• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.3.2009.tde-07082009-150008
Documento
Autor
Nombre completo
Valmir José Camolesi
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2009
Director
Tribunal
Nascimento, Cláudio Augusto Oller do (Presidente)
Giudici, Reinaldo
Moro, Lincoln Fernando Lautenschlager
Título en portugués
Caracterização do querosene através da espectroscopia de infravermelho próximo.
Palabras clave en portugués
Espectroscopia infravermelha
Querosene
Redes neurais
Resumen en portugués
Ensejou-se obter a caracterização do Querosene via espectroscopia de infravermelho próximo com o objetivo de se instalar um analisador NIR (Near InfraRed) na unidade de processo de destilação industrial, permitindo a otimização do processo de produção. Foi construído um banco de dados espectrais (NIR) e das propriedades: densidade D20/4oC, destilação (PIE, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% e PFE), enxofre total, ponto de fulgor, ponto de congelamento e viscosidade a -20oC e a 40oC durante um período de 8 meses. A partir dos dados experimentais foram construídos modelos de inferência para as propriedades do querosene através dos métodos PLS (Partial Least Squares) e redes neurais. Inferências a partir de dados operacionais foram também elaboradas para comparação. As inferências construídas com os dados espectrais apresentaram resultados melhores que as obtidas com as variáveis operacionais.
Título en inglés
Characterization of kerosene by near infrared spectroscopy.
Palabras clave en inglés
Kerosene
Near infeared spectroscopy
Neural networks
Resumen en inglés
This work aimed to obtain the characterization of Kerosene by Near Infrared Spectroscopy (NIR) with the intention to install a NIR analyzer at an industrial process of distillation, allowing optimization of the production process. A database of spectral data (NIR) was built and another with the properties: density D20/4oC, distillation (IBP, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% and FBP), total sulfur, flash point, freezing point and viscosity at -20oC and 40oC for a period of 8 months. Models of inference to kerosene properties by the PLS (Partial Least Squares) and neural networks methods were built up from experimental data. Inferences from operational data were also compiled for comparison. As a conclusion of this work, inferences from spectroscopy data were better than those from operational data.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2009-08-13
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.