• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.3.1999.tde-11032004-160112
Document
Auteur
Nom complet
Ademar de Azevedo Cardoso
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 1999
Directeur
Jury
Augusto, Oscar Brito (Président)
Costa Neto, Alvaro
Dias, Carlos Alberto Nunes
Ragazzo, Clodoaldo Grotta
Schmidt, Hernan Prieto
Titre en portugais
Redes neurais artificiais na avaliação de concentração de tensões em juntas tubulares soldadas.
Mots-clés en portugais
juntas tubulares soldadas
método dos elementos finitos
redes neurais artificiais
Resumé en portugais
Neste trabalho está apresentada uma alternativa para o cálculo do fator de concentração de tensões (FCT) em juntas tubulares soldadas do tipo Y. Redes Neurais Artificiais (RNA) foram utilizadas para representar a distribuição de tensões ao longo da junta tubular para os casos de carregamento força axial no plano e momento fletor no plano. As RNA podem aprender a partir de um conjunto de dados sem a necessidade de uma expressão matemática entre as variáveis dependentes e independentes; representa uma vantagem sobre o procedimento normalmente utilizado, ou seja, as equações paramétricas. O modelo proposto representa um avanço no projeto de juntas tubulares, uma vez que evita a necessidade de se conhecer uma expressão matemática para representar a distribuição de tensões na junta e fornece um método mais preciso para avaliar a distribuição de tensões ao longo da junta soldada. O conjunto de dados utilizado foi formado a partir de simulações numéricas das juntas soldadas através do MEF, nas quais foi considerada a geometria do cordão de solda.
Titre en anglais
Artificial neural networks to calculate stress concentration factors in welded tubular joints.
Mots-clés en anglais
ANN
artificial neural networks
SCF
stress concentration factor
tubular joints
Resumé en anglais
An alternative approach to calculate stress concentration factors (SCF) in Y-type welded tubular joints is presented. Artificial Neural Networks (ANN) were used to represent the stress distribution along the tubular joints in both in-plane axial force and in-plane bending moment load cases. ANN can learn from a database without establishing a mathematical expression between dependent and independent variables, which is an advantage over the usual parametric equations approach. The proposed model represents an improvement in the tubular joints design, since it avoids the previous knowing of a mathematical expression to represent the stress distribution in the joint and provides an accurate method to evaluate the stress distribution along the welded fillet joint. The database herein used was completed with FE simulations of tubular joints which consider the geometry of the weld fillet.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
tese_ademar.pdf (1.25 Mbytes)
Date de Publication
2004-03-29
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.