force vector equal to
Fyr = —3.30E+06 Es N to account for the weight of the mooring lines.

For the simulations with the wind condition specified in Table 12, the rotor was
kept rotating at a constant velocity of 9.07rpm and an initial displacement of —4.8 m
in surge and —5.1° (with respect to the center of gravity) in pitch, which are the mean
displacements caused by the wind (the same that were used to displace the WAMIT mesh

in Section 6.3.1), were imposed to the body in order to reduce transient effects.

6.3.3 OpenFAST

OpenFAST is a framework that couples several computational modules that deal with the
different physical aspects of the coupled dynamics of floating wind turbines. The main

modeling approaches that were adopted in each of them are summarized below.

The OpenFAST module responsible for solving the structural dynamics of the
FOWT is called ElastoDyn, requiring as input the inertial and structural properties of the
different subsystems (floater, tower, blades, etc). As this work is concerned only with the
rigid body motions of the structure, only the six degrees of freedom (DoF) corresponding
to surge, sway, heave, roll, pitch and yaw were kept active, meaning that the DoFs related
to the flexibility of blades, tower and drivetrain and the ones related to the control of the
nacelle, blades and generator were not included. Just like for METiS, the simulations with
wind considered a constant rotor velocity of 9.07 rpm and an initial displacement equal
to the mean displacements caused by the wind (—4.8 m in surge and —5.1° in pitch) to

reduce transient effects.

Hydrodynamics is modeled by HydroDyn considering the time series of wave
elevation measured in the experiments. For the analyses presented in this text, wave
loads were calculated as a combination of radiation/diffraction forces, taken into account
using Cummins’ approach (CUMMINS, 1962; OGILVIE, 1964) with frequency-domain
coefficients computed with WAMIT, and the quadratic drag from Morison’s equation with
the same drag coefficients considered in METiS. One key aspect of this procedure is the
fact that the forces and resulting motions of the body are not, in general, sinusoidal, in
such a way that the inclusion of radiation loads (added mass and potential damping)
requires the following equation:

t
Fralt) = ~A(0(t) ~ [ Rt - 7)é(r)dr (6.16)
0
where A(oco) is the added mass matrix for w = 0o and the kernel R is the velocity impulse
function matrix, also known as memory function because it represents the radiation forces
due to the past motions of the body. The convergence of this convolution integral has been

determinant to the definition of the time step adopted in the simulations, as illustrated in
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Figure 45, which presents the results of numerical surge decays obtained with OpenFAST
for three different time steps. It is clear from the time series that the largest time step,
which was enough for the METiS simulations, leads to a significantly larger damping.
The graph of a PQ analysis (which is better explained in the following section) on the
right indicates that while the quadratic damping is practically the same for the three
simulations, the linear damping, which is due to wave radiation and should be almost zero
for this oscillation period, varies significantly with the choice of time step. In terms of
percentage of the critical damping, the largest time step results in a linear damping of
almost 2%, while the time steps of 8.94E-3s and 8.94E-4 s correspond to 0.3% and 0.05%,
respectively. Since the linear damping obtained with the medium time step is already quite
small and the smallest time step is prohibitive due to the resulting long simulation time,

the time step of 8.94E-3s was adopted in all OpenFAST simulations presented hereafter.

Figure 45 — Numerical surge decays obtained with OpenFAST for three different time

steps.
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The mooring system is included using MoorDyn, which uses a lumped-mass formula-
tion to model the dynamics of the mooring lines. The relevant inputs are the characteristics
of the mooring lines already given in Table 11. Since METiS does not have the capability of
properly modeling the mooring system yet, a second OpenFAST model was also analyzed
by replacing MoorDyn by a linear stiffness matrix and constant force vector equal to
the ones considered in METiS, with the objective of verifying whether the discrepancies
observed in the results are due to differences in the hydrodynamic models or to the
dynamics of the moorings. Moreover, some simulations with the complete mooring system

with their drag coefficients set to zero are also analyzed.

For the simulations with wind, the InflowWind module was used to input the wind

profile described in Table 12, while AeroDyn was employed to solve the aerodynamic forces
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on the rotor with Blade Element Momentum Theory. Since aerodynamic effects due to the
tower, such as tower shadow or the aerodynamic loads on the tower itself, are not modeled

in METiS yet, they were not included in AeroDyn either.

6.4 Decay tests results

This section compares the results of numerical decay tests in surge, heave and pitch
performed with METiS and OpenFAST with the ones obtained in the experimental
campaign. They were performed by imposing an initial displacement to the body at the
desired DoF and then letting it oscillate freely in otherwise calm waters. In the experiments,
at least five repetitions were performed for each DoF, and the experimental results presented
in the tables below are the mean of the values measured in these repetitions. Due to the
already mentioned problems regarding wind emulation in the experiments, decays with

wind are analyzed only numerically.

The data obtained from the decays are time series of motion of the DoF of interest,
as illustrated in the left part of Figure 46, for the decays without wind, and Figure 47,
for the ones with wind (the right side of these figures will be explained ahead). One of
the main results that can be obtained from these time series are the periods of motion
of each DoF, T, ., which can be readily calculated by the mean time difference between
consecutive peaks. The results, given in Table 21, show that the natural periods obtained
with the software match very well the experimental values, with the largest differences
being lower than 2%. When wind effects are included, the aerodynamic forces lead to
a small increment of the surge natural period, while the pitch motion is attenuated so
quickly that only three peaks were identified (the rest of the motion being due to coupling

with surge), and this is why the corresponding row is missing from the table.

Table 21 — Natural periods from decay tests.

Exp. (s) METIiS (s) OpenFAST (s)

*g — Surge 86.3 87.3 88.0
<= & Heave 9.8 9.8 9.7
Z % Pitch 210 21.1 20.8
=g Surge - 89.3 89.5
E ‘2 Heave - 9.8 9.7

As can be seen in Figure 47, the mean displacements induced by the wind predicted
by METiS and OpenFAST, which are also listed in Table 22, are not exactly the same.

Nevertheless, since the differences are below 3%, this is considered a good agreement.

Another important property that can be obtained from the decays is damping,
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Figure 46 — Results obtained from the decay tests without wind.
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Figure 47 — Results obtained from the decay tests with wind and rotor speeds equal to
7.8m/s and 9.07 rpm. Due to the few peaks observed in pitch, the correspond-
ing PQ analysis must be ignored.
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Table 22 — Mean displacements induced by the wind.

OpenFAST METIS

Surge (m) -4.70 -4.81
Pitch (°) 5.08 4.94
Heave (m) < 0.01

assumed to be simply the superposition of linear and quadratic terms:

Fdamp — Ba,lin éa + Ba,quad€a|éa| (617)

which also assumes that the motions at the DoF « are decoupled from the others. The
coefficients B, 1in and B, quaa are obtained using the classical PQ-method (VAN DER
VEGT, 1984 apud BURMESTER et al., 2020)3, which is based on calculating the ratio
between the decrement of successive amplitudes and their mean amplitude, AX;/X;, where
AX; = X1 — Xi, X; = 0.5(X;41 + X;) and X, is the amplitude of motion of the peak i.
The relative decrement AX;/X; is then plotted as a function of X;, and a line is fitted
through these points, as illustrated in the right side of Figures 46 and 47. The interception
of this line with the ordinate and its slope, denoted respectively as p, and q,, are related

to the damping coefficients as follows:

M,
Ba,lin - 2pa Tn7a (618)
3
Ba,quad = ganOé (619)

where M, = M, + Ao (Wn.a), thus including both body inertia and added mass.

In order to assess the impact of coupling effects, additional OpenFAST and METiS
models were run with all DoFs, except for the one of interest, disabled. Besides that, this
uncoupled version of the OpenFAST decays was also simulated without drag due to the
moorings, which is useful to evaluate their impact on the damping levels. The results
obtained in these conditions are given in Figure 48 and included in the tables discussed
ahead. It is interesting to note that, in this case, the points obtained with the PQQ method
follow the theoretical line quite well (except for the pitch motion in OpenFAST, for reasons

still unknown), showing that the spreading observed in Figure 46 is due to coupling effects.

Concerning the linear damping, given in Table 23 as a fraction of the critical
damping, (,, the first remarkable point is that the values measured in the experiments are
larger than the radiation damping predicted with WAMIT, indicating that viscous effects
also affect the linear damping coefficients. For instance, the experimental surge decay
provides (; = 1.0%, while WAMIT predicts an almost null value (it is worth reminding

the issue regarding the convergence of the memory integral in OpenFAST pointed out in

3van der Vegt, J. J. Slinger gedrag van schepen. KIVI-Lecture on Seakeeping, 1984.
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Figure 48 — PQ analysis of the decoupled decay simulations neglecting drag due to the
moorings. The experimental results are the same from the previous graphs.
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Section 6.3.3, which makes the linear damping in surge larger than it should). Though
this could be an issue for small motions, for which the linear damping is significant, it
should be negligible in face of the quadratic damping for large motions. Neither coupling
nor mooring effects impacted the linear damping obtained in the numerical simulations in
any of the DoFs.

Table 23 — Ratio between linear (By,) and critical damping obtained from decays.

Exp. (%) METiS (%) OpenFAST (%)
Coupled Decoup. Coupled Decoup. (CE°" = 0)
*g - Surge 1.0 0.0 0.0 0.3 0.3
<= & Heave 2.1 0.8 0.8 0.8 0.8
= % Pitch 05 0.0 0.0 0.0 0.0
=g Surge - 1.2 - 1.6 -
E ‘2 Heave - 0.8 - 0.9 -

Once wind is included, the linear surge damping increases about the same amount
in both software, i.e. around 1.2%, while heave changes only slightly. As already noted,
the pitch motion is attenuated after only three cycles, which is coherent with the linear
damping of 23% estimated for the WAMIT model in Section 6.3.1 with Equation 6.14.

The values obtained for the quadratic damping are given in Table 24. Regarding
surge, the ones computed with both METiS and OpenFAST are very close, meaning that
moorings do not induce significant damping in this DoF. However, it corresponds to twice

the value measured in the experiment, so that the adopted value of Cp = 1.00 is also around
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twice the one that would be necessary to match the experimental decay. Nevertheless, given
that the drag coefficient is dependent on the amplitude of motion, as shown by the forced
oscillation tests, it is reasonable to conclude that this superposition of a constant linear
and quadratic damping coefficients is too simple to properly reproduce the experiments.
In fact, the quadratic drag is expected to change between the beginning of the decay test,
where motions are large, and its end, for which motions are far smaller. For instance, if
only the first 3 points of the graph in the right of Figure 46 were used to conduct the
PQ analysis, the experimental quadratic damping would result in 1.0225E+05 N.s?.m 2,
hence within about 5% of the value calculated from the numerical simulations. Thus, even
though the values shown in Table 24 are different, this is actually a matter of tuning Cp
based on the amplitude of motion. This is confirmed in Section 6.6, where drag coefficients
chosen based on the amplitudes of motion result in good estimations of the experimental

slow surge.

Table 24 — Quadratic damping (Bquaa) from decay tests. Units for surge and heave are
N.s2.m~2, while for pitch it is N.m.s%.rad 2.

Exp METiS OpenFAST
Coupled  Decoup.  Coupled Decoup. (CH°" = 0)
% - Surge 5.35E+04 1.07E+05 1.05E+05 1.09E-+05 1.00E+05
= .2 Heave 393E+04 6.88E+04 6.88E+04 1.06E+5 7.20E+04
E ®  Pitch 4.50E+08 2.63E+08 3.04E+08 4.50E+8 3.00E+08
=g Surge - 1.08E+-05 - 1.09E+05 -
E ‘2 Heave - 7.44E4-04 - 9.68E+04 -

The same observation applies for heave, for which the quadratic drag obtained with
both software is more than 75% larger than the experimental one. But in this case, the
comparison between OpenFAST with and without drag due to the moorings shows that
this component is significant to heave motion, increasing the quadratic drag by almost
50%. When this component is neglected, Byuaa calculated with METiIS and OpenFAST

are within 5% of each other.

For pitch, the agreement between the quadratic drag calculated with OpenFAST
and the experiments is excellent, as they are practically the same. The moorings have
the same impact observed for heave, increasing the quadratic damping by 50% and, once
again, if mooring drag is neglected, the quadratic damping obtained with METiS and
OpenFAST are very close.

Finally, Table 24 shows that while the quadratic surge damping is unaffected by
the wind, it has an opposite effect on the quadratic heave damping evaluated with the
software, which is increased in METiS and reduced in OpenFAST. The reason for this

contradictory behavior between them is not clear yet.
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6.5 First-order results

6.5.1 First-order forces due to regular waves

Before verifying first-order body motions, it is useful to check the agreement of the forces
predicted with the different software. Since OpenFAST imports the potential part of
the hydrodynamic forces from WAMIT, this subsection compares the first-order forces
calculated using METiS with the ones computed with WAMIT (.3 file). As METIS is a
time-domain code, the first-order forces were obtained by running independent simulations
of the floater under the action of regular waves with periods ranging from 3s to 30 s and

constant amplitude equal to 1.0 m.

Figure 49 compares the nondimensional force/moment amplitudes in surge, heave,
pitch and yaw calculated with WAMIT and METiS for a wave incidence of 210°, with
the mean column radius R taken as length scale. For conformity with the requirements
of OpenFAST, the moments are given with respect to the intersection of the axis of the
center column with the mean waterline. Results in sway and roll are not included because
they are qualitatively similar to those of surge and pitch due to the triangular shape of
the body. In order to illustrate the impact of the choice of C; on the forces predicted by
MET]S, the results obtained with a variation of 10% around the base value C, = 0.82
are shown in the graphs as vertical bars for the METiS results. Since the force variation,

AFx, due to a given AC, is simply:

AC,

AFy = 1
=1t

(6.20)

the bars represent a constant variation of roughly 4% around the mean value in this case.
The same effect is observed for pitch and yaw, as the only difference is the lever arm, while

heave remains unchanged because it is not impacted by the value of C,,.

The results obtained with both software show a good agreement for waves with
period above 6, which is about the threshold of A/D > 5 usually adopted for Morison’s
equation when taking the mean diameter of the columns, D = 10.5, as the characteristic
length. The DoF with the worst agreement is pitch, for which the moment calculated with
METiS shows a difference of about 15% with respect to WAMIT even in long waves. The
reason, which was already pointed out in Chapter 5, is that the added mass coefficient is
supposed the same along the whole length of the columns, which is specially troublesome
for pitch because this assumption is worse in the regions where the lever is larger. My
presents a peak and a valley around 4.0s and 5.4 s that correspond approximately to wave
lengths equal to the distance between the center of the side columns and the center of the
main column (= 25.4m) and equal to the distance between the centers of two side columns
(~ 44.0m), and even though METIS provides a peak and a valley in the same periods, it

fails to match the amplitude because here scattering effects are significant. These are the
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Figure 49 — Nondimensional force/moment amplitude in surge, heave, pitch and yaw
calculated with WAMIT and METiS for a wave incidence of 210°. R = 5.25m
is the mean column radius.
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only results presented in this work that consider a wave incidence different from 180°, and
the objective was to show that the first-order yaw moment also presents an overall good

agreement in long waves.

Since the simulations considering the action of the wind take into account the
resulting mean inclination of the hull, it is important to assess the impact of this inclination
on the hydrodynamic forces. For such, Figure 50 compares the loads acting on the floater
in its undisplaced position with the ones considering the mean displacement due to the
wind, for waves with amplitude 1.0 m and incidence of 180°, hence only surge, heave and
pitch are relevant. The results change very little, with the most remarkable difference
being the appearance of a peak in the heave force around 5.4 s (wave length corresponding
to the distance between the centers of two side columns) when the floater is inclined due to
the wind, which is present in both METiS and WAMIT. The overall conclusions, however,

remain the same.
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Figure 50 — Nondimensional force/moment amplitude in surge, heave and pitch acting on
the floater considering its undisplaced position and the mean displacement
induced by the wind for a wave incidence of 180°.
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6.5.2 First-order motion RAOs

This section aims at comparing the motion Response Amplitude Operators (RAOs)
computed with WAMIT, OpenFAST and METIS with the ones measured in the experiments.
While these are directly output by WAMIT for being a frequency-domain code, the
experimental and numerical RAOs from OpenFAST and METiIS are evaluated from the
response of the floater under the action of the WHIO1 wave. The complex RAO, Q(w), of
an arbitrary response of the body, ¢(t), due to waves with elevation 7(¢) (measured at a

reference point) can be computed as follows:

Q) = ) (6.21)

where S, is the wave spectrum and S, the cross power spectral density between ¢ and 7,

which are calculated by the Fourier transform of the cross-correlation function, R,4(t), of
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the signals:
Sne(w) = /an(r)e_’m dr (6.22)
with R,, defined as:

Rpg(t) = / n(r)q(t +7)dr (6.23)

—00

and S, = S,, simply a particular case of these relations.

Equation 6.21 is valid for any wave spectrum, but it clearly does not apply to
frequencies where S, (w) = 0. Hence, to reduce distortions, the best alternative is to use
a wave spectrum with a constant amplitude within the range of frequencies of interest,
namely a white-noise wave. In reality, though, it is impossible to avoid some amplitude
variation, as shown by the spectrum of the wave WHIO1 that was already illustrated in
Figure 44. Nevertheless, it is still a very practical way to evaluate the first-order RAOs.
There are several ways to numerically compute the spectrum densities, and this work uses
Welch’s averaged, modified periodogram method (PRESS et al., 1992) with a Hamming

window with 50% overlap.

A comparison of the RAOs predicted by the numerical methods and those derived
directly from the experimental motion records, for the tests without wind effects, is
given in Figure 51. The surge motion obtained with both METiS and OpenFAST match
the experiments quite well. In heave, METiS provides results that are very close to the
experiments, while OpenFAST presents a peak that is about 20% larger. Though the
peak of heave motion calculated with WAMIT is even larger, it is sufficiently close to the
experiments for the calculation of the second-order forces, given that a predictive approach

is sought instead of calibrating coefficients until the results match the experiments.

Once again, pitch is the DoF for which METiS presents the largest discrepancies.
While the results obtained with OpenFAST and WAMIT are quite good, even though the
latter has a somewhat narrower peak that is slightly displaced to the left, METiS predicts
a peak that is about 20% larger than the experiment, which at first sight may seen to be
caused by the lack of damping due to the moorings, since it was shown to have a large
impact on the damping measured from pitch decay tests. However, it was assessed that
the damping introduced by the moorings in OpenFAST is very small in this case, in such a
way that the larger pitch peak obtained with METIS is probably due to the overestimation
of the pitch moment observed in the previous section. Nevertheless, as METIS is supposed

to be a fast and simple tool for early design stages, this difference is considered acceptable.

Both surge and heave RAOs are barely affected by the aerodynamic forces due to
the wind, at least regarding first order motions. On the other hand, the peak of pitch
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Figure 51 — Surge, heave and pitch RAOs (with respect to the CoG) for a wave incidence
of 180°.
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motion is completely flattened when wind is included in the analysis, as illustrated in

Figure 52, and the results predicted by the software are similar.

Figure 52 — Pitch RAO (with respect to the CoG) for an incidence of 180° accounting for
aerodynamic thrust on the rotor.
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6.6 Second-order surge force and motion under the action of

bichromatic waves

In order to analyze the second-order forces and motions, the first step is to verify the
agreement of the first-order motions due to the bichromatic waves, as they affect the
second-order results, which is done by comparing the first-order motion RAOs. For METiS
and the experiments, the motions at the wave frequencies were obtained from the respective
time series using the methodology presented in Section 5.2.1.2, which is also used ahead

to evaluate the forces and motions at the difference-frequency.

The general agreement observed for surge and pitch was quite good, but since their
impact on the second-order forces is small in the range of periods that was analyzed, these
results are not shown here for conciseness. Heave, on the other hand, has a significant
impact on the second-order forces, hence deserving a special attention. As shown in
Figure 53, WAMIT matches quite well the experiment (except for the lowest period),
while METiS provides good results except for the resonance peak, which is overestimated
by almost 40%. Given that the external linear damping in heave, BS:*, considered in
METIS was extracted from WAMIT, it means that the axial quadratic drag, Cp., that
was tuned based on the forced oscillation tests did not perform well in the presence of
waves. In order to assess the impact of this difference on the second-order surge force, a

second set of METiS simulations was performed with an external linear damping equal to
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twice the value presented in Section 6.3.2. Though this is not strictly correct, since the
problem is supposed to be the axial quadratic drag and not the external linear damping
adopted in METIS, it is more practical to tune BS3* because it is an unique value for all
the simulations. As can be seen in Figure 53, this is enough to obtain a heave motion

reasonably close to the experiment, which is what matters here.

Figure 53 — Heave RAO for a wave incidence of 180° obtained with the bichromatic waves.
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Figure 54 compares the second-order surge force obtained with WAMIT and METiS,
considering the drag coefficients (METiS) and external linear damping (WAMIT) obtained
from the forced oscillation tests and listed in Table 18. When body motions are not taken
into account, the results agree within 30% for 77 > 11s, i.e. A\;/Dpain &~ 12.6 (it is worth
reminding that Ay > A1), with Dy,ain the diameter of the center column. This agreement is
worse than the one observed for a single cylinder in Chapter 5, which showed a very good
agreement for fixed cylinders under the action of bichromatic waves with A;/D > 10. Here,
however, the nondimensional drafts of the columns are lower (czmam = 2.7 for the main
column and d,q = 4.4 for the side columns), and it is possible that diffraction effects

related to the interaction among columns are relevant.

Once the body is allowed to move, the forces significantly increase around the peak
of first-order heave motion, as shown in Figure 54. The effect is larger in METIS, but
the results predicted with both software get closer as the waves get longer. Bearing in
mind the relative simplicity of the force model presented in this thesis, the agreement
between METiS and WAMIT is quite good. As expected, increasing the external linear

heave damping reduces the effect due to body motion around the resonance of heave.

Even though WAMIT predicts lower forces, it provides larger motions than the ones
computed with METIS, as illustrated in Figure 55, meaning that the external damping

factors calculated with Equation 6.10 are lower than the values that actually correspond
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Figure 54 — Nondimensional second-order surge force calculated with WAMIT and METiS.
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to the drag coefficients considered in METiS. One of the possible reasons is that this
equation is valid for a purely sinusoidal motion, which was assumed to be at the frequency
of the slow surge motion, while it is known that the first-order component also impacts
the low-frequency damping when Morison’s equation is used (MOLIN, 1993). Hence, the
results show that the simple linearization approach given by Equation 6.10 does not
hold for the analysis of the slow drift induced by bichromatic waves, and it should be
modified to account for the first-order motion. If B{' is increased to about 2.5% of the
critical damping in WAMIT, the results show a much better agreement, indicating that

the required damping levels are indeed larger than the values that were evaluated.

Figure 55 — Difference-frequency second-order surge motion measured in the experiments
and calculated with WAMIT and METIS.
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Meanwhile, the agreement between METIS and the experimental second-order
surge motion is very good, except when the waves are within the heave resonance range,
for which METIS predicts motions between 50% and 90% larger than the experiment.
Although increasing the external heave damping in METiS improves the first-order heave
and, consequently, reduces the discrepancy for these waves, it is not sufficient to match the
experimental values. Since this does not occur for WAMIT with a larger B§*, it is probable
that this difference observed for METIS is, at least partially, due to radiation/diffraction
effects, as expected from the values of A;/D being close to the limit of the slender-body
approximation for the second-order forces. Nevertheless, the good agreement observed for
the longer waves attests not only the ability of the slender-body approximation to evaluate
difference-frequency second-order loads, but also the utilization of the drag coefficients
Cp, obtained from the forced oscillations. In any case, it would be interesting to properly
measure the uncertainties related to the determination of these drag coefficients, and then

propagate them to the numerical results obtained considering these coefficients.

Besides damping, another important aspect that largely impacts the slow drift is
the stiffness induced by the moorings. In the experiments, it was quite hard to measure
the properties of the mooring lines, and even though a proper evaluation of experimental
uncertainties was not conducted, they are expected to be significant. Due to the resonant
nature of the slow drift and the small damping levels involved, a small change in the
estimation of the natural period may lead to relatively large changes in the motions.
Aiming at providing a general figure of the variations that may be expected on the motions,
Figure 56 presents the results obtained with METIS considering a variation of +10%
around the mean value of Kj;¢11 = 6.92e4 N/m, showing that it leads to variations
between 20% and 30% on the slow surge motion, which emphasizes the importance of

properly estimating the stiffness induced by the mooring system.

Figure 56 — Impact of mooring stiffness (Kjs g 11) on the second-order surge motion.
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Given the usual difficulty in reproducing experimental slow drifts of FOWTs reported

in the literature, the results obtained with both software are deemed more than adequate.

6.7 Response under the action of irregular waves

The irregular waves, whose characteristics are given in Table 15, were tested for a duration
of 3h in full scale. Just like in the analysis of the WHIO1 wave, the records of wave
elevation measured at the center of the tank during wave calibration were used as input
to METiS and OpenFAST, thus guaranteeing that the waves analyzed in the numerical
simulations were the same as the ones from the experiment. The results are time series
of motion comprising components at a wide range of frequencies, as illustrated by the
excerpt of experimental surge motion given in Figure 57, in which the slow-drift motion
can be clearly distinguished from the motions at the frequencies of the waves. For this
reason, the response of the floater is assessed by computing the power spectral density
(PSD) of the time series of motions®. Like before, only surge, heave and pitch are analyzed,

as these are the only DoFs with significant motion due to the wave incidence of 180°.

Figure 57 — Excerpt of the surge motion measured in the experiments for the JONO1 wave.
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When the range of frequencies of the incoming waves does not encompass the
natural frequency of interest, the motions of the structure due to second-order wave forces
can be clearly distinguished from their first-order counterparts. In this case, it is useful to
define a metric to compare the results obtained in each of these frequency ranges, and in

this work the following is used:

Whigh
Au (o high) = 2 / S (w) dw (6.24)

Wiow

4Using Welch’s averaged, modified periodogram method with a Hamming window with 50% overlap.
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with Wiy and wpgn the frequencies that bound the range of interest. This expression is the
same one used to compute significant amplitudes of wave elevation, an interpretation that
is still valid when analyzing linear body motions. However, this is not strictly true when
this formula is applied to the motions due to second-order forces, as the nonlinearity does
not preserve the Gaussianity of the wave elevation. Nevertheless, it can still be used as a

metric to compare the numerical responses with the ones measured in the experiments.

The ranges of interest are the one of the incoming waves, i.e. the frequencies with
significant wave energy, and the ones around the surge and pitch natural frequencies (heave
is not included because its natural frequency is inside the range of the incoming waves for
all of the irregular waves analyzed). Due to the small mean drift observed for all of the
wave conditions, the surge and pitch natural frequencies remain practically the same for
all the sea states tested, as changes in the stiffness induced by the moorings are negligible.
However, since different peak periods are analyzed, distinct wje, and wpg, are required
for each sea condition. These were established by inspecting the PSDs, and the resulting
values are listed in Table 25. They are also identified in the plots by shading in light
blue the area pertaining to the frequencies of the incoming waves and in light red the
one around the natural frequency of the corresponding DoF. In some cases, these ranges

overlap, but the amplitudes are calculated in the same way regardless of that.

Table 25 — Ranges of frequencies considered for computing the amplitudes around the
surge and pitch resonances (red shaded in the graphs) and at the frequencies
of the incoming waves (blue shaded).

Wiow (rad/s)  wpign (rad/s)

8‘* JONO1 0.075 0.230
ﬁ JONO02 0.050 0.225
= JONO3 0.030 0.200
= JONO4 0.030 0.200
Surge resonance 0.004 0.020
Pitch resonance 0.033 0.058

Starting with the JONO2 wave (7, = 12.0s, H; = 2.0m), which is the sea with the
lowest peak period that is still within the expected range of validity of the slender-body
approximation, the resulting motion spectra and amplitudes are given in Figure 58 and
Table 26, respectively. To ease the comparisons between METIS and OpenFAST, the latter
was run considering a linear mooring model. The results show that even though METiS
somewhat overpredicts the vertical motions at the wave frequencies (8% in heave and 26%
in pitch), the first-order motions are well reproduced. While the heave motion predicted
with OpenFAST is also quite good, this is not the case for the pitch motion, which is about
50% larger than the experimental amplitude. The reason for this discrepancy between the
first-order pitch motion predicted with METiS and OpenFAST is not clear yet, and they
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Figure 58 — Wave elevation and motion spectra for the JON02 wave.
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Table 26 — Motion amplitudes calculated with Equation 6.24 for the JON02 wave.

Wave frequency Natural frequency
Exp. OpenFAST METiS Exp. OpenFAST METiS
Surge (m)  1.35 1.35 1.35 2.12 1.71 1.56
Heave (m) 2.73 2.85 2.95 - - -
Pitch (°)  0.58 0.87 0.73  0.88 1.40 1.15

cannot be due to the difference pointed out in Section 6.5.1 because in that case METiS
provided larger pitch moments than the ones that were considered in OpenFAST, i.e. the
opposite that is observed here.

Even though the slow surge amplitude obtained with both OpenFAST and METiS
are about 75% of the one observed in the experiment, this difference can be attributed
to the choice of drag coefficient, which, based on the forced oscillations, could be as low

as Cp, = 0.50 instead of the adopted value of 1.0. As already mentioned in Section 6.6,
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a measure of the uncertainties related to the drag coefficient would be very useful to
properly compare the numerical results with the experiments. In this text, however, only
a brief verification is performed by considering a simulation with different values of drag
coefficients, which is presented at the end of this section. For now, it is enough to point out
that the slow surge calculated with both software are very close, which is very important

for the purposes of this thesis.

On the other hand, the numerical simulations overpredict the amplitude of slow
pitch by about 30% for METIS and 60% for OpenFAST. When a dynamic mooring model
is included in OpenFAST (a simulation whose results are not shown in the graphs for
conciseness), this difference is reduced to 30%, evidencing the relevance of drag due to the
moorings to the resonant pitch motion. Then, it is reasonable to assume that the results

obtained with METiS would be much better if a dynamic mooring model was used.

For the JONO3 (7, = 18.0s, H; = 4.0m) and JON04 (7, = 18.0s, H; = 8.0m)
waves, which are mostly composed of long waves, the results, given in Figures 59 and 60
and Tables 27 and 28, show that pitch motion is largely overestimated by both METiS
and OpenFAST, indicating that the damping levels are underestimated. This also happens,
with lower intensity, to heave around its natural frequency, but this is not reflected in the
resulting amplitude because this discrepancy is diluted by the good agreement for the
other frequencies. Part of this problem is due to the lack of a dynamic mooring model, but
it is also due to the value of C'p, adopted for the models, which was insufficient. Meanwhile,

the first order surge is well captured.

However, this error on the first-order vertical motions is critical for METiS, as they
are used to compute the second-order forces, leading to the large discrepancy observed for
the slow surge motion. It is not so troublesome for OpenFAST, as what matters for this
software is the first-order motions that were calculated in WAMIT when computing the
force QTFs, in such a way that the second-order forces are independent from the results
obtained in the time-domain simulation. Though in here this may seen an advantage, given
that the results obtained with OpenFAST are better than the ones predicted by METIS, it
is actually a drawback of the more complicated method adopted by the former, since the
first-order motions that are observed in the time-domain simulations do not correspond to

the ones that were actually considered in the evaluation of the second-order forces.

Given this known issue of properly choosing the drag coefficients, which is also
faced by time domain tools based on radiation/diffraction, a valid question is whether
the slender-body approximation is able to properly reproduce the experimental motions
once these coefficients are well calibrated, provided, of course, that the wave length is long
enough. The answer is affirmative, as illustrated by Figure 61 and Table 29, which compare
the results measured in the experiments for the JON04 wave with the ones obtained
with METiS considering C'p, = 3.0 and Cp = 1.5. They show that once there is a good
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Figure 59 — Wave elevation and motion spectra for the JONO3 wave.

150

J | - —Exp | - FEw
30! 1, 0 OpenFAST| —OpenFAST - Kjn
x METiS —METiS

800 |
30}
= B
‘NE > 600 |
> 20 =
<]
> =
s S 4007
== 2y
10}
200 |
0 ‘ ‘ ‘ ‘ 0 JA ‘ '
0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25
Frequency (Hz) Frequency (Hz)

Table 27 — Motion amplitudes calculated with Equation 6.24 for the JON03 wave.

Wave frequency Natural frequency
Exp. OpenFAST METiIS Exp. OpenFAST METiS
Surge (m) 1.75 1.78 1.79 0.97 0.67 2.16
Heave (m) 2.33 2.38 2.42 - - -
Pitch (°) 2.98 5.81 4.38 2.86 5.69 4.29

agreement between the first-order motions, a good match for the second-order motions
can be obtained with a drag coefficient that is within the range observed in the forced
oscillations. Similar results are obtained for the JON0O2 and JONO3 as well, though with

different values of C'p, which, nonetheless, are still within the expected range.
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Figure 60 — Wave elevation and motion spectra for the JON04 wave.
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Table 28 — Motion amplitudes calculated with Equation 6.24 for the JON04 wave.

Wave frequency Natural frequency
Exp. OpenFAST METiIS Exp. OpenFAST METiS
Surge (m)  3.45 3.59 3.56  2.76 1.85 4.48
Heave (m) 4.39 4.47 4.59 - - -
Pitch (°) 4.95 12.17 7.31 4.71 11.92 7.10
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Figure 61 — Wave elevation and motion spectra for the JON04 wave considering adjusted
drag coefficients.
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Table 29 — Motion amplitudes calculated with Equation 6.24 for the JON04 wave consid-
ering adjusted drag coefficients.

Wave frequency Natural frequency

Exp. METiS Exp.  METIS

Surge (m)  3.45 3.53 2.76 3.03
Heave (m) 4.39 4.32 - -
Pitch (°)  4.95 549  4.71 5.23

It is remarkable that the slow surge amplitudes obtained with METiS for the JONO03
and JONO4 considering the same coefficients (Tables 27 and 28) vary almost linearly with
the wave significant height. Since the second-order force is proportional to the square of
the wave height and the slow drift motion is a resonant phenomenon, this means that

the damping must be proportional to the wave height. However, this is not the case for
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the experiment, and assuming that the second-order surge force for unitary Hg, F, is
well captured by the numerical model, a reasonable hypothesis is that there is an extra
damping factor in the experiments, vy, that is not considered in METiS. In other words, it
is reasonable to assume that the motion amplitudes for METiS and the experiment can

be described by the following relations®:

FH2
Amts = 6.25
© " mHs (6.25)
FH?
oxp = ————2— (6.26)
Yo+ nHs

and the idea here is to show that it is possible to predict the experimental response of the
JONO04 wave using the experimental and numerical amplitudes of the JONO3 only. In fact,
Equation 6.25 for the JONO3 (ams = 2.16 m and Hg = 4m) yields F'/y; = 0.54, and this
value in Equation 6.26 applied to the the same sea (aexp, = 0.97m) results in vo/7; = 4.91.
Substituting these values in Equation 6.26 provides the following amplitude for the JON04
wave:

(oxp = ——— = 2.68 (6.27)

which is within 3% of the amplitude measured in the experiments. However, it is not
possible to draw a conclusion based solely on the results for these two sea conditions,
but, unfortunately, they were the only ones tested in the experimental campaign. As the
evidence pointed out by the results above is quite interesting, a more systematic analysis
encompassing different combinations of the parameters that describe the sea is intended

in a continuation of this work.

Concerning the JONO1, which is the sea with the lowest peak period (7}, = 8.05s)
and significant height (Hs; = 1.0m), METIS fails to model the second-order motions, as
indicated by the results given in Figure 62 and Table 30. This was expected, as most of
the wave components have a period below 118 (A/Dpyaim < 12.6), hence outside the range
of validity of the slender-body approximation observed in Section 6.6. Nevertheless, the
first order motions are well captured, evidencing that diffraction effects are more relevant
to the second-order loads than for their first-order counterparts, which is reflected on
the more rigid restriction on the ratio between the wave length and the diameter of the

cylinders than the usual threshold A\/D > 5 usually adopted for Morison’s equation.

Finally, the motion amplitudes calculated from the simulations considering the
wind condition specified in Sections 6.1.1 and 6.1.3 are given in Table 31 as a ratio with
respect to the amplitudes computed without wind, while the spectra obtained for the
JONO2 are illustrated in Figure 63. Like already observed for the decay and WHIO1 tests,

heave motion is practically insensitive to the aerodynamic forces induced by the wind, and

5Thanks to Prof. Aranha for pointing out this simple model for predicting the response of the JON04
wave.
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Figure 62 — Wave elevation and motion spectra for the JONO1 wave.
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Table 30 — Motion amplitudes calculated with Equation 6.24 for the JONO1 wave.

Wave frequency Natural frequency
Exp. OpenFAST METiIS Exp. OpenFAST METiS
Surge (m)  0.20 0.20 0.19 0.30 0.22 0.10
Heave (m) 0.52 0.61 0.57 - - -
Pitch (°) 0.06 0.05 0.05 0.12 0.08 0.25

the same is true for the first-order surge motion. However, the slow surge presents changes
up to 17% when wind is included in the simulations, and even though the aerodynamic
forces introduce an additional damping, this effect is overcome by the increase of the
second-order surge force due to the inclination of the body and the reduction of mooring
stiffness due to the mean displacement. The only exception is the JONO1, for which the
slow surge amplitude is reduced. In any case, both METiS and OpenFAST predict similar

changes due to the wind.
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Table 31 — Ratio between motion amplitudes with and without wind (AY™4/A,,).

Wave frequency Natural frequency
OpenFAST METiIS OpenFAST METiS
= Surge 1.02 0.99 0.90 0.84
% Heave 1.00 1.00 - -
= Pitch 1.39 1.19 0.19 0.13
i\ Surge 1.02 1.05 1.13 1.08
CZD Heave 1.01 0.98 - -
= Pitch 0.59 0.84 0.33 0.27
®  Surge 0.97 0.99 1.11 1.01
% Heave 1.01 0.99 - -
= Pitch 0.28 0.27 0.24 0.22
= Surge 0.97 0.94 1.17 1.08
CZD Heave 1.02 1.00 - -
= Pitch 0.31 0.32 0.28 0.28

Figure 63 — Wave elevation and motion spectra for the JON02 with and without wind.
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Pitch is the DoF that is impacted the most by the wind, and METiS and OpenFAST
predict very similar amplitude changes. Nevertheless, they show significant discrepancies
when looking at the spectrum, as exemplified by the JONO1 given in Figure 64. Looking at
the region with wave energy, the OpenFAST result with wind presents a pronounced peak
that is due to coupling with heave, more specifically due to the Ass term of the added
mass matrix, which is significantly lower in METiS. This is due to the fact that the Ass
calculated with MET]S is half the value computed with WAMIT (for w = 0), which is a
consequence of taking the added mass coefficients, C, and C,., as being the same for all
the columns. This error also occurs for Ass, but this was not a problem up to now because
it is only about 10% of the corresponding moment of inertia of the body, I,,, but it is clear
that a more careful choice of added mass coefficients should be followed when either Ass
or Ass are relevant. This larger peak in OpenFAST is compensated by an almost complete
absence of motion around f = 0.12 Hz, which is not observed in METiS, in such a way
that even though the results presented in Table 31 are very similar, the corresponding

spectra of pitch motion in this case are actually quite different.

Figure 64 — Spectrum of pitch motion for the JONO1 wave with and without wind, zoomed
to show the response at the wave frequency.
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Since the main objective of the slender-body approximation is to save time, the
simulation time spent on the irregular waves is quite relevant. The three-hour METiS
simulations without wind took between 8 and 9 minutes, while the ones with wind took
15 minutes at most. Meanwhile, the OpenFAST simulations without wind and considering
a linear mooring system took about 55 minutes, which is increased to 90 minutes once
wind is included and further to roughly 120 minutes if both aerodynamics and mooring

dynamics are solved (all the simulations were performed with the same computer with
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an Intel® Core™ i7-3770 3.40GHz). Bearing in mind that this is only the time spent
to run the simulations in OpenFAST, hence it is not taking into account neither the 11
hours needed to compute the QTFs with WAMIT nor the time spent building the mesh,
it becomes clear that the slender-body approach is an interesting way of computing the

second-order motions of a FOW'T, at least for early stages of the design.

Nonetheless, as shown by the results presented in this chapter, one should be
aware of the limitations of the slender-body approximation to the analysis of second-
order motions, namely seas that correspond to A/D larger than a threshold that, based
on Chapter 5, depends on the nondimensional water depth, nondimensional difference-
frequency of interest and aspect ratio of the cylinders, but which seems to be at least 10.
Moreover, the major difficulty with this approximation lies in the proper choice of the
added mass and drag coefficients, specially the latter, which should then be determined
carefully and taking into account the associated uncertainties. This, however, is also true
for simulations based on radiation/diffraction, since these coefficients directly impact

damping levels and, consequently, the slow-drift amplitudes.

Hopefully, the analyses presented in this chapter have also demonstrated how
complex the dynamics of a FOWT is, with important couplings arising from inertial,
hydrodynamic, aerodynamic and mooring forces. Therefore, the development of numerical
tools that are capable of modeling all these effects is essential not only to design these

structures, but also to provide a better understanding of their dynamics.
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7 Conclusion

This thesis presented a slender-body approach for evaluating the first- and second-order
wave loads acting on a structure comprised of slender cylinders, aiming at modeling both
the wave frequency and slow-drift motions of floating offshore wind turbines (FOWTs).
This approach was obtained by combining the formulation proposed by Pinkster (1980)
for the second-order wave forces on floating bodies with the slender-body approximation
for the nonlinear loads on cylinders independently obtained by Madsen (1986), Rainey
(1989), and Manners (1992). This was done in such a way that their original slender-body
approach, which evaluates the forces considering the instantaneous position of the cylinder,
was modified to compute the wave loads considering the mean body position. Though this
difference may seen subtle, it results in a huge reduction of computational cost for the
simulation of real sea conditions because it allows to replace the simple summation of the
contribution due to each wave component by an IFFT algorithm to compute the time
series of wave kinematics and second-order wave loads. The force model is complemented
with the quadratic drag term from Morison’s equation and additional axial forces that are
similar to the ones usually included when modeling floating structures with this equation.
The resulting approach is, then, quite handy because the wave loads, up to second order,
can be evaluated directly in time domain concomitantly with the other forces acting on
the body, in opposition to the common approach of using hydrodynamic coefficients that

need to be pre-computed in frequency domain.

This, however, comes with a cost. While Pinkster’s formulation, which is the one
followed by most radiation/diffraction codes, requires the wave steepness and body motions
to be small, Rainey’s formulation neglects wave radiation and scattering effects, besides
modeling end effects due to the extremities of the cylinder in a very simplified way.
Since the former is already adopted by the majority of the modern software used for
the seakeeping analysis of FOW'Ts, the approach proposed in this thesis introduces the
restrictions of the latter, which are acceptable as long as the diameter of the cylinders that
compose the structure are small compared to their draft and to the incoming wave length.
Moreover, structures that are not comprised of cylinders cannot, of course, be analyzed
with this method. Though these conditions may be too restrictive for modern O&G spars
and semi-submersibles, which have large diameter columns, it is satisfied by most FOWT

concepts in many significant wave conditions.

The implementation of this method led to the development of METiS-USP (Morison
Equation Time Domain Simulation - University of Sao Paulo), a numerical tool for the
seakeeping analysis of floating offshore wind turbines. At present, METiS is capable of

evaluating the aerodynamic loads on the rotor with Blade Element Momentum Theory
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and the first- and second-order wave loads on the floater using the slender-body approach
presented in this thesis. Since the computation of the second-order wave forces requires the
first-order motions to be obtained in advance, at each time step the equations of motion
are first solved considering only the linear terms (first-order problem) and, then, the results
are used to compute the total forces acting on the body and the corresponding total
motions. In order to numerically integrate the equations of motion, a standard 4" order
Runge-Kutta method with fixed step was adopted. The development of METIS is intended
to be continued in the future with the contribution of other members of the research group,
who have been studying other disciplines that are important to the coupled dynamics
of a FOWT, such as rotor dynamics and control, elasticity and mooring dynamics. The
goal is not only to have a new tool available for the analysis of such devices (especially
considering that there are other codes - even open-source ones - that do this job in a very
complete manner), but mainly to count with an in-house development upon which the
performance of alternative approaches, mathematical models or solving algorithms can be
tested.

In order to verify the slender-body approach and establish the conditions in which
it is acceptable, the simple case of a single surface piercing cylinder under the action of
long-crested bichromatic waves was analyzed for different combinations of the dimensionless
parameters that describe the problem. First, the cylinder was taken as bottom mounted,
which is a classic hydrodynamic problem with analytical solution for both diffraction theory
(KIM; YUE, 1990) and the slender-body approximation. By separating the loads due to
the undisturbed incident waves from the flow perturbation introduced by the body, it was
shown that the complex amplitudes of the former are purely imaginary numbers, while
the complex amplitudes of the latter have a real part that is associated with diffraction
effects, which are increasingly relevant as the ratio of wave length to the diameter of the
cylinder, A\/D, gets smaller. It is remarkable that the slender-body approximation, which
provides purely imaginary complex amplitudes for all the force components, models very
well the imaginary part of the loads even for the shortest waves that were analyzed (i.e.
A/D = 0.5), evidencing that the problem with the slender-body approximation comes,
indeed, from the approximated treatment of the diffraction potential that neglects effects
such as wave scattering. Though it is difficult to point out a threshold in terms of A/D
above which these effects are negligible, as the relative relevance of the different force
components, notably the one due to the second-order potential, are dependent on the other
parameters that characterize the problem, it seems that A/D > 10 is a good general value
for the validity of the slender-body approximation. This is the same threshold indicated
by Rainey (1995) for the validity of his formulation.

On the other hand, Newman’s approximation, which is based on approximating
the difference-frequency loads from the mean loads, is only capable of modeling the real

part of the force, hence only the part of the force that is due to diffraction effects. Besides
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being fundamentally interesting for highlighting the physical differences between these two
approximations, this observation is quite useful in practical terms, for it indicates that
the different approaches (namely, Newman’s and the slender-body approximations) can
possibly be combined to obtain the total difference-frequency second-order force without

accounting for the same effects twice.

The complexity of the test case was then increased, and two different floating
cylinders were analyzed in order to assess the impact of the first-order motions on the
second-order loads. Since this case does not have an analytical solution, the solution
with the slender-body approximation was obtained with METIS, while WAMIT was used
to solve the problem with radiation/diffraction theory. A good general agreement was
observed for the horizontal force for A\/D > 10, which is the same threshold observed for
the bottom mounted cylinder, but the agreement was not as good for the second-order
moment (given with respect to the mean water line). The reason for this is that end effects,
both related to the incoming flow and to the first-order pitch motion, are more relevant

for the moment than for the force, as they are magnified by the lever arm.

However, in opposition to the fixed case, the second-order force calculated with
MET]S has a non-zero real part, in such a way that the complementarity between Newman’s
and the slender-body approximation is not as easy to be exploited (some suggestions of
possible alternatives are given ahead in Section 7.1). Furthermore, as both the vertical
acceleration and the pressure have a 90° phase with respect to the horizontal acceleration,
it follows that the vertical force predicted with the slender-body approximation has a real
amplitude even when the body is not allowed to move, in such a way that there is no

complementarity with Newman’s approximation for the vertical forces.

For both of the test cases discussed above, it is noteworthy the relevance of the force
terms from Rainey’s formulation that are usually not included in analyzes that extend
Morison’s equation to model second-order wave loads. In the discussion concerning the
bottom mounted cylinder, it was shown that both the convective and axial-divergence
accelerations need to be considered in order to match the force arising from the pressure
drop due to the velocity squared (force component II from Pinkster (1980)), while the
relevance of the rotation force term from Rainey’s formulation was evidenced in the
analysis of the floating cylinders. Therefore, it was shown that the common practice of
analyzing second-order loads by simply applying Morison’s equation with second-order wave
kinematics is not strictly correct, since these additional terms from Rainey’s formulation

should not be disregarded before verifying their impact on the results.

The method was then applied to the analysis of the JPK FOWT, a semi-submersible
FOWT model, moored by three caternary lines, that was tested at the wave basin of
the Numerical Offshore Tank of the University of Sao Paulo. Three sets of tests were

presented: forced oscillations of the hull, which were used to assess the added mass and
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drag coeflicients to be considered in the numerical models; free decays of the moored
model; and motions under the action of waves (bichromatic, JONSWAP and white-noise)
and wind. The results obtained with METiS were compared with the experiments and
with the ones computed with WAMIT and OpenFAST.

Several conclusions were drawn from the decay tests, which were analyzed using
the classic PQQ method, but the most remarkable ones are that the numerical tools could
predict very well the oscillation periods measured in the experiments; that viscous effects
seem to impact not only the quadratic part of the damping, but also its linear part, as the
values obtained from wave radiation were not enough; that drag due to the moorings has a
significant impact on heave and pitch motion, but not in surge; and that the wind almost
completely dampens the pitch motion. Moreover, the changes introduced by the wind were
very similar in both software, which was a useful step of validation for the aerodynamic

calculations considering body motions.

Then, the first-order wave forces obtained with METiS were compared with the
ones computed with WAMIT. The loads in the six degrees of freedom showed a good
agreement for waves with period above 6s, which is about the threshold of \/D > 5
usually adopted for Morison’s equation when taking the mean diameter of the columns,
D = 10.5, as the characteristic length. The first-order motion RAOs, obtained from the
experiments, METIS and OpenFAST via the response of the floater under the action of a
white-noise wave, also matched quite well. For both forces and motions, the DoF with the
worst agreement for METIS was, once again, pitch, and the reason is the same that was
already pointed out for the floating cylinder. Nevertheless, this is acceptable, since METiS
is supposed to be a fast and simple tool for early design stages. When wind was included,
the peak of pitch motion was completely flattened, with the different software providing

similar results.

The second-order surge force was then verified for the JPK FOWT under the action
of bichromatic waves. When body motions were not taken into account, the results obtained
with METiS were within 30% of the ones calculated with WAMIT for A1/ Dy ~ 12.6
(with Dyyain the diameter of the center column), an agreement that is worse than the one
previously observed for a single cylinder. At present, it is still unknown exactly why this
happens, but it is worth pointing out that the nondimensional drafts of the columns of
the JPK are lower than the ones of the floating cylinders analyzed in this text, and it is
possible that diffraction effects related to the interaction between columns are relevant.
Once the body was allowed to move, the forces significantly increased around the peak of
first-order heave motion. This effect was larger in METiS, but the results predicted with
both software got closer as the waves got longer. Bearing in mind the relative simplicity of
the force model presented in this thesis, the agreement between METiIS and WAMIT can

be considered quite good.
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The motions induced by the second-order surge force were also compared with the
ones measured in the experiment. In order to damp the motions, a set of drag coefficients
was established based on the amplitudes of slow-drift motion measured in the experiments
and the results obtained from the forced oscillation tests, yielding different values of
drag coefficients, ranging between Cp, = 0.66 and Cp, = 2.45, for each wave condition
simulated in METiS. Though three out of the ten bichromatic waves showed significant
discrepancies, which were attributed, at least partially, to radiation/diffraction effects,
the general agreement observed between METIS and the experiment was remarkably
good. This attested not only the utilization of the slender-body approximation to evaluate
difference-frequency second-order loads, but also the drag coefficients C'p, obtained from

the forced oscillations.

For the WAMIT analyzes, the drag coefficients were linearized (based, again, on
the amplitudes of slow-drift motion measured in the experiments) to provide a linear
external damping, B, to partly account for viscous effects. Even though this procedure
results in a reasonable estimation of the second-order surge motion, it was concluded that
these values of Bff* underestimated the damping levels that actually correspond to the
drag coefficients considered in METIS. By increasing BT, the results showed a much
better agreement with the experiments, indicating that the required damping levels were
indeed larger than the ones evaluated with the linearization procedure. The importance of
properly estimating the stiffness induced by the mooring system was also emphasized by

showing results with different stiffness values.

Finally, the JPK FOWT was analyzed under the action of four distinct JONSWAP
waves. As expected, METIS performed poorly for the sea condition mostly composed of
short waves (7, = 8.0s), but the performance was quite satisfactory for the wave conditions
comprised of longer waves (1, = 12.0s and 7}, = 18.0s). The modeling difficulties that
were faced were not related to the slender-body approximation itself, but were rather
due to the lack of a dynamic mooring model and the difficulty of establishing the drag
coefficients, a problem that is faced by other engineering tools that are currently employed
in the design of FOW's. It is also worth mentioning that the JPK FOW'T was only
considered in this text because it was the one with experimental results available, and
there are other structures, such as spars or even other concepts of semi-submersibles, that
would be more suitable to be analyzed with the slender-body approximation for being

comprised of cylinders with smaller diameters.

A very important aspect is that METIS simulations were significantly faster than
the ones using OpenFAST, besides being far simpler to run for not requiring pre-computed
hydrodynamic coefficients. Therefore, given the results presented in this thesis, the slender-
body approach could be quite useful to compute the slow-drift motions of a FOWT in

long waves, which is the case, for instance, of analyzes considering extreme sea conditions.
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Moreover, since the software is also able to analyze aerodynamic and first-order hydrody-
namic loads on both floating and fixed structures, it is an useful tool for other relevant

problems.

7.1 Future work

Several lines of future work could follow this thesis, both concerning a deeper investigation
of the slender-body approximation and further developments of the numerical tool, and

the ones listed below are those that were considered to be the most relevant:

e The complementarity between the slender-body and Newman’s approximation is
not so easy to be exploited in time domain once body motions are taken into
account. Some alternatives that may be investigated are to consider only the force
components that contribute the most to the imaginary part of the force predicted
with the slender-body approximation; take body motions into account in only one of
the approximations, while the body is kept fixed to compute the loads with the other;
or, perhaps, simply shift from one approximation to the other for wave components
with A\/D above a certain threshold;

e One major disadvantage of the slender-body approximation is that it is not well
suited to evaluate the mean drifts of the body. However, if end effects and first-order
motions are completely neglected, the analytical solution of the potential flow round
a vertical cylinder can be obtained using the same procedure employed for the bottom
mounted vertical cylinder (KIM; YUE, 1989, 1990). As this problem is more relevant
for short waves, for which both end effects and first-order body motions are indeed
frequently negligible, this may be a good approach to compute the mean loads and,
perhaps, even the part of the difference-frequency forces that are missing from the
slender-body approximation. Modifications would be needed, of course, for inclined

cylinders;

e Though this work dealt exclusively with the difference-frequency second-order forces,
a possible application of the software would be to analyze the sum-frequency loads

on fixed structures, which is a relevant issue for fixed offshore wind turbines;

e As briefly discussed in Section 3.7, there are evidences in the literature suggesting
that the simple quadratic drag term from Morison’s equation is not sufficient to
properly model the viscous drag in floating structures, which is corroborated by the
results presented in this thesis. Investigating alternative force models to this part of

the loads is, then, an important topic;

e A better understanding of the flow around the floater is necessary to establish good

practices for the selection of the added mass and drag coefficients to be adopted
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in numerical simulations, which could hopefully be obtained though additional
experimental campaigns and numerical simulations with CFD software. Forced
oscillation tests considering the action of more than one frequency of motion, or
performed under the action of waves instead of calm waters, could be very useful,

and a formal assessment of uncertainties would be very welcome;

e Besides establishing the limitations of the slender-body approximation in terms of
the parameters that describe a cylinder, such as done in Chapter 5, it would be
useful to perform a similar assessment regarding the interactions between different
cylinders that compose a structure, for instance in terms of the distance between

two columns that is needed to obtain good results with the approximation;

e A substantial amount of work can be done to improve METiS as an engineering
tool. The most critical at the moment would be the implementation of a dynamic

mooring model; elasticity of blades and tower; and control of blades and rotor.
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APPENDIX A — Added mass matrix

As discussed in Section 3.3.4, the hydrodynamic forces and moments due to the acceleration
of a point on the cylinder axis are divided in two parts: one that is due to the centripetal
acceleration, which depends only on the rotational velocity & r of the body, and another
that is linearly proportional to the acceleration €. The first part is kept with the other
hydrodynamic forces on the right side of the equations of motion, while the second one
is included as a matrix that is added to the inertia of the body. The objective of this
appendix is to explain how this matrix is calculated, starting by the expression of the

force that depends linearly on the acceleration of of the body:

Lo
wD? . . .
F; =— 1 pC, / [xl(z) e + (=) 92} dz — pCuy Vi Z €3 (A1)
0
and the respective moment
Lo
7D? . .
M;, = — — Co [ [xB(2) —xc] A [#1(2) €1 + iii(2) 2] dz
0 (A.2)

—pCav Vr [XB(O) — XG} N Zjes

in which the same notation of Chapter 3 is adopted, with the origin of the local coordinate
system of the cylinder, O, taken at its bottom. The linear component of the acceleration,

%(2), is given by:

() = Ep + Ep A [x6(2) - xc]
= &+ &[28(2) - Za] - &[Ya(2) - o] |Ex
+ &+ &[Xs(2) - Xa] — &4[Zs(2) - Za] |Ex

+[6+Eae) - Y] - &[Xa() - Xe][Es

however, as Equations A.1 and A.2 are written in terms of the components in the local

reference frame, it is necessary to project Equation A.3 onto e, e, and es:
..%"l(Z) = }“(l(Z) - e yl(Z) = XI(Z) + €9 2[(2) = 5([(2) - €3 (A4)

For clarity, F;, and M;, are broken down in two components: one due to the forces
along the length of the cylinder, F;, p and Mj, p, and one due to its extremities, Fj, s,
M, b, Fi, ¢, My, (standing for bottom and top, respectively). In the end, the added mass

matrix is the sum of matrices corresponding to each of these components:

A=Ap+ A, + A (A.5)
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which have very similar expressions, hence the procedure will be illustrated for Ap only.

The linear added mass of each cylinder section, considered to be constant along its

length, is:
nD?
4

A:

pCa (A.6)

The forces and moments can be obtained by replacing Equations A.3 and A.4 in
Equations A.1 and A.2. The components of the forces and moments in the directions X,
Y, and Z are:

L
Fi p-E1 = —A/{ [51 +&(2p(2) — Za] — &6 [YB(2) — YGH |:(el Eq1)? + (e2 ~E1)2]
0
+ [52 +&[Xp(2) — Xa] — & Zp(2) - ZGH [(e1 -Ez)(e1 - Eq) + (e2 - Ez)(e2 - El)} (A7)

+ [+ &[VB(2) - Yo] - & [Xa(2) - X6]| [(e1 - Bs)(er - E1) + (e Es)(ez - Eu)| } dz

L
Fi,p-Bp = —A/{ (& +&[Zp(2) ~ Za] — &[Vi(2) - Yo] | [(e1 - Ex)(er - Ea) + (e2 - Ex)(e2 - Ea)]

+ [52 +&[Xp(2) — Xa] — &[Zp(2) — ZGH [(91 “Eg)? + (e - Ez)ﬂ (A.8)

+ [53 +&[Vs(2) - Yo] - &[Xp(2) — XG]] [(e1 ‘Es)(e; - Eo) + (e - Eg)(es - Ez)} } dz

L

Fi p-Es= —A/{ [51 + &5 [Zp(2) — Za] — &6 [Yi(z) — YGH [(91 -Ej)(e1-E3) + (e2 - E1)(e2 E3)}

+ &+ & [Xn(2) — Xo] — &[Zn(2) - Zo] | |(e1 - Ba)(er - Ea) + (€2 Ea)(ez - Eo)| (A.9)

+ [+ 4B (2) — Yol - &[Xn(2) - Xa] | [(e1 - By)? + (e2 - B)?| } dz

where L is the wetted length of the cylinder. If the mean position of the body is considered,

then L = Lo, while L(t) = Lo+ LM(t) if the instantaneous first-order position of the body
is considered. The former results in the matrix A, while the latter yields the time varying
added mass matrix A(Tl ), both introduced in Chapter 3.

For the moments Mj;,, it is still necessary to evaluate the following cross product:
xp(2) — x| Akp(2) = |[(Va(2) — Ya)Bs — (Zp(2) — Z&)E)] - xp(z)] E,
+ [(Zs(2) = Z6) By — (X5(2) — X¢)Es] -xp(z)] E, (A.10)

+ :[(XB(Z) — Xg)Ey — (Yn(2) — Yo)Ey] - xp(z)] B,
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M;, p-E; =~ A/[YB(Z) - YG]{ [53 +&[YB(2) — Yo] — &[XB(2) — XG” [(el -E3)” + (e2- Ea)Z}
0
+[& + [ Xn(2) — Xa] — &[Zs(2) - Za] | |(e1 - Ea) (€1 - Eo) + (e2 - Ea)(ez - Eo)|

+[& + &5 [28(2) - Za] - €6[Y(2) — Ya] | [(e1 - Ex)(er - Es) + (e2 - Ex) ez - E)| }

—1ZB(2) - ZG}{ [52 +&[Xp(2) — Xa] — [ Zp(2) — ZGH [(91 “E2)? + (e2 Ez)Q}
+[& +&5[28(2) - Za] - €6[Y(2) — Ya] | [(e1 - Bu)(er - Ez) + (e2 - Ea)(ez - Eo)|

+ [53 +&[Va(2) - Yo] - &[Xp(2) - XG” [(91 -E3)(e1 - E2) + (e2 - E3)(ez - Ez)} } dz
(A.11)

L

M, .p-Ey=— A/[ZB(Z) - ZG]{ {51 +&[Zp(2) — Za] — &6 [YB(2) — YG” [(91 "E1)? + (e2- E1)2}
0

+[& +E6[Xn(2) — Xo] = &[Zs(2) - Za] | |(e1 - Ea) €1 - En) + (e2 - Ea)(ez - En))

+ €+ & [Vi(2) — Yo] - & [Xn(2) - X]|[(e1 - Bs)(er - Bx) + (e2 - Es)(ez - By }

— [XB(2) - XG]{ {53 +&[YB(2) - Yo] — &5 [XB(2) - Xc” {(61 -E3)? + (e - Eg)ﬂ
+[& + [ Xn(2) — Xa] — &[Zs(2) - Za] | [(e1 - Ea)(er - Eo) + (e2 - Ea)(ez - Ey)|

+ [fl + &5 [Zp(2) — Zc] — &6 [Ya(z) — YGH [(91 -Eq)(e1 - E3) + (e3- Eq)(eq E3)} } dz
(A.12)

L

M;, p--E3=— A/[XB(Z) - XG]{ [52 +& [XB(2) — Xa| - €4 (Zp(z) — ZG” {(91 E2)? + (es EQ)Q}
0

+[& +&5[28(2) - Za] - €6[Y(2) — Ya] | [(e1 - Eu)(er - Ez) + (e2 - Ea)(ez - E)|

+[53 +&[YB(2) — Yo| - &[XB(2) - XG” [(61 -E3)(e1 - Ez) + (e2 - E3)(e2 Ez)} }

—[YB(2) - YG]{ [51 +&[Zp(2) — Za] — &6 [YB(2) — YG” [(61 “E1)? + (e2 E1)2}



188 APPENDIX A. Added mass matriz

+|& +&[Xn(2) — Xa] — €[ Z8(2) - Zo]|[(e1 - Ba)(e1 - B) + (ez - Ex)(ez - 1))

+ {53 +&[YB(2) - Yo] — &5 [XB(2) — XGH [(91 -E3)(e1 - E1) + (e2- E3)(e2 El)} } dz

(A.13)
It is possible to write the forces and moments above as F; p = —Ap é, with the
different terms of Ap = A][f;] given by:
ALIZ] =AL [(el ~Ep) (e1 . Eq) + (82 . Ep) (82 . Eq)] ds for p,q=1,2,3 (A.14)
L
AP = A/{[YB(Z) ~vg)? {(e1 "E3)” + (es- E3)2]
0
+ [ZB(Z) _ Zg}Q [(el . E2)2 + (62 . E2)2] (A.15)
—2(Yp(2) — Yol Zn(2) — Za) [(e1 - Ba) (e1 - Bs) + (e2 - Es) (2 - Bo) | } dz
L
A[slg] = A/{[XB(Z) - XGP [(61 : E3)2 + (62 : EB)Q}
+ [ZB(Z) . ZG}Q |:(e1 . E1)2 + (62 . EI)Q} (A.16)
~2[X(2) ~ XallZp(2) ~ Za] [(er - B1) (o1 - By) + (o2 B) (e2 - By) | 2
L
AP) = A/ (e1-Es)” + (es- E2)2}
F[Yp(2) - Yol [(61 "B+ (e .Elﬂ (A.17)
—2[Xp(2) - Xc][Y(2) ~ Ya] |(e1 - E1) (e1 - Ea) + (e2 - Bx) (o2 - Bp) | } dz
L
AL = AR = {50 =76l [t B 1) + 2 ) e ) A
[ZB< ) Zg] [(el -El)(el EQ) + (62 'E1>(82 Ez):|}d2
L
— [XB(Z) - Xg] {(el . El) (e1 : Eg) + (6‘2 . E1) (6‘2 . Eg)} } dz
APT = Al = A O/ {IX5(2) - Xa] |(e1-E1) (e1 - E2) + (e2 Ex) (e Bx) a20)

~ [V3(2) - Yol [(e1 - E1)* + (e2 - E1)’| } 2
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25_ 52_A

P P
A[%] = Aéz] =A

P P
Agﬁ] = Aé?,] =A

AP AP ) O/ {IV5(2) = Yol [(e1 - Ba) (o1 - By) + (€2 - Bn) (e - B)] e
~[28(2) — Za) | (o1 B2)” + (e2- Bn)| a2
o/ i) o Ba) + (o ) ez ) (A22)
~ [X5(2) — Xl [( Ez)(e1 - Bs) + (2 Fz) (e Ey)| } a2
0/ {5~ Xel [ (o1 B2) + (2 )| (A.23)
~ [Y5(2) ~ Yo] [(e1 - Er) (e1 - Ez) + (3 Ea) (€3 - E2) | } dz
A= A8 = f () [ B e o
~[Z8(2) — Za) | (e1- Bz) (e1 - Bs) + (2 Ba) (e2 - By)| }
0/ Ei)(e1-E;3) + (ez-Eq)(ez - E3)} (A.25)
~ [Xa(2) - Xl [( Bs)’+ (e Ba)’| } ds
O/{[XB(Z) ~ Xdl [(e1 “Es)(e1 - Es) + (€2 Es) (es - ES)} a6,

— [Y5(2) - Yo] [(e1 - Er) (e1 - Es) + (3 Ea) (€3 - Es) | } dz

L

A =& [{~1Xa(2) - XclYa(2) - Yol [(e1- Ba)’ + (2 Ba)’]

46_ 64_A

0
+ [Xp(2) - XellZB(2) — Zd] [(91 “E)(e1-E3) + (e2- Ez)(e2 Es)} (A2
+ [YB(Z) — Yg] [ZB(Z) — ZG} [(el . El) (81 . Eg) + (02 . El) (92 . Eg):|

~[28(2) = Za)* |(e1 - 1) (e1 Ba) + (e2- Br) (e2 - En) | } d2

/ — Xa]lY(2) — Y] [(el Es)(e1-E3) + (e2-Es)(es - ES)}
~ [X5(2) - Xa|[Z5(2) - Zo) [(e1 - Fa) + (e2 - Ea)’|
~[Yi(2) - Yol [(el “E1)(e1 - Es) + (e2-Ey)(es- Eg)}

+ [YB(Z) — Yg] [ZB<Z) — Zg] |:(61 . El) (61 . Eg) + (eg . El) (e1 . E2)i| } dz
(A.28)
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L

AL = Al =& [{~1X0() ~ Xa [(e1 Bx) (e1 Ba) + (e2 - Ba) 1 - Ba)|
0

+ [XB(2) — Xq][Ya(2) — Yd] [(el "Ei) (o1 Es) + (e2 - Eu) (e E?’)] (A.29)

+ [Xp(2) = XcllZp(2) — Za] [(e1 - Ex) (e1 - Ez) + (€2 Ex) (€3 - Eo) |

—Vi(2) - Y&l [Zs(2) — Zc] [(e1 “E1)? + (en- EI)Q} } dz

The procedure for the contribution of the extremities of the cylinder is the same,

resulting in very similar expressions. For example the term Aébé is:

A[sbé = A[6b5] = pCuy VR{—[XB(O) — Xc)*(e3 - Es) (e3 - Es)

+ [XB(O) - Xg] [YB(O) - Yg] (83 : El) (63 : E3)

A.30
+[X5(0) = X6][Z8(0) — Za)(es - Ey) (es - E) 30

~ [V5(0) — Ya)l Z5(0) — Za](es - B1)*}

and, as in Section 3.6, the contribution of an extremity of the cylinder is null if it is above

the mean waterline.

The added mass matrix of the body is obtained by summing the contribution of all
N,

the cylinders that compose the structure, i.e. A = Z A;.
j=1
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APPENDIX B - Analytical integration of

the forces due to the local acceleration

Following the slender-body approach presented in this text and using the same notation
as Chapter 3, the forces due to the local acceleration of the fluid acting along the length

of a cylinder are given by:

Lo

[/ ou) ou®)
¥ = ey [(20 o) e s (7 ) el a: m
J _
Lo ~ - B
P / prR (14 C,) (%-eﬁo)) el + (%-e?’) eéo)} dz (B.2)

0

with the origin of the local coordinate system of the cylinder, O, taken at its bottom. The
moments with respect to the bottom of the cylinder are obtained by considering the lever

z in the expressions above.

The accelerations are obtained by differentiating the velocity potentials given by
Equation 3.33 (first-order) and Equation 3.35 (difference-frequency second-order). To ease

the expressions, they are rewritten in the following way:

j=1 1=1
with
alt) = A {cosh (k;(Z + b))k, — ik;sinh (k;(Z + h))Eg} ki X (B.5)
a; = A [cosh (Ik5,1(Z + h))k;; — il|k;, || sinh ([[k;,[|(Z + h))Eg] e X (B.6)
and
kj = k’j COS /BEl + k’j sin BEQ (B?)
= (kjcos B — kycos By)Eqy + (kjsin 85 — ki sin 5;) Ey (B.8)
(1) _igAj (Bg)

i cosh(k;h)
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Wy — W
cosh (||k; — ki||h)
where 7y, is given by Equation 3.37. Though it may be rather annoying to read the equations

R
'Ajl = 5(%’1 + ) (B.10)

when written in such an indirect way, this notation makes it easier to integrate the fluid
acceleration along the cylinder because the spatial dependency is concisely expressed
in Equations B.5 and B.6. Besides, aj; is basically the same expression as a§-1), with k;
replacing k; and A instead of .A§-1), in such a way that the results obtained for the
integration of ag»l) can be readily extended for aj;. For this reason, the procedure below

will be performed for ag-l) only.

The position of the cylinder is described by the location of the bottom and top
extremities of its axis, denoted by (X1, Y1, Z1) and (X5, Ys, Z5). If the top extremity is above
the mean waterline, the point with coordinates (X3, Ys, Z5) is taken as the intersection
of the cylinder axis with the mean waterline, so that the wetted length of the cylinder is
Lo = /(Xo — X1)2 + (Zy — Z1)® + (Zo — Z1)2. The inclination of the cylinder axis with

respect to the vertical is denoted by «, while the angle between the projection of the

cylinder with the plane XY with the X axis is denoted by 1, thus yielding the following:

E, -ego) = cosfcosv E; - ego) = —cosfsiny

E, e’ = cosOsi E, ey = cosd

9+ € =cosfsiny 9+ €y = cosfcos (B.11)
E3~e§0):sin«9 E3-eg0):0

and, finally:

ag-l)- el = .A;ij {cosh (kj(Z + h)) cosacos(8 — ) — isinh (k;(Z + h)) sina| eF9%

(B.12)

atl). ego) = A(-l)kj {cosh (kj(Z + h)) cosasin(B — ¢) | 9% (B.13)

J J

which are the parts of Equation B.1 that need to be integrated, with the first component
acting along e§°) and the second along eéo). The integration is done considering three

possible situations for the cylinder:

Horizontal cylinder (a = 7/2) that is perpendicular to the wave direction
(v» = B £ m/2): in this case, the fluid acceleration is constant along all the cylinder axis,

yielding;:

/agl)(z) e%dz =L, (ag-l)(za) : e§°)) (B.14)

a(»l)(z) : ego) dz = Ly (a(-l)(za) : eg))) (B.15)

[e=]
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with z, an arbitrary point on the cylinder axis. The moment with respect to the bottom

node is obtained by multiplying the expressions above by Lg/2.

Horizontal cylinder (a = 7 /2) that is not perpendicular to the wave direction
(¢ # B &+ mw/2): the position of a point on the cylinder axis, Xp, is parameterized as

follows:
(X — X))

XB(Z):X1+Z LO

(B.16)

Y, - V)

Yi(z) =Y + ! - (B.17)

As the vertical coordinate Zp is constant, the depth dependent terms with cosh

and sinh can be taken out of the integral, thus only €%/ %5 needs to be integrated:

Lo

: ikjXa _ ik; X1
/ei[kj'XHrLzokj'AX] dz — _ZLO (6 - A; ) (B18)
J

0
with AX = X5 — X;. For the moments with respect to the bottom node, the integration

of ze™i X5 i needed:

Lo . . .
2 k;-X k- X ST 2 ik ;- X
ifle X1+ £ key-AX] L3 (e™X2 — ¢l Xn — 2k, - AXeikoXz2)
= ’ dz= k. -AX
o

(B.19)

0

The results for the integration of a§~1) (2) can be readily obtained from the expressions

above. For example, the integration of the y-component of the acceleration yields:
Lo

/ag;)(z) .eé()) ds — —iA§1)kj [cosh (k:j(Z + h)) cos asin(ff — ¢)]

(B.20)
Ly (ef5Xz — giksXa)
k; - AX
Lo
/ay)(z) : ego) zdz = —z'.Agl)k:j |:COSh (k;(Z 4+ h)) cos asin(B — w)]
(B.21)

L2 ( etk Xz _ gik; X1 _ 2K AXeikj-Xz)
k; - AX

Note that these expressions are not valid if k; - AX, hence if the cylinder axis is
parallel to the wave direction, which is the case dealt with above, or if X5 = X, in which

case the cylinder is actually a plate.

Cylinder with inclination « # 7 /2 with respect to the vertical: in this case, the
vertical coordinate of Xp is given by:

z
Iy =21+ — (Zo— Z) (B.22)
B
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For the forces, the integral that needs to be solved is:
Lo
/ cosh [k (h+ 7+ 2A7)] oillo X ggiax] (B.23)
0
_ Le™i*2 ik, - AX cosh (kj(Z2 + h)) — k;AZ sinh (k;(Z2 + 1))]
B ik, - AX — k;AZ] [ik; - AX + k;AZ)]

 Le™oX [ik; - AXcosh (kj(Zy + h)) — k;AZ sinh (k;(Z1 + 1))
[ik; - AX — k;AZ] [ik; - AX + k;AZ]

while the following is required to evaluate the moments:

Lo
/COSh |:k5] <h + 71+ %AZ)] ei[kj.xﬁ_%kj.AX] zdz (B24)
0
L2%k,AZ [(k; - AX)? 4 2k, AX + (kA2)°] sinh (K (2 + 1)
N ik - AX — k;AZ]? [ik; - AX + k;AZ]
L2685%e | =ik, - AX)" + (GAX)* = ik; - AXKAZ — (k;A2)°| cosh (ks (Z + h)
+

ik; - AX — k;AZ)? ik, AX + k;AZ)

12e%%s {1 AZ k- AXsinh (k5 (Z1 + 1)) + [ (k; - AX)* = (1,42)°] cosh (k(Z1 + 1)) }
ik, - AX — k;AZ)? ik, - AX + k;AZ)

The forces/moments for the contribution of the vertical acceleration, which has a
dependency with respect to Zp in sinh instead of cosh, are simply obtained by replacing

cosh by sinh and sinh by cosh in the expressions above.

With the solution of these integrals, the results for the integration of ag-l)(z) can be

readily obtained, as illustrated in the previous case of the horizontal cylinder.
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APPENDIX C - Example of a METIS input
file

o
%>—<> JPK — JONO1
o

% "%’ identify comments

% Whitespaces can be either tabs (’\t’) or simple space
%
% Removed some digits from some inputs so that this

% example would fit the width of the page

%% %

%% ACTIVE ANALYZES %

%% %

Hydro 2 % 0: Disabled; 1: First—order; 2: Second—order
Aero 0 % 0: Disabled; 1: Use BEMT

Moor 1 % 0: Disabled; 1: Linear mooring model

% For each of the 6 degrees of freedom

%—> 0: Disable selected dof in the equations of motion,
% but loads are still evaluated

%> 1: Enable selected dof in the equations of motion
DOEFS 1 11111

%% %

%% ————————— NUMERICAL PARAMETERS ———%

%% %

TimeStep 0.0894 % Time step, in seconds

PrintStep 0.0894 % Print step, in seconds

TimeTotal 11000 % Total simulation time, in seconds
TimeRamp 0 % Numerical ramp, in seconds

% 1f HydroMode != 2 and WaveStret = 1, the latter is ignored

% 0: No stretching

% 1: Vertical stretching (same as from Kim and Chen, 1994)
% 2: Wheeler’s stretching (under development)

WaveStret 1
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%% %
%% ENVIRONMENT %
%% %
Grav 9.81 % Acceleration of gravity

WatDens 998.2 % Water density

AirDens 1.225 % Air density

WatDepth ~ 302.8 % Water depth (constant)
WindVel 0 % Measured at WindHeight
WindDir 180 % Wind direction

WindHeight 90 % Reference height

WindExp 0.2 % Exponent for wind profile

UseTipLoss 1 % 1: Use tip loss factor
UseHubLoss 1 % 1: Use hub loss factor
Wave

% Available options:

%—> Input wave components individually

%—> WRWAVE \t Height \t Ang. freq. \t Direction (deg) \t Phase (deg)
%—> FRWAVE \t Height \t Freq. \t Direction (deg) \t Phase (deg)
%——> TRWAVE \t Height \t Period \t Direction (deg) \t Phase (deg)
%

%> Specify a JONSWAP spectrum

%—> JONSW \t Hs \t Tp \t Gamma \t Direction (deg) \t wlow (rad/s)
% \t whigh (rad/s) \t Seed for RNG

%—> The seed value can be any double or the char ’?’, which

%—> specifiesthat the seed should be set by the simulation

%—> (hence, each simulation would result in a different sea)

%

%— Input a series of wave elevation measured at (0,0,0)

%—> Elev \t Path, Direction, wlow, whigh

%—> 'Path’ is the path to a text file with two columns, with
%—> the first being the time vector and the second the wave

%> elevation measured at (0,0,0)

%

Elev G:\Meu Drive\Doutorado\1Testes Jappaku\IRR10.Elev, 180, 0.03, 1.45
END

%% %o
%% EXTERNAL FORCES %o
%% %o

% External constant forces and moments
ExtConstForce 0, 0, —3.30110e+06, 0, 0, O
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% External linear

stiffness matrix

ExtLinStiff

6.92e+04 0.00e+00 0.00e+00 0.00e+00 5.37e4+05 0.00e+00
0.00e+00 6.92e¢e+04 0.00e4+00 —5.37e+05 0.00e+00 0.00e+00
0.00e+00 0.00e+00 1.04e+05 0.00e+00 0.00e+00 0.00e+00
0.00e+00 —5.37e+05 0.00e4+00 1.07e+08 0.00e+00 0.00e+00
5.37e+05 0.00e+00 0.00e+00 0.00e4+00 1.07e+08 0.00e+00
0.00e4+00 0.00e+00 0.00e4+00 0.00e+00 0.00e+00 9.12e+07
% External linear damping matrix

ExtLinDamp

0.00e+00 0.00e400 0.00e+00 0.00e+00 0.00e4+00 0.00e+00
0.00e+00 0.00e400 0.00e+00 0.00e+00 0.00e4+00 0.00e+00
0.00e+00 0.00e400 1.85e+05 0.00e+00 0.00e+00 0.00e+00
0.00e+00 0.00e400 0.00e+00 2.66e+03 0.00e+00 0.00e+00
0.00e+00 0.00e+400 0.00e+00 0.00e+00 2.66e+03 0.00e+00
0.00e+00 0.00e+400 0.00e+00 0.00e+00 0.00e+00 0.00e+00

%% %

%% ————————— FLOATER DESCRIPTION %

%% %

% At present ,
% but in the future

FloaterMass 7.002e6 % Mass

FloaterCoG
% Terms of the
% Ixx, Iyy,

FloaterInertia 3.3E+09,3.3E4+09,2.9E+09,6.0E+06,-1.9E+07,1.5E+06

MeanDisp 0,0,0,0,0,0 % Mean displacement to compute hydrodynamics

Disp0
Vel

Izz , Ixy, Ixz,

these must be the total
it should be the

inertia matrix

Iyz

inertia of the floater only

0,0,0,0,0,0 % Initial displacement

0,0,0,0,0,0 % Initial

velocity

%= Nodes used to identify the cylinders
%= Node ID, X coord, Y coord, Z coord

%= IDs must be unique and in ascending order

Nodes

% Main column

1,0,0,—-20

2,0,0,10

inertia of the system,

0,0,—4.40 % Coordinates of the center of gravity
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%

% Stern column
3.-95.40,0,—20

4, 25.40,0,10

%

% Bow column — Port
5.12.70,22.00, —20
6,12.70,22.00,10

%

% Bow column — Starboard
7.12.70,-22.00, —20
8,12.70,-22.00,10
END

% Characteristic of the Morison Elements

Morison circ

% 1st node ID \t 2nd node ID \t Diameter \t C Dx \t C_Mx \t

% Number of integration points \t C dz node 1 \t C_az node 1 \t
% C_dz node 2 \t C_az node 2 \t 1: Calculate FK pressure at ends

12 15.0 1.50 1.82 50 3.0 0.68 0 0 1
34 9.0 1.50 1.82 50 3.0 0.68 0 0 1
56 9.0 1.50 1.82 50 3.0 0.68 0 0 1
78 9.0 1.50 1.82 50 3.0 0.68 0 0 1
END

%% %o

%% RNA DESCRIPTION %

%% %o

RotSpeed 0 % Rotor speed in rpm (constant)
RotTilt 0 % Rotor tilt angle (degrees)
RotYaw 180 % Rotor yaw angle (degrees)
NumBlades 3 % Number of blades

BldPitch 0 % Blade pitch angle (degrees)
BldPrecone —2.5 % Blade coning angle (degrees)

HubRadius 1.5 % Hub radius
HubHeight 81.48 % Hub height from Z=0
Overhang -5
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T% %0
%% —————————— BLADES DESCRIPTION ————%
9% %0

% Aerodynamic properties of the blades

% Parameteres are the same as OpenFAST
Blades aero

% BlSpn  BICrvAC BISwpAC BICrvAng BlTwist

% (m) (m) () (deg)  (deg)
0.00E+00 0.00E4+00 0.00E+00 0.00E+00 1.33E+01
1.36E+00 0.00E+00 0.00E+4+00 0.00E+00 1.33E+01
4.10E+00 0.00E4+00 0.00E+00 0.00E+00 1.33E+01
6.83E+00 0.00E4+00 0.00E+00 0.00E+00 1.33E+01
1.02E+01 0.00E+00 0.00E+00 0.00E+00 1.33E+01
1.43E+01 0.00E+00 0.00E+00 0.00E+00 1.14E+01
1.84E+01 0.00E+00 0.00E+4+00 O0.00E+00 1.01E+01
2.25E+01 0.00E+00 0.00E+00 0.00E+00 9.01E+00
2.66E+01 0.00E+00 0.00E+00 0.00E+00 7.79E+00
3.07E+01 0.00E+00 0.00E+00 0.00E+00 6.54E+00
3.48E+01 0.00E+00 0.00E+00 0.00E+00 5.36E+00
3.89E+01 0.00E+00 0.00E+00 0.00E+00 4.18E+00
4.30E+01 0.00E+00 0.00E+00 0.00E+00 3.12E+00
4.71E+01 0.00E+00 0.00E+00 0.00E+00 2.31E+00
5.12E+01 0.00E+00 0.00E+00 0.00E+00 1.52E+00
5.46E+01 0.00E4+00 0.00E+00 0.00E+00 8.63E—01
5.74E+01 0.00E4+00 0.00E+00 0.00E+00 3.70E—01
6.01E+01 0.00E4+00 0.00E+00 0.00E+00 1.06E—01
6.15E+01 0.00E4+00 0.00E+00 0.00E+00 1.06E—01
END

% Airfoils that describe the blades
Airfoil data % Data from ’Cylinderl.dat’

% Alpha Cl Cd Cm
% (deg) (—) (—) (—)
—180.00 0.000 0.5000 0.0
0.00 0.000 0.5000 0.0
180.00 0.000 0.5000 0.0
END

Airfoil data % Data from ’Cylinder2.dat’
% Alpha Cl Cd Cm

% (deg) () (—) (—)

RN NN DN W W W W R s aEREREREWwWWw W

BlChord
(m)
.54E+00
.54E+00
.85E+400
.16E+400
.55E+400
.65E+400
.45E400
.24E+00
.00E+00
.T4E400
.50E+00
.25E+00
.01E+00
.T6E+00
.51E400
.31E+00
.08E+00
.41E+00
.41E+00

BIAFID
()

—_

O 00 00 CO 0 0 O = I O O Tt = &= W N~
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—180.00 0.000 0.3500 0.0
0.00 0.000 0.3500 0.0
180.00 0.000 0.3500 0.0
END
% The specification of the other airfoils
% spans more than 1000 lines, so it is omitted

% Output channels

OuUTPUT

fowt disp
fowt acc

hs force

moor _force

hd force

hd drag force
hd force 1stP
hd force 2ndP
hd force conv
hd force acgr
hd force rslb
hd force rotn
hd force axdv
hd force eta

hd force rem

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

Displacement

Acceleration

Hydrostatic forces

Mooring forces

Total hydrodynamic forces

Hydrodynamic
Hydrodynamic
Hydrodynamic
Hydrodynamic
Hydrodynamic
Hydrodynamic
Hydrodynamic
Hydrodynamic
Hydrodynamic

drag forces

force
force
force
force
force
force
force

force

due
due
due
due
due
due
due

due

Some of Rainey’s point

to 1st ord potential

to 2nd ord potential

to convective acc

to acc/pressure grad
rotation (slender body)
to rotation of the normal
to the axial—div acc

to the relative wave elev

loads + centripetal acc

hd add mass force % Force due to the variation of the added mass

total force

wave elev 1

END

%

Total force

% Wave elevation at

specified node
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APPENDIX D — Semi-analytic solution for
the difference-frequency second-order wave

forces on a bottom-mounted vertical cylinder

Continuing from Section 5.1.1.1, the incident part of the horizontal forces due to the

first-order potential are given by:

0 2w
frveq = —g// (V(p§~1) . V(pl(l)*>r:RRcosﬁd9dz (D.1)
“h 0
_ W, .
frmi = p4j l/((p()(pl(l) )T:RRCOSHdQ (D.2)
9 z=0

—T

with (pgl) the complex amplitude of the first-order incident wave potential for unitary

wave amplitude, i.e. gp( ) = R {Aj (pg-l)e_i“’jt}. Though its expression was already provided

in Section 3.2, it is better to rewrite (pgl)

suited to this problem. The expression can be found in MacCamy and Fuchs (1954), as

using cylindrical coordinates, which are more

reproduced below:

W g cosh (k;(z + h))
eQ; = "o, cosh (ki) Zan W (kjr) cos(nb) (D.3)

where J,, is the Bessel function of the first kind of order n and ¢,, = 1 for n = 0 and o,, = 2

otherwise.

(1)

Substitution of ¢; in the expressions above lead to the following nondimensional

horizontal forces acting on the cylinder due to the incoming first-order wave potential:

o Zdia | R ki 5~ T () () = JulRy) T (R)
V2t = pgR tanh(k;h) \| tanh(k;h) e cosh(k;h) cosh(k;h)
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with the prime denoting the derivative and the auxiliary variables as follows:

o _l sinh_(/%_ﬁﬁ) N sin}i(l%_jjﬁ) (D6)
AN S oo

ky = ki + ky (D.7)

To evaluate the perturbation part of the horizontal forces due to the first-order

potential, it is easier to calculate the corresponding force due to the total first-order

potential, <I>§-1) = (pg-l) + (f)g-l), and then subtract the contribution of the incident part:

f;’,VQ,jl = f§2,jz - f;,v'z,jz (D.8)
fl;,w'l fml ffwl <D'9)
with

0 27

f§27ﬂ:—£ / / (vq>§”-v<b§”*)  Reos#dddz (D.10)
“h 0 .
fy = 22 / (V") _, Reosods (D.11)
’ 4g 4=

—T

The first-order perturbation potential for unitary wave amplitude, required to
compute the total first-order wave potential and also presented by MacCamy and Fuchs
(1954), is given by:

)> Jn(k;1) cos(nd) (D.12)

where H,, is the Hankel function of the first kind of order n. The expressions above yield:

f§2,jl - %\/ l_l \/ ; - s [Iﬁ . {ﬁfn( MVACL) (D.13)

~(1)_1'_gcosh Z+h
i Wi Cosh (k;h) ZU" H ,

k;tanh(k;h) \| k; tanh(k;h) = cosh(k;h) cosh(k;h)
f,=— 2 i@ (D.14)
it = T Tk, 2 njl :
with . .
QO (D.15)

Il (k) H (Re) H () Hiy (R)

The sum of Equations D.13 and D.14 is equal to Equation A3 from Kim and Yue
(1990), where the different components due to the incident and the perturbation potentials

are not given separately. However, this distinction is made regarding the contribution
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of the second-order wave potential, hence the expressions provided therein can be used
directly (Equations A7 and A11 of their work). After nondimensionalization, the part of

the force due to the incoming difference-frequency second-order wave potential is:

_ o, tanh(fj_ﬁ) o
f[’(;s(z)’jl = W ('73'1 + Vi ) l?:;lﬁ Jl( jl) (D'16)
with
- (kjh)* [1 — tanh®(k;h)] — 2(k;h)(kih) [1 + tanh(k;h) tanh(kh)) (D7)
’le = —1 — — — — .
2 /kjhtanh(k;h) [@j_lQ — kjh tanh ( J_lh)}
while the contribution of its body perturbation counterpart is given by:
. kjh = Hi(vo,1)
- = —mos (v A —L— T (k7)) | By oIl s ————
P jl e (Pyﬂ ke )cosh( ) 1(kz) [ 0t O’leo,sz{(’Uo,jl)
(D.18)
- Kl(ﬁn 'l)
B, 11, ————
i ; I e st K (Fon 1)
where
1 | sinh(k;h + v, sinh(k;h — v, ;
M= & [Tt ) SRR~ ) (D19
2 kjlh + Un,jl kjlh — Unji
4 sinh (v, ;)
B, = ) D.20
it 2u, ji + sinh(2v,, ;) ( )
-—2
w-
tﬁ—l forn=0
Upjr = 4 0L (D.21)
1K, ji forn #0
o 1
Wy ” = —Knjitan K ji, n—g | < Kp <nm (D.22)

The expressions for the nondimensional moment components acting on the body,
my, = mj/(pgRh), are very similar, as the difference is only in the integration along Z,
which is quite simple. Expressing the moment with respect to Zz = 0, the components
due to the wave elevation, m;, ; and mp,, j;, are zero, while for the others it suffices to

replace the expressions of ];f and II,, j; by:

. 1 [1=cosh(kth) 1 — cosh(k-h
]]:‘l: _ = _+_(2]l ) £+ __<2jl ) (D23)
2|7 () (k)
R 1 1 — cosh koh + v, 1 — cosh(k;h — v, ;
Hmﬂ _ = ___( 5l 5 7]l) + ___< 3l - vjl) (D24)
2 i (kjlh + Unj1) (kjlh = Unjt)
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The mean forces on the bottom mounted cylinder, which are required by Newman’s
approximation, are a special case of the low-frequency forces given above. They can be

found in Kim and Yue (1989), and result in the following after nondimensionalization:

o 2hh 5 (1 —n(n+1)/E]"

Tk <1 ' Smh@%) 2 TR e ) vV O
_ - —4i 1
m;; = _fjj +R { Wl;?]? g H;L(E;])H;L*—i-l(EJ) (D.QG)

with _

Z(k) =1+ 38(1_@-71)2 : (D.27)
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APPENDIX E — Methodology to post

process the forced oscillation tests

The result of each run of the forced oscillation tests is a time series of the force exerted by

the actuator, which is related to the imposed acceleration by:
Mq - -thdro7 a + Factuator, q + Fnoise, q (E]->

with ¢ the motion along the axis of the actuator, known to be sinusoidal with amplitude
A and frequency w = 27 /T
q = Asin(wt) (E.2)

and M the total mass of the assembly, i.e. the hull model, the load cells and elements
that were used to attach the model to the actuator. The force F}se accounts for the high-
frequency noise that is present in the measured force, most notably due to the vibration
of the instrumentation bridge to which the equipment is attached. For the horizontal
oscillations, ¢ = x and M = 13.848 kg (model scale), while ¢ = z and M = 15.285kg for
the vertical oscillations due to changes in the setup used to keep the model at place. The
model was placed in such a way that it was in hydrostatic equilibrium, and this is why

the buoyancy force and weight are not included in the equation above.

The hydrodynamic force, Fiydro, is assumed to be composed of Morison’s equation,

a potential damping term and a hydrostatic restoring force:
1 " . .
Fiyaro, ¢ = =50CpgSaldld = pCogVaii = By™d — Koq (E.3)

where K, the hydrostatic stiffness, with K, = 0 and K, = pgS.,. The equations can be

rearranged as follows:
Fmorison, q — §pC£)qu|Q|q + PC;qqu = Factuator, q + Fnoise, q Mq - Bpotq - qu (E4)

As the body is moving according to a prescribed motion, the position and body
acceleration are known, hence the terms M ¢ and K,q can be easily removed from the
measured signal Fictuator, - Lhe potential damping term, however, requires Bpo; to be
evaluated somehow. As this force component is well modeled by potential codes, the results
obtained with WAMIT, given in Figure 65, are used to compute this term. Note that
the potential damping is very small for large periods of motion, resulting in a negligible
contribution to the total force in the largest period of oscillation that highlights the
importance of viscous damping for the slow surge motion. Details about the WAMIT

model are given in Section 6.3.1.
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Figure 65 — Nondimensional potential damping in surge (Bj;) and heave (Bs3) calculated
with WAMIT.
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The noise is removed by filtering the signal using a simple Fast Fourier Transform
(FFT) filter, i.e. the filtered signal is obtained by computing the discrete Fourier transform
of the measured signal, removing the frequencies above a threshold and then reconverting
it back to time domain. This threshold was established empirically, and a value of 0.22 Hz
for the lowest period (7" = 12s) and one of 0.06 Hz for the largest period (7" = 84.4s) were

found to provide good results.

Two examples of the signal before and after the filtering process are presented in
Figures 66 and 67. Both refer to the horizontal oscillations, but the first one corresponds
to the lowest oscillation period and largest motion amplitude, 7' = 12s and A = 4.8 m,
while the second one corresponds to the largest period and lowest motion amplitude,
T =84.4s and A = 0.8m. As the force of interest, Flomison, 18 proportional to the body
velocity and acceleration, it becomes increasingly small as the motion amplitude decreases
or as the period of oscillation increases, in such a way that the high-frequency noise can
be significantly larger than Foison for the tests involving slow motions. Nevertheless,
Figure 67 shows that the forces around the motion frequency, in this case 0.012 Hz, are

well represented even when they can not be observed in the corresponding time series.

Figures 66 and 67 also present the force calculated with Morison’s equation using the
resulting coefficients C', and Cp. These are obtained from F}oison following the procedure
detailed by Keulegan and Carpenter (1958) and reproduced below. The first step is to
expand the force Forison a8 a Fourier series:

Foris -
— P — N A, sin(nwt) + B, cos(nwt) (E.5)
pS w2 A2 nZ:O
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Figure 66 — Time series (top) and discrete fourier transform (bottom) of the hydrodynamic

force in surge direction measured in the experiments before and after the
filtering process for T' = 12s and A = 4.8 m. The force calculated with
Morison’s equation considering the resulting C', and Cp is also plotted.
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Figure 67 — Time series (top) and discrete fourier transform (bottom) of the hydrodynamic
force in surge direction measured in the experiments before and after the
filtering process for T = 84.4s and A = 0.8 m. The force calculated with
Morison’s equation considering the resulting C, and Cp is also plotted.
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27
1
B, = — / Frorison cos(nwt) dt (E.7)
T
0
as a consequence of the symmetry of the force with respect to time, i.e. F(wt) = —F(wt+7),

the coefficients are equal to zero when n is even. The objective is to compare this expression

with Equation E.4, which can be rewritten using Equation E.2 as follows:

Fmorison 1 / ’ V
P8, AP = §C’Dq| cos(wt)| cos(wt) — Caqﬂ sin(wt) (E.8)

In order to compare Equations E.5 and E.8, a term with |cos(wt)|cos(wt) is

introduced by using the Fourier series of this function as well:
| cos(wt)| cos(wt) Zb cos(nwt) (E.9)

where only the coefficients multiplying cosines are kept due to | cos(wt)| cos(wt) being an

even function. The coefficients b,, are given by:

0 for n even

1
b, = - / | cos(wt)| cos(wt) cos(nwt) dt = (_1>n71 8 for m odd (E.10)

Isolating the term with cos(wt) from the others yields:

1
] cos(wtl))] cos(wt) b_[bg cos(3wt) + as cos(5wt) + .. ] (E.11)
1 1

cos(wt) =

which can now be used to replace the cosine term from Equation E.5, made easier by

introducing the following coefficients:

By
B, =
1 bl
/ b3
By = Bs— 2B,
Zl (E.12)
B, =Bs;— 2B
b1

yielding

F morison

= A sin(wt) + Az sin(3wt) + As sin(bwt) + . ..
pSqw?A? (E.13)

+ Bj| cos(wt)| cos(wt) + By cos(3wt) + By sin(bwt) +

Following Keulegan and Carpenter (1958), Equation E.13 is compared with Equa-
tion E.8, leading to two time varying coefficients Cy,(t) and C}, (t). After discussing

different ways of dealing with this issue in their work, the chosen alternative is to state
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Morison’s equation in terms of fixed coefficients C,, and Cp, plus a remainder term, AR,

that includes all higher harmonics:

F morison 1

|2
pSwrAZ 5 Cpal cos(wt)| cos(wi) — Cog o sin(wt) + AR (E.14)

“AS,

with the different terms obtained by direct comparison with Equation E.13:

Cpy = 2B, (E.15)
AS
Coy = —7q"A1 (E.16)

AR = Assin(3wt) + Assin(bwt) + ... (B.17)
+ B} cos(3wt) + By cos(bwt) + . .. .

Hence, in a nutshell, the procedure of obtaining the added mass and drag coefficients
from the forced oscillations adopted in the present work consists of: 1) preprocessing
the measured signal to remove noise and additional force components (namely inertia,
potential damping and hydrostatic restoration); 2) evaluating the Fourier coefficients from

the resulting signal; and 3) calculating Cp, and C,, with Equations E.15 and E.16.



