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It is the glory of God to conceal a matter,
But the glory of kings is to search out a matter.

(Holy Bible, Proverbs 25:2)



RESUMO

Recentemente, foram conduzidos estudos avançados sobre a produção de poliestireno
através da polimerização via radicais livres (FRP ) em microcanais. Esse tema tem desper-
tado grande interesse, principalmente devido à eficiência proporcionada pelos microrreato-
res em termos de intensificação do processo. Além disso, especialmente em plantas-piloto,
os microrreatores têm sido utilizados devido à sua eficácia no monitoramento das carac-
teŕısticas ou propriedades finais do poĺımero poliestireno, que variam conforme o tamanho
da cadeia polimérica. Por outro lado, um problema cŕıtico encontrado em microrreatores
e milirreatores é o entupimento dos microcanais.

Neste trabalho, foi simulada a śıntese de poliestireno via FRP em microcanal uti-
lizando um algoritmo robusto e eficiente em termos de tempo, baseado na simulação
estocástica h́ıbrida baseada no algoritmo de Gillespie. Esse método não apenas simula o
crescimento da cadeia polimérica, mas também permite um cálculo determińıstico paralelo
simultâneo do mesmo sistema de reação. Os perfis determińısticos obtidos em diferentes
condições foram comparados com as respectivas trajetórias estocásticas.

Para validar o modelo, os resultados obtidos para a conversão de monômero (X),
o ı́ndice de polidispersidade (PDI), o peso molecular médio numérico (Mn) e o peso
molecular médio ponderado (Mw) foram comparados aos dados experimentais. Foram
utilizados tempos de residência variando de 5 a 80 minutos e diferentes condições opera-
cionais, incluindo concentrações iniciais de monômero (M), solvente (S) e iniciador (I) e,
também, temperaturas variando entre 100 e 140 graus Celsius.

O erro percentual médio (APE - Average Percentage Error) obtido a partir da si-
mulação determińıstica pelo algoritmo de simulação estocástica h́ıbrida (HSSA) aproxima-
se dos resultados encontrados na literatura, validando assim a capacidade de simular a
polimerização via FRP do monômero de estireno. Dessa forma, aplicando diferentes
condições de entrada, o algoritmo foi utilizado para prever simultaneamente os perfis de-
termińısticos e as trajetórias estocásticas. O modelo estocástico permite a compreensão
dos fenômenos f́ısicos que ocorrem dentro de um microrreator.

Palavras-Chave – Poliestireno, Microcanais, Algoritmo de Simulação Estocástica Hı́brida,
Algoritmo Gillespie, Polimerização via Radicais Livres, Intensificação de Processos.



ABSTRACT

Most recently, advanced studies have been carried out on the production of polysty-
rene by Free Radical Polymerization (FRP ) via microchannels. This has been a subject
of core interest primarily due to the efficiency of a microreactor in terms of process in-
tensification. In addition, especially in pilot experimentations, a micro or milli-reactor
has been known widely to be efficient in monitoring the microstructural end-use features
or properties of the polystyrene polymer as the chain grows and ultimately terminates.
However, a critical problem that occurs in milli- and micro-reactors is the clogging of the
microchannels.

In this work, the synthesis of polystyrene via FRP through microchannels is simu-
lated using a robust and time-efficient Hybrid Stochastic Simulation Algorithm based on
the Gillespie Algorithm. This algorithm not only simulates the chain growth polymeriza-
tion but also allows a simultaneous parallel deterministic computation of the same chain
growth reaction system. The produced deterministic profiles at various conditions were
compared to the respective stochastic trajectories.

To validate the model, the obtained results of the end-use properties of polystyrene
such as Monomer Conversion (X), Polydispersity Index (PDI), Number-Average Molar
Mass (Mn) and Weight-Average Molar Mass (Mw) were compared to experimental data.
Also, the residence times deployed for the simulation was from 5 to 80 minutes and as
well as varying operating conditions of initial Monomer (M), Solvent (S) and Initiator
(I) which includes temperatures ranging from 100 and 140 degrees Celsius.

The Average Percentage Error (APE) obtained from the deterministic simulation of
the hybrid stochastic simulation algorithm (HSSA) was close to the results found in lite-
rature, thus validating the efficiency of the algorithm to simulate the polymerization via
FRP of the styrene monomer. Thus, applying different input conditions, the algorithm
was used to simultaneously predict deterministic profiles and stochastic trajectories. The
stochastic model allows us to understand the physical phenomena that occur inside a
microreactor.

Keywords – Polystyrene, Microchannels, Hybrid Stochastic Simulation Algorithm, Gil-
lespie Algorithm, Free Radical Polymerization, Process Intensification.
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CHAPTER 1
INTRODUCTION

In recent years, the synthesis of polystyrene via Free Radical Polymerization
(FRP) in microchannels probes into the increasing level of macromolecular details and
the characterization of the polymer’s microstructure. (DAGMAR et al., 2016) One of
the pivotal applications of the micro- or milli-reactor technology is that it bridges the
gap between the synthesis of the end-use features of the polymer at the microscale
and macroscale. In other words, at the mesoscale, the fundamental polymer’s final
characteristics are described in terms of Particle Size Distribution (PSD) hence, the
information obtained is then used to make informed decisions regarding the interaction
between the micro- and macro-scale of the Free Radical Polymerization (FRP) reaction
system. (DAGMAR et al., 2016)

Also, polymer engineers have been on a quest to utilize continuous flow processes in
microchannels to improve polystyrene’s quality in terms high reproducible molecular
weight distribution and improved overall productivity. (VIANNA Jr. et al., 2007)
Vianna Jr. (2003) investigated the polymerization of styrene in tubular reactors, he
observed perturbations contributed by stochastic noise resulting from varying feeding
mechanisms in conventional tubular reactors. Also, it was observed in the investigation
that stochastic noise effects of the fluid dynamics in tubular reactors for the polystyrene
synthesis could not be entirely determined by traditional deterministic simulation
approaches. (VIANNA JR., 2003)

From a microscopic perspective, an ensemble of the stochastic trajectories obtained
within the bounds of statistical confidence can be referenced to predict the key features
of the polymer as feeding conditions are varied during the polymerization at a pilot
experimentation level. (Martin and Audus, 2023; D.T. GILLESPIE, 2007) In addition,
the reproducibility of the simulation results or outcomes at small scales is very important
in order to improve the polymer’s end-use properties hence, the Stochastic Simulation
Algorithm (SSA) employed in this case. This choice of investigation is predicated on
factors affecting complex chemical reaction systems such as FRP reaction system : (I)
Impact of polymerization computation and analysis, (II) the validity of experimental
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and published kinetics values in literature, (III) industrial challenges, and (IV) choice
of computational algorithm . (GARTNER and JAYARAMAN, 2019; MEIMAROGLOU
and KIPARISSIDES, 2014)

This project probes the significant issues in FRP of Styrene by combining the
application of stochastic simulation and a deterministic approach to simulate the rate of
formation of polystyrene in microchannels (milli-reactor). The SSA technique finds its
foundation in the Chemical Master Equation (CME) which is intractable to simulate
deterministically when considering complex chemical reactions. (D.T. GILLESPIE, 1976)
Also, the stochastic perturbation of a dynamic chemical reaction system is latent at small
molecular copy numbers for a chain growth polymerization systems. The application of
the proposed Hybrid Stochastic Simulation Algorithm (HSSA) used in this investigation
was carried out at different initial feeding conditions or formulations for the monomer
(M), solvent (S), and initiator (I) at different molar quantities as well as the varying
operating temperatures. The chemical and thermal initiation reaction of the kinetics of
the Free Radical Polymerization (FRP) of Styrene was considered in different instances
under the prevailing defined conditions. Thus, one can compare the stochastic and
corresponding deterministic profiles at volumes mimicking that of a micro- or milli-
reactor. Subsequently, a cursory look into different techniques employed to simulate the
FRP of styrene over the years will be revised.

1.1 Context and Motivation

Extensive research has been carried out in order to improve the end-use
properties of polymeric materials by controlling the polymer’s microstructure during
synthesis.(DAGMAR et al., 2015) Synthesis of polymers in micro- or milli-reactors
is drawing the scientific community’s attention to access pathways inaccessible in
conventional reactors. (MENDEZ-PORTILLO, 2011) Moreso, it is important to precisely
tune the properties of the end-use polymer as well as other prevailing factors involved
in the scalable synthesis of the polymer such as control for safety and quality assurance.
(MASTAN and ZHU, 2015)

Mathematical modelling and simulation of chain growth polymerization reactions
can be classified mainly as either stochastic or deterministic modelling approaches.
Stochastic modelling functions on the premise of the laws of probability. More precisely,
it models the differential form of the Chemical Master Equation (CME). Moreso, in the
context of probabilistic laws, Markov chain theory is incorporated to provide insights
into the correlations among factors such as overall kinetics of the polymerization
reactions and ultimately the resulting polymer microstructure. Thus, this information
can be used to optimize the polymerization reaction in order to tailor the polymer’s
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end-use properties. (HIDETAKA, 2015; Tobita, 1998) Hence, while the history of the
chain growth reaction becomes irrelevant, the latest state of the chemical reaction
system represents or produces an ensemble of stochastic trajectories that fully describe
the chemical reaction system.

In contrast, deterministic modelling is more appropriate for Rate Reaction Equations
(RRE). In the context of this work, taking population balances will give rise to up
to 100,000 ODEs representing each reaction taking place within the chain growth
polymerization reaction per macromolecule. Hence, approximate techniques like Method
of Moment (MoM) are widely employed. There have been numerous applications of
modified SSAs such as the Kinetic Monte Carlo (KMC) based on the Gillespie Algorithm
(GA) to simulate FRP reactions with monofunctional initiators which were also used
extensively as reported in the literature. (TOBITA, 1996)

Overall, the computational cost and efficiency in simulating polymerisation systems
are key factors to be considered hence, the call for implementing a robust algorithm for
modelling and simulation of such chemical reaction systems is very paramount. Thus, it
is believed that a hybrid Gillespie algorithm could provide a more scalable and reliable
technique to overcome the pre-existing challenges associated with stochastic modelling
of chain growth polymerization reactions.

1.2 Objective

The main aim of the project is to find an effective, robust and scalable approach to
simulating Free Radical Polymerization (FRP) of styrene in microchannels by mimicking
a micro- or milli-reactor volume. Thus, the specific objectives are:

1 To investigate the statistical discrepancies between experimental and simulated
results by taking into account the varying input conditions such as operating
temperature, feed ratio of monomer to solvent as well as that of the initiator.

2 Efficiently compute the rate of monomer conversion as well as the molecular
weight distribution of the polymer without employing the traditional statistical
moments techniques which assumes the Long-Chain Approximation (LCA) or
Quasi-Steady State Approximations (QSSA).
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3 To apply a proposed hybrid stochastic simulation algorithm with the computing
capability of initiating both stochastic and deterministic parallel simulations
concurrently.

1.3 Structure of Thesis

Highlights of the thesis structure are as follows:

Chapter 2: LITERATURE REVIEW

1 Review of Free Radical Polymerization (FRP) as a form of the chain growth
polymerization as well as its applications are discussed in this section.

2 An overview of polymerization reactions in microchannels are also discussed in
this section.

Chapter 3: STOCHASTIC MODELLING

1 An introduction into Stochastic Simulation and Modelling techniques as well as
its applications are treated in this section.

2 An introduction to the Chemical Master Equation (CME) is briefly highlighted
with a supporting example.

3 A brief description of the Gillespie Algorithm (GA) is also summarized with brief
mathematical derivations.

4 In addition, the Tau - Leaping technique is also reviewed in this section.

5 Finally, a classification tree of the Stochastic Simulation Algorithm (SSA) is
introduced. Each branch of the SSA and their computational applications are
discussed in details in this section.

Chapter 4: METHODOLOGY AND APPLICATION OF THE HYBRID
STOCHASTIC SIMULATION ALGORITHM (HSSA)

1 The application of the hybrid stochastic simulation algorithm to the Free Radical
Polymerization (FRP) of styrene monomer in microchannels is explored in this
section.
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2 The methodology or work-flow of this project is elaborated in this section.

3 The computation of the end-use properties of the polymer such as the rate monomer
conversion rate, molecular weight distributions and polydispersity index using the
Hybrid Stochastic Simulation Algorithm are discussed in this section.

Chapter 5: RESULTS AND DISCUSSIONS

1 Analysis of the obtained results from the Hybrid Stochastic Simulation Algorithm
and discussions of the same are carried-out in this section .

2 Furthermore, a comparative analysis of the simulation versus experimental results
is also discussed in this section.

Chapter 6: Concluding Remarks and Future Outlook.

1 Concluding remarks of simulated results.

2 Future Outlook.



CHAPTER 2
LITERATURE REVIEW

2.1 Overview of Free Radical Polymerization (FRP)

The wide use of polymers cannot be overemphasized and their production is
estimated to exponentially increase from its current rate as sustainable polymer
products are anticipated to replace metals in the automobile industry and other sectors.
Some innovative examples of polymers finding increasing applications in the industry
are Self-Healing Polymers (SHP) which have the ability to repair themselves when
damaged, fractured or subjected to very high tensile stress. They find applications in
paints and coatings, adhesives and in other composite materials. Graphene-Reinforced
Polymers (GRP) which are composite materials with a combination of strength and
conductivity. GRPs finds applications in the automotive, electronics and the energy
industry. Another interesting example are the Biodegradable polymers (BP), they are
formed from renewable sources such as sugarcane. BPs are replacing non-biodegradable
or traditional plastics in packaging of consumer goods hence, offering environmental
sustainable solutions. Other prominent polymers are Shape-Memory Polymers (SMP),
Stimuli-Responsive Polymers (SRP) and Conductive Polymers (CP). (El-Ghoul et al.,
2021; Rego et al., 2020)

The formation of polymers is produced via various methods of polymerization.
They constitute several chains made up of repeated structural units or monomers.
These polymeric chains can either be linear, branched, or cross-linked. Thus, it is
worth noting that, these chain configurations reveal the type of polymer characteristics
such as chemical and physical properties. Polymerization can be classified broadly as
chain reaction (or addition) and step reaction (or condensation). While chain reaction
polymerization requires the presence of an initiator to commence propagation via a
radical (could be a free radical, cation or anion) transfer mechanism, the step reaction
form of polymerization requires bi-functional or poly-functional monomers to propagate.
(STUART et al., 2010)
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By definition, Free Radical Polymerization (FRP) is a branch of chain polymerization
through which polymers are formed by the successive addition of radical building
molecular blocks or repeated units (activated monomer). This reaction comprises mainly
the chain initiation, chain propagation, chain termination and possible chain transfers to
monomer, solvent or another active component of the polymerization process. Moreso,
FRP is applied widely in the synthesis of different polymers and material composites
due to the versatility of the reaction. (WARD, 2009; ODIAN, 2004) Other common
types of Radical polymerization (RP) employed in the industry are:

1 Bulk polymerization reaction: This polymerization involves the mixture of only an
initiator (or co-initiator) and monomer, but no solvent. (WARD, 2009)

2 Solution polymerization reaction: Unlike Bulk Polymerization reaction, it contains
a mixture of solvent, initiator, and monomer. (WARD, 2009)

3 Suspension polymerization reaction: This is a heterogeneous radical polymerization
technique which uses mechanical mixing to mix a monomer or combination of
monomers in a liquid phase, such as water. Furthermore, the monomer droplets
are suspended in the liquid phase which are typically of size ranges of 10µm to
1000µm. (WARD, 2009)

4 Emulsion polymerization: Unlike suspension polymerization, the initiator is soluble
in the aqueous phase or media. An emulsifying agent such as polyoxyethylene alkyl
ether is commonly used. (WARD, 2009; NAOYA, 2019)

Other forms of Radical Polymerization (RP) are Template Polymerization, Plasma
Polymerization, Sonication, Atom Transfer Radical Polymerization (ATRP), Reversible
Addition-Fragmentation Chain-Transfer Polymerization (RAFT), and Stable Free
Radical Polymerization (SFRP). (ODIAN, 2004; WARD, 2009; DANIEL, 1997; KATO
et al., 1995; XEROXCORP, 2003)
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A typical FRP reaction pathway is illustrated by the chemistry of the reaction below:

Initiation:

I
f,Kd−−→ 2P

•

Propagation:

P
•

n + M
KP−−→ P

•

n+1

Termination (by Combination):

P
•

n + P
•

m
Ktc−−→ Dn+m

Termination (by Disproportionation):

P
•

n + P
•

m
Ktd−−→ Dn + Dm

Chain Transfer to Monomer:

P
•

n + M
KtrM−−−→ P

•

1 + Dn

Chain Transfer to Solvent:

P
•

n + S
KtrS−−−→ P

•

1 + Dn
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Where the parameters Kd, KP , Ktc, Ktd, KtrM and KtrS refer to the rate constant of
initiator decomposition, monomer propagation, termination by combination, termination
by disproportionation and chain transfer, respectively. Also I, M , P •, D represent
the initiator, monomer, radical or live polymer, and dead polymer. Furthermore, f

represents the initiator efficiency. The subscripts n and m in the above chemistry
of reaction equations denote the number of monomeric units on the propagating or
terminating chain. (MASTAN and ZHU, 2015)

In addition, aside from the efficiency of the initiator in FRP, another important
factor that influence the degree of polymerization is the operating temperature. The
higher the temperature, the higher the rate of chain propagation and thus, a higher
degree of polymerization. The inverse is the case for the molecular weight at higher
temperatures. Moreso, factors such as chain growth, chain transfer, chain termination
and, the velocity constant of radical formation also play a role. (ODIAN, 2004; VIEIRA
and LONA, 2016)

2.1.1 Free Radical Polymerization of styrene in the industry

Free radical polymerization is widely responsible for the synthesis of more than
half of the polymers in the market. (MATYJASZEWSKI and GAYNOR, 2000) This
is mainly hinged on the fact that FRP is not only cost-effective but also, an effective
method for manufacturing high molecular weight polymers. Other choice reasons for the
application of FRP in the industry are reduced manufacturing time, safety, insensitivity
to impurities, and operation at moderately low temperatures. (MATYJASZEWSKI and
GAYNOR, 2000; MOAD, 2016; HONG et al., 2002; VICEVIC, NOVAKOVIC, and
BOODHOO, 2021)

Furthermore, while the focus of this research is centred on the industrial synthesis
of polystyrene, it is worth mentioning that there are other polymers produced by
free radical polymerization such as polypropylene (PP), high-density polyethylene
(HDPE), linear low-density polyethylene (LLDPE), Low Density Polyethylene (LDPE),
Polystyrene (PS) and Polyvinyl Chloride (PVC). Other smaller-volume polymers
are polyesters, with poly(ethylene terephthalate) (PET), Engineering Plastics
(EP), Acrylonitrile–Butadiene–Styrene (ABS) copolymers, polycarbonates (PCs),
polyamides (PAs), polyurethanes (PURs), polysulfones (PSUs), polyetherketones
(PEKs), polyetheretherketone (PEEKs), polyoxymethylene (POM), polyimides (PIs),
polyphenylenesulfide (PPS), polyphenylene oxide (PPO), polytetrafluoroethylene
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(PTFE) to mention a few. (MATYJASZEWSKI and GAYNOR, 2000)

Thus, this makes free radial polymerization of styrene a popular and versatile
industrial process in the industry. Furthermore, FRP of styrene provides facile statistical
copolymerization which limits loss by vaporization and thus, it is cost-effective.
(NESVADBA, 2012; VICEVIC, NOVAKOVIC, and BOODHOO, 2021; SERRA, 2013)
However, the following are shortcomings:

1 Formation of unwanted by-products, such as peroxides and hydroperoxides due to
the non-specific nature of the free radicals.

2 Unwanted side reactions such as chain transfer.

3 Poor control of the reaction mechanism which leads to broader molecular weight
distribution.

Overall, the commercial production of polystyrene has been widely achieved via the
FRP of styrene monomer however, the lack of control over the polymer microstructure
or architecture has resulted in researching ways to improve the process intensification.
Hence, in the following subsection, the benefits of the FRP in microchannels (micro or
milli reactor) will be highlighted. (BENOIT et al., 2000; IWUCHUKWU and VIANNA,
2023)

2.2 Polymerization reaction in microchannels

2.2.1 General overview of microchannels

Micro or milli reactors, otherwise termed microchannels, are gaining increasing
application in various research fields. Microstructured or microchannel reactors are
preferred for their energy-saving efficiency, scalability, reliability, yield, higher process
control and improved yield. (FLAVIO et al., 2017; MILLS, J.Q, and JAMES, 2007) They
are miniaturized chemical reactors that are suitable to operate at a microscale level.
In other words, with a small surface area to volume ratio ranging from 100 to 10,000
m2m3, they provide high mixing rates, improved reaction control, short reaction times,
enhanced heat and mass transfer coefficient as well as proven better choice for pilot
experimentation over conventional reactors. (VOLKER, HOLGER, and FRIEDHELM,
2005)

Furthermore, microchannel reactors are primarily developed to improve chemical
reaction conditions at a microscale (pilot scale) and then numbered up to improve
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efficiency even at a larger or industrial scale. Moreso, due to their impact on reaction
kinetics, they find application in the chemical, biological, engineering and nuclear energy
fields to improve process or production efficiency as well as process safety. (MILLS, J.Q,
and JAMES, 2007; TEUSCHEL, 2001; JÄHNISCH et al., 2004) However, a microreactor
is quite expensive to set up when compared to traditional reactors.

Nonetheless, although the advantages of the usage far outweigh the disadvantages,
it does not provide capital cost reduction when scaled and compared to conventional
reactors. Hence, from an economy-of-scale standpoint, it still falls short of expectations.
Moreover, aside from the common issues of clogging and fouling of the microreactor
pores, there are also certain issues that need to be surmounted such as:

1 The need for certification and advanced design to carry out more complex research.

2 Being proven unsuitable for nuclear reaction research.

3 The relatively high cost when compared to traditional reactors.

Thus, due to the above shortcomings, this project is aimed at deploying the proposed
stochastic simulation algorithm to better understand the challenges often caused by
milli- or micro-reactors during polymerization reaction and thus proffer more accurate
information for the process intensification of the FRP of styrene in microchannels.
(KUMAR et al., 2022; JAISWAL et al., 2022; WILLE et al., 2004)

2.2.2 Previous studies on the stochastic simulation of the FRP
of styrene

There have been previous research efforts channelled towards the application of
stochastic simulation in the context of free radical polymerization. However, it is worth
stating that while the investigation of the microstructure of the polymer formation has
been investigated, there has not been so many investigation focused on the application
of stochastic simulation in the context of polymer formation via microchannels or
microreactor technology. (IWUCHUKWU and VIANNA, 2023)

Moreso, coupled with the shortcomings of the microreactor technology, one of the
primary challenges associated with general polymerization reaction is the precise control
and optimization of the reaction mechanism at a micro-scale. Hence, a stochastic
simulation approach has been utilized to address the problems earlier highlighted when
it comes to polymerization via microchannels. (YAO et al., 2015; SHUSAKU et al.,
2017; SU, SONG, and XIANG, 2018) Thus, the review in this subsection is aimed to
highlight a few closely aligned research efforts stating the importance of understanding
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the polymer’s microstructure in predicting its end-use property and enhancing the
overall polymerization reaction. (IWUCHUKWU and VIANNA, 2023; CROMPTON,
1993; JÄHNISCH et al., 2004)

In his work, Soares (2004) reviewed various mathematical modelling techniques to
quantify the microstructure of polymers. The review was aimed at emphasizing the
importance of understanding the microstructural details and how they could impact the
macroscopic properties of the polymer, especially by long chain formation and terminal
branching. Moreso, the review was focused on the application of mathematical modelling
methods such as the Method of Moment (MoM), Population balances, Instantaneous
distribution and most importantly Monte Carlo simulation towards the modelling of the
microstructure of polyolefins made by coordination polymerization. (J. SOARES, 2004)

Also, Shao, et al. (2015) also emphasized the importance of understanding the
polymer formation at a microscale formed via FRP by deploying a hybrid Monte Carlo
routine. The hybrid Monte Carlo routine used combines both reaction mechanisms
of the FRP and a coarse-grained molecular simulation to study the chain growth
reaction. However, the model represents the polymerization kinetics in both batch
and semi-batch processes using the PRECIDIT M software. Also, aside from obtaining
promising monomer conversion and molecular weight distribution (MWD) results as the
kinetic constant for chain propagation Kp was varied, the work did not account for the
fast reaction dynamics comprising of chain initiation affected by the radical transfer.
(SHAO et al., 2015)

Another similar work to the Hybrid Stochastic Simulation Algorithm (HSSA) used
in this work was published by Amit and Donald (2015), which deployed a hybrid Monte
Carlo simulation approach aimed at capturing both the fast and slow dynamics of a
typical FRP reaction. The fast dynamics comprising radical transfer from the chain
initiation step were simulated by stochastic simulation while, the chain propagation
(slow dynamics) was accounted for by deterministic simulation. Although the results
obtained were promising for a hypothetical case of a simple bulk FRP of Methyl
Methacrylate (MMA) and also predicted viability for complex FRP reactions, the
technique did not guarantee optimum application for small varying volume systems like
a microchannel. (TRIPATHI and SUNDBERG, 2015; HSSA, 2022).

Stanislaw and Szymanski (2019) used a hybrid stochastic-deterministic technique in
order to capture the fast dynamics of a controlled radical polymerization reaction. More
specifically, the investigation involved the copolymerization of MMA with vinyl chloride
as well as using hypothetical kinetic value reported in the work to test the hybrid
Monte Carlo simulation method (HCBC) while comparing it to the GA. Interestingly,



13

the respective computing efficiencies of the GA and the HCBC were compared thus
concluding that the GA was more robust in capturing the stochasticity of the FRP
system at a microscale (or small volume). (STANISLAW and RYSZARD, 2019)

In the same vein, Gao et al. (2015) also proposed scaling techniques that entail
scaling reaction rate or kinetic constants to accelerate the KMC simulations by a
factor of 100. The proposed KMC used in the investigation proved to be effective for
the FRP reaction mechanism with experimental or kinetic constants. While the work
was projected to facilitate the linkage of the KMC output with standalone molecular
simulations to understand the “structure-property” relationships such as chain sequence,
polymer physical properties, glass transition temperature and mass transport properties,
the “scaled-KMC” can only handle a limited volume of molecules, highlighting the limits
of the scaling approach. (GAO and HE, 2015)

Most recently, Stanislaw and Szymanski (2022) confirmed that polymerization
processes like the FRP could be carried-out in dispersed systems and have shown great
potential for wide application. They further explained that based on the outcome
of their investigation that this aspect is yet to be fully explored. Interestingly, their
work was focused on understanding the impact of process conditions on the kinetics
and end-use characteristics of a polymer via Living Polymerization at a nano-scale.
Furthermore, they affirmed that chain growth polymerization in nano-channels (or
droplets) would not be fully captured without deploying a stochastic technique to
track droplets of low-number reacting species even at reacting large volumes. Moreso,
by using a Normal or Poisson distribution to simulate the reactant molecules, taking
place in nano-droplet dispersions fashion, a detailed description of both reversible and
irreversible chain-growth polymerization processes can be understood. (SOSNOWSKI
and SZYMANSKI, 2022)

Thus, it is worth re-emphasising that the choice for deploying a hybrid Gillespie
Algorithm (GA) for the FRP of styrene in this work over a Kinetic Monte Carlo (KMC)
framework is predicated on capturing the rates of slow and fast dynamics associated
with the free radical transfer in the FRP of styrene. (IWUCHUKWU and VIANNA,
2023). Although the GA and KMC are powerful stochastic simulation methods for
simulating the kinetics of complex chemical reactions and as well share similar computing
frameworks in their algorithms, the following are the reasons for adopting the hybrid
Gillespie algorithm over the Kinetic Monte Carlo technique (TRIGILIO et al., 2020) :

1 The GA is a function of the Chemical Master Equation (CME) which is unique to
the type of chemical reaction in consideration, while the KMC adopts a Monte
Carlo simulation framework to approximate the reaction kinetics regardless of the
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type of reaction. Moreso, for a chain growth polymerization reaction, GA seems
to be a good choice over KMC as it computes the individual reaction pathway
propensities whereas, the KMC just predefines the individual rates of reaction
pathways and then performs random sampling to determine the next reaction.
(SLEPOY, THOMPSON, and PLIMPTON, 2008; D.T. GILLESPIE, 2007)

2 Unlike the GA which interprets the intrinsic stochastic behavior of the CME of
chemical reaction systems, Monte Carlo simulations predominantly use random
sampling which results in statistical error. The stochastic trajectories of the Monte
Carlo simulations are subject to statistical variability. While the simulations provide
estimates and probabilities, they are not precise predictions. Chain reaction steps
like initiator decomposition and chain initiation of an FRP reaction may not be
captured as they are latent reaction steps. (STAMATAKIS and D. VLACHOS,
2012)

3 Overall, the major limitation of the application of the KMC in chemical reactions is
that the reaction rate has to be known in advance thus adopting a non-markovian
process. In contrast, the GA works effectively in this scenario due to the fact
it operates on the CME of the defined reaction system. Moreso, the KMC is
effective for specific polymer reaction systems with structural configurations.
(MAVRANTZAS, 2021)

Hence, if the FRP of styrene is to be carried-out in a microchannel (with a predefined
volume), it is vital to consider an algorithm robust enough for smaller volume systems
as well as a comparative low computational cost. Overall, this work aims to address the
computational shortcomings of the above review by proposing an algorithm to efficiently
predict the FRP of the styrene model and thus providing reliable information applicable
for process intensification purpose.



CHAPTER 3
STOCHASTIC MODELLING

3.1 Stochastic Simulation and Modelling Techniques

Stochastic simulation of the kinetics of complex chemical systems like the FRP
system has proven to be an effective technique for an in-depth understanding of a
given chemical reaction system. (HAHL and KREMLING, 2016; MASTAN and ZHU,
2015; TIAN and BURRAGE, 2004; YANG CAO, D.T. GILLESPIE, and LINDA R.
PETZOLD, 2006) As earlier stated, simulating the FRP system can be carried out
by applying either deterministic or stochastic approaches. However, each simulation
technique has its advantages and limitations, which influence their choice regarding
the problem at hand. (MEIMAROGLOU and KIPARISSIDES, 2014; Y. CAO, D.T.
GILLESPIE, and L. R. PETZOLD, 2005; SMITH, 2007)

To begin with, at low molecular copy numbers, the FRP system is inherently stiff to
compute hence, a deterministic simulation approach is not robust to capture both the
slow and fast dynamics of the system. (MASTAN and ZHU, 2015; MEIMAROGLOU
and KIPARISSIDES, 2014) Secondly, the governing CMEs of the FRP system usually
consist of a set of ODEs representing each reaction in the chain growth polymerization
per macromolecule of the polymer, thus making it numerically intractable to solve
deterministically. (MASON, HUDSON, and SUTTON, 2005; FICHTHORN and
WEINBERG, 1991)

Notwithstanding, a deterministic approach is an available option when dealing with
high molecular copy numbers. More specifically, solving the FRP numerically generates
an infinitely large number of stiff ODEs. In turn, a statistical approach is employed
to simulate the approximate properties of the polymer using methods of moments
statistical techniques. (LAURENCE, GALVAN, and TIRRELL, 1994; SMITH, 2007)
On the other hand, a stochastic approach seems to be more effective at low copy numbers.
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Most recently, hybrid stochastic-deterministic methods are been developed to deal
with the fast and slow dynamics of complex chemical reaction systems as well as
considering the computational efficiency of the algorithm architecture. This slow and
fast dynamics of a chemical reaction system are influenced by a number of factors
which includes temperature variation for example. Moreover, the application of hybrid
simulation algorithms brings a diversity of representations of the phenomenology of
the chemical reaction in consideration. (BURKE, 2021) If certain factors surrounding
the choice of the hybrid technique are sufficiently considered then, the choice could
lead to interfacing complexity between models as well as scalability and computational
efficiency. As described further in Chapter 4, a Hybrid Stochastic Simulation Algorithm
(HSSA) is applied in the simulation of the FRP of styrene because of its capacity to
perform parallel stochastic and deterministic simulations in order to capture both the
fast and slow dynamics of the reaction and also, the robustness to simulates the chain
growth up to 231 − 1 moles of the polymer.

3.2 The Chemical Master Equation (CME)

The Chemical Master Equation (CME) provides the fundamental basis for
describing the rate of inter-molecular interactions. It forms the basis for modelling
complex chemical reactions such as chain growth reactions as it is efficient in simulating
stochastic noise produced from such reactions. In this context, these dynamical reaction
systems are assumed to be well mixed and, at thermal equilibrium. The collisions
between molecular species are also assumed to be random within the reaction volume
and the momentum of head-on collisions of inter-molecular species is also assumed to
be elastic.(D.T. GILLESPIE, 2007)

Furthermore, it has been a heavily applied tool for understanding discrete stochastic
chemical reaction systems. Solving the CME model of complex systems is well-known
to be intractable to solve. Hence, the Gillespie Algorithm proves to be an invaluable
technique applied in solving the CME of a complex system. it is also worth noting that
the Reaction Rate Equation (RRE) or Chemical Kinetic Equation (CKE) follows or
obeys the law of mass action. Thus, the CME describes the inherent stochasticity with
respect to reaction times resulting in varying copy numbers of the reacting species.

Consider a system with fixed volume, V at thermal equilibrium, T as well as a
well-mixed chemical reaction system. Also, let the system constitute of molecular species
(S1, S2, S3, . . . , SN) where 1 ≤ i ≤ N and the reaction pathways as (R1, R2, R3, . . . , RM)
where 1 ≤ j ≤M . Again, after a reaction Rj occurs within an infinitesimal time dt, the
updated molecular distribution of the respective species, Si following the reaction Rj
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is defined as a vector of coefficients vij ∈ RN where vij = (v1j, v2j, v3j, . . . , vMj). Hence,
the state vector vij (where i indexes the state variables, and j indexes the event(s))
containing the number of molecular species present in the system at a given time t.
Another important variable is the propensity function, aj which is the probability that
a reaction Rj will occur within an infinitesimal time interval (t, t + dt) in a reaction
volume V given that it was initially in a state vij at time t. The inherent stochasticity
of a chemical reaction system is described by the CME with the following summarized
assumptions:

1 The system is well-mixed.

2 The CME follows a Markov process. This implies that the future state of the
reaction depends solely on the current state and not on the history of the chemical
reaction system.

3 The CME assumes a discrete state space. This implies that the consumption and
formation of the reactant species are in discrete or integer numbers.

Let’s assume a well-mixed chemical reaction system with species, Si and reaction
channels, Rj. Then, the current state of the system can be denoted as X. Also, the
propensity aj(X) is the probability per unit time that reaction, Rj will occur given
state, X.

In order to formulate the Chemical Master Equation (CME), one can consider the
probability flux into and out of the state X. Then, the total probability flux out of
state, X due to all reactions, Rj is given by:

M∑︂
j=1

aj(X)P (X, t) (3.1)

Furthermore, the influx into state X comes from state X − vij for all reaction, Rj

that lead to state X:

M∑︂
j=1

aj(X − vij)P (X − vij, t) (3.2)

Hence, the total rate of change will be:
Probability flux into X - Probability flux out of X
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Therefore:

∂P (X, t)
∂t

=
M∑︂

j=1

[︃
aj(X − vij)P (X − vij, t)− aj(X)P (X, t)

]︃
(3.3)

The above is the Chemical Master Equation (CME).

All in all, the Chemical Master Equation or CME provides a robust framework to
model the stochasticity of the chemical reaction system by capturing the probabilistic
nature of the molecular interactions. Thus, by solving the CME, the time-dependent
probability distribution of the molecular population of a given system can be determined.

To further exemplify the CME, consider the set of chemical reactions consisting of
two species from Figure 3.1:

A + 3B
k1−→ 2B

2B
k2−→ A

Figure 3.1: A 2-dimensional cartesian grid figure used for illustrating the formulation
of the Chemical Master Equation (CME) for chemical reactions involving two species.
The left grid plot shows two reactions taking place after an infinitesimal time dt from the
original state, S0 while, the right cartesian grid shows two different reactions arriving at
the current state, S0.

Furthermore, from the Figure (3.1), the two 2-dimensional cartesian grids with axes
representing molar consumption or production of the interacting species namely A and
B. The, left cartesian grid illustrates the two different reactions R1, R2 with states S1,
S2 respectively taking place from the original state S0 denoted by the blue circle in the
figure above. The right cartesian grid illustrates the two reactions, R1, R2 with states S1,
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S2 returning or arriving at the original state, S0 then we have the following outcomes
from the cartesian grid:

LEAVING STATE, S0:

S01 : (A, B)→ (A− 1, B − 1)

S02 : (A, B)→ (A + 1, B − 2)

ARRIVING STATE, S0:

S1→S0:(A + 1, B + 1)→ (A, B)

S2→S0: (A− 1, B + 2)→ (A, B)

To formulate the Chemical Master Equation (CME) for the given chemical reaction
equation, consider the following possibilities:

1 For the first possibility, the probability for any reaction to arriving at a current
state, S after an infinitesimal time, dt is (A, B, t+dt) is either the state, S remained
at (A, B, t) with no reaction taking place or at the current state, any of them had
already taken place.

2 For the second possibility, the two reactions had already taken place.

Writing the CME, we have:

P (A, B, t+dt) = P (A, B, t)(1−k1ABdt−k2Bdt)+P (A+1, B+1, t)k1(A+1)(B+1)dt

+ P (A− 1, B + 2, t)k2(B + 2)dt

P (A, B, t+dt)−P (A, B, t) = −(k1AB−k2B)P (A, B, t)dt+k1(A+1)(B+1)P (A+1, B+1, t)dt

+ k2(B + 2)P (A− 1, B + 2, t)dt

Dividing both sides of the above equation by dt as dt→ 0 results to :

dP (A, B, t)
dt

= −(k1AB − k2B)P (A, B, t) + k1(A + 1)(B + 1)P (A + 1, B + 1, t)+

k2(B + 2)P (A− 1, B + 2, t)
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3.3 Description of the Gillespie Algorithm (GA)

The Gillespie Algorithm (GA) or also known as the Stochastic Simulation
Algorithm (SSA) was introduced to predict or simulate the exact realizations of
biochemical or cellular reactions that involve interactions of millions of molecular
species. It was first published in 1976 by Daniel.T Gillespie as an improvement on the
Kinetic Monte Carlo (KMC) simulation technique, it has ever since been a fundamental
approach for accounting for the inherent stochasticity in a complex chemical reaction
which is latent when using traditional deterministic simulation methods. Although it is
computationally expensive, it effectively solves the intractable nature of the CME that
governs complex chemical reactions. (D.T. GILLESPIE, 2007)

3.3.1 Notation and Derivation of the Gillespie Algorithm (GA)

Once again, for M reactions {R1, R2, R3, . . . RM} where 1 ≤ j ≤ M and N

molecular species {S1, S2, S3, . . . SN} for 1 ≤ i ≤ N while the state of the molecular
species {X1, X2, X3, . . . XN} at time, t. Thus, to simulate the evolution of the system,
the following question needs to be asked:

1 When will the next reaction occur?

2 Which reaction will occur next?

The answer to these questions will be P (τ, µ). Where P (τ, µ) is equal to the probability
that given the state of the molecular species {X1, X2, X3, . . . XN} at a time, t:

1 The next reaction will occur in the infinitesimal time interval of (t + τ, t + τ + dτ)
and,

2 The next reaction will be Rj.

It is worth noting that the time (τ) for the next reaction to occur is not necessarily
infinitesimal. Then, applying the observations from the CME from the previous section,
the probability that the next reaction, Rj will occur in the infinitesimal time interval
(t + τ, t + τ + dτ) is cjhjdt. Where:
hj = the number of instant combinations of reactants for reaction Rj.
cj = propensity or stochastic constant. Thus, computing the probability that no reaction
occurs in the time interval (t, t + τ) is given by:

P (τ, j) = P0 (τ) cjhjdτ (3.4)
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Furthermore, given that P0 (τ), is the probability that no reaction occurs in the
time interval (t, t + τ). Then, for an infinitesimal time interval of dτ , no reaction can be
assumed not to occur in the time interval(t, t + τ + dτ) given the following:

1 No reaction occurs in (t, t + τ) and in the infinitesimal time interval of t + τ, t +
τ + dτ .

2 (t, t + τ) is very small but not always the case.

Applying the principles of the CME:

P0 (τ + δτ) = P0 (τ)
1−

∑︂
j

cjhjdτ

 (3.5)

Subtracting P0 (τ) from both sides of the above Equation (3.5):

P0 (τ + δτ)− P0 (τ) = −P0 (τ)
∑︂

j

cjhjdτ

 (3.6)

The Equation (3.6) above becomes:

dP0 (τ) = −P0 (τ)
∑︂

j

cjhjdτ (3.7)

Integrating the above Equation (3.7) as δτ → 0 then:

P0 (τ) = e−
∑︁

j
cjhj (3.8)

Finally, the above Equation (3.8) becomes:

P (τ) = cjhje
−αjτ (3.9)

For all τ ≥ 0 and j = 1, 2, 3, . . . , N where αj = ∑︁
j cjhj

Or by defining X(t) = x

P (τ, j|x, t) = cjhje
−αj(x)τ (3.10)

Furthermore, to compute τ , add natural logarithm to both sides of Equation (3.10):

ln P (τ, j|x, t) = ln cjhje
−αj(x)τ (3.11)

ln P (τ, j|x, t) = −αj(x)τ ln cjhj (3.12)
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τ = 1
αj(x) ln cjhj

P (τ, j|x, t) (3.13)

Let ξ1 = P (τ,j|x,t)
cjhj

then:

τ = 1
αj(x) ln

(︄
1
ξ1

)︄
(3.14)

Also, since the respective chemical reaction channel, Rj partitions the initially defined
reaction time t then, the next reaction is determined by generating a second random
number, ξ2 from a Uniformly Random Distribution (URD) from the given time interval
which satisfies the condition:

ξ2 ≥
1
α0

j−1∑︂
µ=1

αµ(x) or ξ2 <
1
α0

j∑︂
µ=1

αµ(x) (3.15)

Re-writing the above Equation (3.15):

1
α0

j−1∑︂
µ=1

αµ(x) ≤ ξ2 <
1
α0

j∑︂
µ=1

αµ(x) (3.16)

Where α0 is the cumulative sum of propensity after an iteration is completed and
αj(x) is the respective propensity for every reaction channel,Rj.

As shown in Equation (3.14), the value of τ is a function of the cumulative sum of
propensities α of the successive chemical reactions taking place within the time interval,
dτ and a variable ξ1 which is obtained from a uniform distribution. Hence, the degree
of discreteness of the simulation is dependent on the values of α and ξ. The original
Gillespie Algorithm (Direct Method) is illustrated in the following steps below:

STEP 1 Initialize the simulation time, t and state change vector, vij. Where vij is the
product of the molecular species and respective reaction channels, Rj.

STEP 2 Compute the cumulative sum of propensities of the respective reactions given by
the equation below for every reaction channel, Rj where j = (1, 2, 3, . . . , N) :

αj(x) =
∑︂

j

cjhj

STEP 3 Generate two pseudorandom number ξ1, ξ2 from a Uniform Random Distribution
(URD) or ∼ N (0, 1). Again, compute the time for the next reaction t → t + τ

using Equation (3.14) :

τ = 1
αj

ln
(︄

1
ξ1

)︄
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STEP 4 Compute the propensity of the next reaction , Rj using Equation (3.15) such that:

1
α0

M−1∑︂
j=1

αj(x) ≤ ξ2 <
1
α0

M∑︂
j=1

αj(x)

STEP 5 Update the next reaction. The calculation stops until the number of iterations, n

exceed the time of simulation, tf where n > tf .
Else:
Repeat STEP 2

3.4 The Tau-Leaping Technique

Also, put forward by Daniel T. Gillespie in 2001, the Tau-Leaping technique
modifies the Gillespie Algorithm (GA) in the previous section. This technique sacrifices
the exact simulation for an approximate simulation that is quicker to compute. As
shown below in the following steps. The ‘leaping condition’ holds when there exists
an infinitesimal time step τ > 0 which is small enough to represent each reaction
channel, Rj in the chemical reaction system. Furthermore, instead of computing the
next infinitesimal time step for the next reaction, Rj, the algorithm ‘leaps’ forward in
time following a Poisson Random Distribution (PRD) by updating the population of
the respective molecular species in one step. (D.T. GILLESPIE, 2001)

Furthermore, the appropriate size of the ‘leap’ determines the accuracy of the
algorithm thus, the larger the size of the ‘leap’, the higher the speed of implementation
thus losing computational accuracy as a result. In contrast, a small ‘leap’ denotes many
steps or iterations that may be captured for as many reaction channels Rj as possible
hence, the algorithm would compute extremely slowly but with a higher degree of
accuracy in terms of computation. Therefore, from each iteration, the propensity τ > 0
will be a function of the leaping time τ and the number of occurrences kj (or frequency
of an event occurring within the defined ‘leap’) for every Rj sampled from a Poisson
Random Distribution (PRD) is given by :

λ = P (k, αj(x)τ) = e−αj(x)τ (αj(x)τ)k

k! (k = 0, 1, 2, . . .) (3.17)

Again, each iteration step of the Tau-Leaping algorithm is like an explicit Euler
iteration technique :

X (t + τ) = X (t) + τX
′(t) (3.18)

Where X
′ is the updated state after iterating within the defined time frame t→ t+τ

Thus, the state change for a reaction Rj is:
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X (t + τ) = X (t) + Pj (k, αj(x)τ) (3.19)

Overall, the approximate "leap" of the chemical reaction system within a time τ is
given by:

X (t + τ) = X (t) +
M∑︂

j=1
Pj(αj(x)τ)vij (3.20)

STEP 1 Initialize the simulation time, t and, the initial state of reacting species’
{X1, X2, X3, . . . XN} state change vector, vij.

STEP 2 For every reaction channel Rj ,where j = 1, 2, 3, . . . , N , choose the time step , τ or
the "Leaping Condition" such that t→ t + τ

STEP 3 Compute the cummulative sum of propensities of the respective reactions for every
reaction channel, Rj, where j = 1, 2, 3, . . . , N :

αj(x) =
∑︂

j

cjhj

STEP 4 For every reaction channel,Rj compute the number of occurrences, kj Poisson(Rj)
within the "Leaping Condition" given by Equation (3.17):

λ = e−αjτ (αj(x)τ)k

k!
Where k = 0, 1, 2, . . . , N

STEP 5 Update the state of the respective molecular species:

X → X + λ

And,

Compute the propensity of the next reaction , Rj using Equation (3.15) such that:

1
α0

j−1∑︂
j=1

αj(x) ≤ ξ2 <
1
α0

j∑︂
j=1

αj(x)

STEP 6 Stop calculation until the number of iterations, n exceeds the time of simulation,
tf where n > tf . Else:

Repeat STEP 2



25

It is also worth noting that, the deterministic rate constants or kinetic rate constants
are converted to stochastic rate constants based on the number of molecules of each
reacting species present in the reaction volume within the predefined time of the
simulation. According to Daniel T. Gillespie, the kinetic rate constants are transformed
mathematically into stochastic rate constants with the following equations (D.T.
GILLESPIE, 2007):

For unimolecular reactions.:

kExperimental = kStochastic (3.21)

For bimolecular reactions between different species.:

kExperimental = kStochastic

V.NA

(3.22)

For bimolecular reactions between same species.:

kExperimental = 2kStochastic

V.NA

(3.23)

For termolecular reactions between same species.:

kExperimental = 6kStochastic

V.NA

(3.24)

Where V is the reactor volume and NA is the Avogadro number. For this work, the
respective propensity functions of the reaction steps for the FRP of styrene are shown
in Table (3.1) below.
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Table 3.1: A table depicting the Free Radical Polymerization (FRP) steps and their
respective propensity functions.

CHEMICAL
REACTION

CHEMICAL
REACTION
EQUATION

REACTION RATE
EQUATION, ri

PROPENSITY
FUNCTION, aj

Initiator
Decomposition

I
Kd−→ 2fR

• −rI = 2fKdI aI = kIsI

Chemical Initiation R
• + M

Ki−→ R1• −ri = KiMR
•

ai = kisMsR
•

Thermal Initiation 3M
Kiterm−−−→ R

•
1 + R

•
2 −rM = KitermM 3 aM =

1
6kitermsM (sM − 1) (sM − 2)

First Chain
propagation

R
•
1 + M

4Kp−−→ P
•
2 −rM1 = 4KpMR

•
1 aM1 = kP sMsR

•
1

Second Chain
propagation

R
•
2 + M

4Kp−−→ P
•
3 −rM2 = 4KpMR

•
2 aM2 = kP sMsR

•
2

Chain Propagation P
•
n + M

Kp−→ P
•
n+1 −rn = KpMP

•
n an = kpsMsP

•
n

Chain Transfer to
Monomer

P
•
n + M

KtrM−−−→
P
•
1 + Dn

−rtrM = KtrMMP
•
n atrM = ktrMsMsPn

•

Chain Transfer to
Solvent

P
•
n +S

KtrS−−→ P
•
1 +Dn −rtrS = KtrSSP

•
n atrS = ktrSsSsPn

•

Chain Termination
By Recombination

P
•
n + P

•
m

Ktc−−→ Dn+m −rtc = KtcP
•
nP

•
m atc = ktcsPn

•sPm
•

Chain Termination
By

Disproportionation

P
•
n + P

•
m

Ktd−−→
Dn + Dm

−rtd = KtdP
•
nP

•
m atd = ktdsPn

•sPm
•
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3.5 Classification of the Stochastic Simulation Algorithm

There are some other variants of the Gillespie Algorithm (GA) or Stochastic
Simulation Algorithm (SSA) as shown in the classification tree of the SSA in Figure (3.2).
(D.T. GILLESPIE, 2007) They offer not only computational speed to the intractable
nature of the CME of complex chemical systems such as chain growth polymerization
but also, robust enough to minimize errors due to approximation from these variants. A
number of these variants or algorithms are reformulations for various cases of chemical
reactions such as hybrid models, involving both continuous and discrete variability.
There has been a quest to provide computational modifications of the GA for chemical
reactions such as the FRP in order to increase the efficiency of the algorithm in terms
of simulation time and speed. (D.T. GILLESPIE, 2001; TIAN and BURRAGE, 2004;
Y. CAO, D.T. GILLESPIE, and L. R. PETZOLD, 2005; YANG CAO, D.T. GILLESPIE,
and LINDA R. PETZOLD, 2006)

Below are highlights of the simulation technique depicted in the classification tree in
Figure 3.2.

3.5.1 EXACT METHODS

3.5.1.1 Direct Method (DM)

The Direct Method for SSA forms the foundation of the Gillespie Algorithm (GA)
and is fully explained in subsection 3.3.1.

3.5.1.2 Rejection-Based Method (RBM)

Here, this thesis is only intended to give a brief highlight of the algorithm hence,
further proof of the Rejection-Based method explanation can be found in the publication
by Thanh et al. (2014). The algorithm follows the given steps below (THANH, PRIAMI,
and ZUNINO, 2014):

1 Compute upper and lower bound propensities, ᾱj , αj for j = 1, 2, 3, . . . , M for the
next reaction, Rj. This is used to maximize or minimize the propensity function,
αj over the fluctuation interval of the respective states at a given time X̄, X. Thus,
X < X(t) < X̄ holds for each species and also, the invariant αj ≤ αj ≤ ᾱj also
holds for each reaction channel, Rj for j = 1, 2, 3, . . . , M .

2 Generate ξ1, ξ2, ξ3 for a ∼ N (0, 1) and compute the next reaction, Rµ . Given that:

ᾱµ

ᾱ0
and ᾱ0 =

M∑︂
j=1

ᾱj
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The next reaction, Rµ is selected when the condition is satisfied:

M∑︂
j=1

ᾱj > ξ1.ᾱ0 (3.25)

3 Using the rejection-based test, the acceptance and rejection of the next reaction,
Rµ is identified using the mathematical relation:

ξ2 ≤
αµ

ᾱµ

<
αµ

ᾱµ

(3.26)

If satisfied, adopt, Rµ. Otherwise, re-compute, αµ

4 Compute the corresponding value of τ for the accepted Rµ following an Erlang
distribution. Hence, for every k trials of the accepted Rµ (or k − i rejected
candidates), the firing time τ is given by:

τ =
k∑︂

i=1

−1
ᾱ0

ln ui = −1
ᾱ0

ln(
k∏︂

i=1
ui) (3.27)

Where u = u.ξ3 is set for every successive iteration. The loop stops until X ∈ [X, X̄]
is fulfilled.

Overall, with the time complexity of O(N), experiments have shown that the
Rejection-based method (RBM) is roughly 20% faster than the Direct Method (DM),
and the Next reaction method (NRM). It is worth noting that the N is the number of
iterations required to compute the time τ required. However, the algorithm computes
all possible reaction channels at each time step as well as the rejected non-occurring
reaction. This mechanism, therefore, can prove not only to be time-consuming but, also
to occupy a lot of memory space. (GAO and HE, 2015; DUAN and LIU, 2015)

3.5.1.3 First-Reaction Method (FRM)

As another classification of the exact method, it differs from the DM in terms of
how the next reaction, Rj is selected. Moreso, the FRM selects the reaction, Rj with
the least firing time to take place. Thus, in addition to STEP 3 in the GA or DM, the
following is implemented to determine the next reaction time τ :

τ = min (τ1, τ2, τ3, . . . , τM)

Where j is the index of min (τ1, τ2, τ3, . . . , τM ) . The algorithm has a time complexity
of 0(M) where M is the number of selected reactions to occur next at a given state.
Although the FRM is an improvement over the DM, its shortcomings are evident
when the reaction system consists of reaction channels with similar propensities. (D.T.
GILLESPIE, 1977)
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3.5.1.3.1 Next reaction Method (NRM)

Another modified version of the DM was introduced by Gibson, M. and Bruck, J.
in 2000. It is called the Next Reaction Method (NRM). One of the key features of the
NRM is that the (M − 1) unused reaction times, τ are re-used during the simulation.
In addition, the generated random numbers ξ1, ξ2 in STEP 2 are computed more
effectively using a dependency graph or an indexed priority queue. Thus, due to this
robust feature of the NRM, it has a time complexity of 0(log M). Where M is the
number of selected reactions. (GIBSON and BRUCK, 2000)

In contrast to the advanced and robust features of the NRM over the DM, its
shortcoming is predicated on the fact that the time of computation tends to increase
when the chemical reaction system contains similar propensities for every reaction
channel, Rj thus, increase the cost of computation due the use large sorted data
structures. (GIBSON and BRUCK, 2000)

3.5.2 TAU-LEAPING METHODS

The Tau-Leaping or τ -Leaping method is a technique to accelerate the SSA while
sacrificing the accuracy of the algorithm. As earlier highlighted in the previous subsection
of this chapter, the effectiveness of the algorithm relies mainly on the “leap” or τ as
its amount also affects the propensity, αj of every reaction channel, Rj fired. Below are
brief highlights of the other variants of the Tau-leaping algorithm. (D.T. GILLESPIE,
2001; D.T. GILLESPIE, 2007)

3.5.2.1 Explicit Tau-Leaping Method

As earlier explained in section (3.5), the explicit tau-leaping technique is a variant
of the Tau-Leaping method. According to Equation (3.20), it follows the explicit Euler
iteration technique. It is worth noting that the aim of the method is to reduce the
computational cost compared to the Direct SSA while introducing the Poisson distributed
approximation of each reaction channel Rj fired. Again, while the Poisson-generated
random number Kj may seem to make the reactant species population negative, the
main challenge with the unboundedness of the Poisson-generated numbers Kj is the lack
of coordination of the tau-leaping technique deployed between each reaction channel Rj

fired. Nevertheless, there have been computational improvements to rectify the problem.
(D.T. GILLESPIE, 2001; Y. CAO, D.T. GILLESPIE, and L. R. PETZOLD, 2005;
CHATTERJEE, D. G. VLACHOS, and KATSOULAKIS, 2005; TIAN and BURRAGE,
2004)
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3.5.2.2 Implicit Tau-Leaping Method

The implicit τ -leaping technique is another variant of the Tau-Leaping that is
also employed to increase the computational speed as well as minimize error upon
computation. Like the Explicit Tau-Leaping, the algorithm also deploys the implicit
Euler iteration technique. However, as the value of the “leap” increases to larger values,
the computational efforts outweigh the accuracy it brings. (D.T. GILLESPIE, 2007)

Furthermore, in the context of applying the implicit Euler iteration model to the
τ -leaping algorithm contradicts the Markov process theory. Nonetheless, Rathinam
et al.(2003) proposed the following equation to correct the doubt observed earlier.
(RATHINAM et al., 2003)

X (t + τ) = X (t) +
M∑︂

j=1
Pj[(Kj(αj(x)τ)− αj(x)τ + αj(X(t + τ))τ ]vij (3.28)

The above Equation 3.28 is applicable to stiff ODEs and some tests have shown that
its computational speed outweighs the Explicit τ -Leaping technique. Also, an important
advantage of this technique is that for every Poisson random generated number (Kj),
the resulting equation can be solved by deterministic techniques such as implicit ODE
solvers. (ASCHER and LINDA, 1998)

3.5.2.3 Slow-Scale Tau-Leaping Method

The slow-scale Tau-leaping algorithm is also a variant of the Tau-leaping technique
proposed by Yang and Petzold (2008) to handle multiscale stochastic simulation by
combining the power of the slow-scale Stochastic Simulation Algorithm and adaptive
tau-leaping method to understand complex reversible reaction systems. This work
is not intended to extensively explain the slow-scale Tau-leaping methods as further
information can be found in the work earlier referenced. (Y. CAO and L. PETZOLD,
2008)

In brief, a highlight of the low-scale Stochastic Simulation Algorithm and adaptive
tau-leaping method are discussed here. The adaptive tau-leaping method is a technique
introduced to effectively select the maximum value of τ in order to choose the optimal or
best “leap” for the τ -leaping algorithm. Cao et al. (2006) proposed the equation below
(YANG CAO, D.T. GILLESPIE, and LINDA R. PETZOLD, 2006):

τ = min
i∈Irs


max

{︂
ϵχi

gi
, 1
}︂

|µi (χ)| ,
max

{︂
ϵχi

gi
, 1
}︂2

σ2
i (χ)

 (3.29)
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Where Irs = is the set of indices of all reactants. And, gi = is the higher order of
reaction (HOR) in which the reacting species, Si occurs.

Whereby, for example, if :
gi = 1 then, HOR (i) = 1.

Also;

If gi = 2 then, HOR (2) = 2.

Or else, the reaction involved results in the consumption of two (2) molecular species,
then:

gi =
(︄

2 + 1
χi − 1

)︄
(3.30)

Also, the mean µ and standard deviation σ2 are given by:

µi (χ) ≜
∑︂

j∈Jncr

vijαj (χ) (3.31)

σ2
i (χ) ≜

∑︂
j∈Jncr

v2
ijαj (χ) (3.32)

On the other hand, the slow-scale SSA was inspired by the intractable nature of the
ODEs derived from the Michaelis-Menten enzymatic equation. The algorithm developed
by Cao et al. (2005) primarily involves the following steps (Y. CAO, D.T GILLESPIE,
and L. PETZOLD, 2005) :

1. Partition the reaction channels R = R1, R2, R3, . . . , RM into fast and slow subsets
namely Rf and Rs respectively. Reaction channels whose propensity functions are
large are assigned to Rf the remaining to Rs.

2. Split the species S = S1, S2, S3, . . . , SN into fast and slow subsets, Sf and Ss.
Moreso, the rule of assignment is that any specie whose population get changed
by a fast reaction channel, Rf is classified as a fast specie, Sf while others are
categorized as slow, Ss. However, it is worth noting that a fast species, Sf can
be changed by slow reactions, Rs but, a slow species, Ss cannot be changed or
transformed by a fast reaction, Rf .

3. Define a virtual fast reaction, Xfˆ (t) as the fast species population evolving only
under the fast reaction, Rf i.e., Xfˆ (t) is Xf(t) with all the slow reactions, Rs

M

switched off. Moreso, it with noting that while Xfˆ (t) is a Markov process, Xf (t)
is a non-Markovian process.
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4. Establish the following stochastic stiffness conditions:

4.1. Xfˆ (t) must be stable as it approaches t→∞ in well-defined time-independent
random variable Xfˆ (∞).

4.2. Next, ensure the limit Xfˆ (t)→ Xfˆ (∞) must be effectively accomplished in
a time frame that is small compared with the expected time to the next slow
reaction, Rs.

5. Finally, after the stochastic stiffness condition has been met, the ssSSA is invoked
by following the slow scale approximation which states the fast reaction, Rf can
be ignored thus simulating the chemical reaction system one slow reaction, Rs at
a time provided the propensity function for each slow reaction, Rs is replaced by
its average with respect to the asymptotic virtual fast process, Xfˆ (∞). That is if
P̂ (yf ,∞|Xf , Xs) is the probability that X̂(∞) = yf given that X(t) = (Xf , Xs),
then the propensity function as

j(Xf , Xs) of each slow reaction Rs
j , at time, t can

be approximated on the timescale of the slow reactions, Rs
j , by:

ᾱs
j =

∑︂
yf

P̂ (yf ,∞|Xf , Xs)αs
j(yf , Xs) (3.33)

There have been recent further improvements of the slow scale tau-leaping method
to solve slow and fast scale reactions which is common with stiff systems. Reshniak et
al.(2019), proposed an improved algorithm termed “ The Slow-scale split-step tau-leap
method” by using time discretization exceeding the scale of the previous slow-scale
tau-leaping algorithm. (RESHNIAK, KHALIQ, and VOSS, 2019)

3.5.3 APPROXIMATE METHODS

3.5.3.1 Chemical Langevin Method (CLM)

The Chemical Langevin Method is the application of stochastic simulation to
model chemical reactions. The stochastic model referred to as the Chemical Langevin
Equation (CLE) is a Stochastic Differential Equation (SDE) with a zero-mean Gaussian
noise that describes the time evolution of the probability distribution of a chemical
reaction system. Furthermore, as a coarse-grained model or discrete stochastic model,
each reacting species represents an SDE thus, the solution of the jth stochastic equation
at a given time t is a random variable representing the amount of j species within the
same time frame. Again, it is worth noting that the CLE can be derived from the SSA
through the τ -leaping method by the following assumptions as the system progresses
from τ → τ + t:

1 For every reaction channel Rj fired, the products αj(x)τ tends to be very large.
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2 The leap time τ is negligibly small.

3 For every reaction channel Rj fired, each propensity function αj(x) undergoes a
relatively small change. Thus, αj(x)τ ≫ 1 for all 1 ≤ j ≤M .

Again, it is worth recalling that a Poisson random variable with a large mean is
approximately equal to a normal random variable with the same mean and variance
(Nj(µ, σ2)). Hence, for every reaction channel Rj fired, the variable Nj(0, 1) is a
statistically independent normal random variable with mean 0 and variance 1. Then,
Equation (3.20) becomes;

X (t + τ) = X (t) +
M∑︂

j=1
Pj(αj(x)τ, αj(x)τ)vijZj (3.34)

Where the Zj is the independent normal N (0, 1) random variable defined earlier.
Recalling the statistical identity, N (µ, σ2) = µ + σN (0, 1). Equation (3.34) becomes:

X (t + τ) = X (t) +
M∑︂

j=1
Pj[(αj(x)τ) +

√︂
αj(x)τZj]vij (3.35)

Further expanding the Equation (3.35):

X (t + τ) = X (t) +
M∑︂

j=1
Pj(vijαj(x)τ) +

M∑︂
j=1

Pj(vij

√︂
αj(x)Zj

√
τ) (3.36)

The above Equation (3.36) can be further rewritten by applying the theory of
continuous Markov Processes:

dX(t)
dt

=
M∑︂

j=1
Pj(vijαjX(t)) +

M∑︂
j=1

Pj(vij

√︂
αjX(t)dWj(t) (3.37)

The above Equation is called the Chemical Langevin Equation (CLE). Wj(t) are
independent scalar Brownian motions. Moreso, the above derived Equation (3.35) and
(3.36) above also follow or obey the Chemical Fokker-Planck equation (CFPE). (D.T.
GILLESPIE, 2007; HIGHAM, 2008)

3.5.3.1.1 Deterministic Simulation Method (DSM)

The Chemical Langevin Equation (CLE) further approximates the Deterministic
Simulation Method as a chemical reaction system approaches its “Thermodynamic
Limit” or macroscopic limit. (D.T. GILLESPIE, 2007) That is:

Xi, V →∞ and Xi/V = Constant

Thus, as a system attains its macroscopic limit, every term in Equation (3.38)
increases except for the stochastic part or the second part of the right-hand side of the
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equation for the CLE thus approximating the deterministic simulation method. Hence,
Equation (3.38) becomes :

dX(t)
dt

=
M∑︂

j=1
Pj(vijαjX(t)) (3.38)

3.5.4 HYBRID STOCHASTIC SIMULATION ALGORITHM
(HSSA)

First introduced by Haseltine and Rawlings (2002), it is a subset of the Stochastic
Simulation Algorithms, this technique integrates the functionalities of two or more
variants depicted in the classification tree in the Figure (3.2) to increase the speed of
computation, as well as robustness to solve the “stiffness” in complex chemical reactions.
In this work, the HSSA employed is primarily applied to capture both the slow and fast
dynamics of the FRP reaction. The fundamental application of the HSSA is explained
further in section 4. (HASELTINE and RAWLINGS, 2002)
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Figure 3.2: A schematic tree classification of the Gillespie Algorithm or the Stochastic
Simulation Algorithm (SSA). Adapted from (D.T. GILLESPIE, 2007)



CHAPTER 4
METHODOLOGY AND

APPLICATION OF THE HYBRID
STOCHASTIC SIMULATION

ALGORITHM (HSSA)

4.1 FRP of Styrene in microchannels

In general, Free Radical Polymerization (FRP) is one of the most effective
techniques in synthesizing more than half the production of polymers worldwide. As
earlier stated in Chapter 2, it is a chain polymerization method mainly made up of
initiation, propagation, chain transfer, and termination steps. (CHIEFARI et al., 1998;
SEYEDI et al., 2020; FU, CUNNINGHAM, and ROBIN A. HUTCHINSON, 2007) A
phenomenological model for Free Radical Polymerization (FRP) of Styrene applied in
this research is shown in the Table (4.1) below:

Table 4.1: A table showing each of the chain propagation steps of the FRP of styrene.

CHEMISTRY OF CHAIN REACTIONS

I
Kd−→ 2fR

•

R
• + M

Ki−→ R
•

1

(4.1)

3M
Kiterm−−−−→M

•

1 + M
•

2

M
•

1 + M
4KP−−→ P

•

2

M
•

2 + M
4KP−−→ P

•

3

(4.2)

P
•

n + M
KP−−→ P

•

n+1 (4.3)

P
•

n + M
KtrM−−−→ P

•

1 + Dn (4.4)

P
•

n + S
KtrS−−−→ P

•

1 + Dn (4.5)

P
•

n + P
•

m
Ktc−−→ Dn+m (4.6)

P
•

n + P
•

m
Ktd−−→ Dn + Dm (4.7)
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Annotations:

(4.1): Chemical Initiation Reaction
(4.2): Chain Transfer to Solvent Reaction
(4.3): Chain Termination by Combination Reaction
(4.4): Thermal Initiation Reaction
(4.5): Chain Propagation Reaction
(4.6): Chain Transfer to Monomer Reaction
(4.7): Chain Termination by Disproportionation Reaction.

In this work, is it assumed that the chain termination is predominantly by dissociation
thus the kinetic constant of termination by combination and dissociation are related as
follows:

ktc = 0 ∗ kt & ktd = 1 ∗ kt (4.8)

Where the initiator, solvent, monomer, live and dead polymer are denoted by I, S,
M , P , and D respectively. Also, the respective kinetic constant for initiator dissociation,
chemical initiation, thermal initiation, propagation, transfer to monomer, transfer to
solvent, and termination by combination and disproportionation are Kd, Ki, Kiterm, Kp,
KtrM , KtrS, Ktc and, Ktd. The constant f at the chemical initiation step is referred to
as the initiator’s efficiency which ranges between 0.2 < f ≤ 0.7.

Assuming that a polymerization reactors is modelled as a microchannel thus, applying
the conservation law of mass:

1
V

d(V cj)
dt

= Rj (4.9)

Where:
V = reactor volume in cubic meters, m3

t = simulation time in seconds, s

cj = concentration of reacting species in mol.dm−3

Rj = denotes the reaction between molecular species or reaction channels.

By applying Equation (4.9) above to the chemistry of reaction in Table (4.1), the
following equations are obtained:

1
V

d(IV )
dt

= −KdI

Since, the reactor volume V is constant then:

d(I)
dt

= −KdI (4.10)
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1
V

d(MV )
dt

= −KiMR• − 3KitermM3 − 4KpMM•
1 − 4KpMM•

2

−KpM
∞∑︂

n−1
P •

n −KtrMM
∞∑︂

n=1
P •

n −KtrSM
∞∑︂

n=1
P •

n

d(M)
dt

= −KiMR• − 3KitermM3 − 4KpMM•
1 − 4KpMM•

2

−KpM
∞∑︂

n−1
P •

n −KtrMM
∞∑︂

n=1
P •

n −KtrSM
∞∑︂

n=1
P •

n (4.11)

Let M•
1 ≡M•

2 ≡ R• , the above Equation (4.11) :

d(M)
dt

= −KiMR• − 3KitermM3 − 8KpMR•

−KpM
∞∑︂

n−1
P •

n −KtrMM
∞∑︂

n=1
P •

n −KtrSM
∞∑︂

n=1
P •

n (4.12)

Also from Table (4.1);

1
V

d(R•V )
dt

= 2fKdI − 3KiR
•Mb− 8KpMR•

d(R•V )
dt

= 2fKdI − 3KiR
•M − 8KpMR• (4.13)

For live polymers:

1
V

d(P •
1 V )

dt
= KiR

•M + KitermM3 − 4KpMR•

+ KtrMM
∞∑︂

n=1
P •

n + KtrSM
∞∑︂

n=1
P •

n −KtcP
•
1

∞∑︂
n−1

P •
n
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d(P •
1 )

dt
= KiR

•M + KitermM3 − 4KpMR•

+ KtrMM
∞∑︂

n=1
P •

n + KtrSM
∞∑︂

n=1
P •

n −KtcP
•
1

∞∑︂
n−1

P •
n (4.14)

1
V

d(P •
2 V )

dt
= KitermM3 − 4KpMR• −KpMP •

2 + KpMP •
1

−KtrMMP •
2 −KtrSMP •

2 −KtcP
•
2

∞∑︂
n−1

P •
n

d(P •
2 )

dt
= KitermM3 − 4KpMR• −KpMP •

2 + KpMP •
1

−KtrMMP •
2 −KtrSMP •

2 −KtcP
•
2

∞∑︂
n−1

P •
n (4.15)

From Equation (4.14) and Equation (4.15) above:

1
V

d(P •
nV )

dt
= KpMP •

n−1 −KpMP •
n −KtrMMP •

n −KtrSMP •
n −KtcP

•
n

∞∑︂
n−1

P •
n ,

n≫ 1.

d(P •
n)

dt
= KpMP •

n−1 −KpMP •
n −KtrMMP •

n −KtrSMP •
n −KtcP

•
n

∞∑︂
n−1

P •
n ,

n≫ 1. (4.16)
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Similarly for dead polymer :

1
V

d(DnV )
dt

= Ktd[P •
n ]

∞∑︂
m=0

[P •
m] + Ktc

2

n∑︂
m=0

[P •
m][P •

n−m],

n ̸= m.

d(Dn)
dt

= Ktd[P •
n ]

∞∑︂
m=0

[P •
m] + Ktc

2

n∑︂
m=0

[P •
m][P •

n−m],

n ̸= m. (4.17)

4.2 Methodology

Chain growth polymerization reactions like the case of FRP of Styrene to
Polystyrene are usually computationally intensive simulations which usually take hours
or even days to complete. Several factors among others are responsible for a long period
of computations such as increasing chain length, kinetic constants, and robustness of
computational techniques or algorithms deployed and so on. This is again highlighted
in the fact that the chemical reaction in this case study consists of both fast and slow
chain reactions as the polymerization possibly progresses through the gel, glass, and
cage stages of the chemical reaction.

Hence, a Hybrid Stochastic Simulation Algorithm (HSSA) was used in simulating
the FRP reaction system in this project. The idea behind the choice of the HSSA was
to take care of the shortcomings associated with the computational efficiency of the
older versions of the Gillespie algorithm as well as exploit the advantages of the same.
(D.T. GILLESPIE, 2007) In addition, a high average chain length of up to 105 can
be captured in the algorithm using the gillepsy2 software which upon data processing
produced polydispersity indices (PDI) which were in agreement with the experimental
results as well as literature.
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As shown in the proposed research workflow in Figure (4.1) below, the HSSA allows
parallel simulations of both stochastic and deterministic simulations to run concurrently
when using the gillespy2 python library. (DRAWERT et al., 2017) The deterministic
profiles were obtained by using an Ordinary Differential Equation (ODE) solver with
C++ dependencies which were compared with the corresponding stochastic trajectories
of the same reaction system.

As illustrated to the Figure 4.1 below, the workflow of the computations carried-out
in this project was divided into two (2) stages: (I) Parallel simulations and, (II) Further
Computations. To begin, the parallel simulation was carried-out as described in the
HSSA steps in Section 4.3 for both stochastic and deterministic computations based on
the input conditions described in the Table of simulation results in Chapter 5.

Referring to the second stage of the work flow, the datasets obtained from the parallel
simulation were prepared and further computations were carried-out to obtain the
polymer’s end-use properties such as monomer conversion rate (X), polydispersity index
(PDI), Number - Average molecular mass (Mn) and, Weight - Average molar mass (Mw).

The obtained results were compared with experimental results. If the results are not
within the limits of predefined acceptability then, the process is repeated by tuning the
input parameters. Otherwise, the results or information obtained can be utilized for
large scale decision-making.
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Figure 4.1: A proposed workflow or framework for the application of the Hybrid Stochastic
Simulation Algorithm (HSSA).
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In order to validate the proposed HSSA model, varying operating temperatures of
100 and 115 degrees Celsius as well as different feeding conditions of monomer, solvent
and initiator concentrations were introduced as used in the benchmark experiment
earlier carried out. The polydispersity index (PDI), monomer conversion (X), and
molecular weight distribution (MWD) were obtained.

The experimental kinetic constants used in this project were also reported in
the previous experimental work to simulate the FRP of styrene using Syrris ASIA
milli-reactor. However, the termination step was assumed to be predominantly by
disproportionation as indicated by Equation (4.11) in chapter three. Table (4.2) below
shows the kinetics constants used in the stochastic simulation for the given FRP reaction
system:

Table 4.2: Table of kinetic constants used for the HSSA

REACTION
STEP

KINETIC CONSTANT UNIT REFERENCE

Chemical Initiation
kd = 1.0272× 1017exp (−15924/T )

ki = 0
s−1

Lmol−1s−1
(CABRAL et al.,

2003)

Thermal Initiation
kiterm=1.990× 106exp (−1.4842× 104/T ) kg−3m−6s

−1 (CUTTER and
DREXLER, 1982)

Chain Propagation kp=1.051× 107exp (−3.577×103/T ) m3.kmol−1s−1
(HUI and

HAMIELEC,
1972)

Chain Transfer
ktrM = 3.110× 103exp (−5631/T )
ktrS = 1.968× 104exp (−6302/T )

kgm−3s−1

kgm−3s−1

(KIM and CHOI,
1989; BAWN,

1987)

Termination by
Combination

kt=1.255× 109exp (−844/RT )
ktc = 0 ∗ kt kgm−3s−1

(HUI and
HAMIELEC,

1972)

Termination by
Disproportionation

kt=1.255× 109exp (−844/RT )
ktd = 1 ∗ kt

kgm−3s−1

(HUI and
HAMIELEC,

1972)

Initiator Efficiency f=0.8991× 102exp (−14.24/RT ) kJmol−1

(FROUNCHI,
FARHADI, and
MOHAMMADI,

2002)
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Applying Flory statistical distribution, the molecular weight distribution (MWD),
polydispersity index (PDI) and monomer conversion (X) in terms of the dead polymer,
Dn when termination is by disproportionation (i.e., Ktd + Ktc ≫ Ktd), then the
propensity of propagation for the chain growth reaction is given by:

β = (Rate of Propagation)
(Rate ofPropagation) + (Rate of Termination by Disproportionation) (4.18)

β =

(︂
kpMR

•
)︂

(kpMR•) + (ktrMMR•) + (ktrSSR•) +
(︂
ktd (R•)2

)︂ (4.19)

Or:

β = (KpM)
(KpM) + (KtrMM) + (KtrSS) + (KtdR•) (4.20)

Where R• is the formed radicals in the chain growth reaction.

Considering chain initiation by only chemical initiation and the rate of termination
of chain or the net rate of disappearance of radicals of the growing polymer chain:

−r1 = −2fKdI2 −KtrMM
∞∑︂

i=2
Ri −KtrSS

∞∑︂
i=2

Ri + KtdR1

∞∑︂
i=1

Ri (4.21)

Overall, for a chain length of i, the net rate of disappearance of radicals for i ≥ 2:

−ri = KpM(Ri −Ri−1) + KtrMMRi + KtrSSRi + KtdRi

∞∑︂
i=1

Ri (4.22)
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Adding Equation (4.21) and Equation (4.22) above for chain lengths starting from
i = 2→∞ :

∞∑︂
i=1
−ri = −2fKdI2 + KtdRi

∞∑︂
i=1

Ri (4.23)

For the formation of the radicals let:

R• ≡ R•
i ≡ P •

i ≡
∞∑︂

i=1
Ri

∞∑︂
i=1
−ri = −2fKdI2 + Ktd(R•)2 (4.24)

Applying Pseudo Steady State Hypothesis (PSSH) the Equation (4.24), the net free
radical concentration is given by:

∞∑︂
i=1
−ri = −2fKdI2 + Ktd(R•)2 = 0 (4.25)

Or:

R• = (2KdfI2

Ktd

)2 (4.26)

Upon substituting Equation (4.26) into Equation (4.20) :

β = (KpM)
(KpM) + (KtrMM) + (KtrSS) + (2KtdfI2)

1
2

(4.27)
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The initiator, solvent, styrene monomer, live, and dead polymers are denoted by I,
S, M , P , and D respectively. In addition, the respective kinetic constant for initiator
dissociation, chemical, thermal initiation, propagation, transfer to monomer, transfer
to solvent, termination by combination and disproportionation is Kd, Ki, Kiterm, Kp,
KtrM , KtrS, Ktc and, Ktd. The constant f at the chemical initiation reaction step is
referred to as the initiator’s efficiency, which ranges between 0.2 < f ≤ 0.7. Since, β is a
function of time and when chain transfer is negligible then, the monomer conversion
rate can simply be obtained assuming β = X.

Alternatively, for chain growth polymerization:

β = Rate of Propagation

Rate of Propagation + Rate of Termination

Where:

β = probability that a radical on an active chain will propagate rather than terminate.

Again, assuming that [M ] , [I] are constant at low conversion, probability that a
dead chain is an i-mer:

P (i) = βi−1 (1− β) (4.28)

Where: βi−1 = Termination when next monomer is added.
In a similar fashion for the equation below represents the termination of an active

growing chain:

P (i) =
i−1∑︂
j=1

P (j) P (i− j) (4.29)

Recall from the above above Equation (4.28) that:

P (j) = βj−1 (1− β) (4.30)

Then termination by combination becomes:

P (i− j) = β(i−j−1) (1− β) (4.31)

Substituting Equation (4.54) and (4.55) into Equation (4.29):

P (i) =
i−1∑︂
j=1

[︂
β(j−1)+(i−j−1) (1− β)2

]︂
(4.32)
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P (i) =
i−1∑︂
j=1

(1− β)2 (β)i−2 (4.33)

Finally:

P (i) = (i− 1) (1− β)2 (β)i−2 (4.34)

It is worth noting that, P (i) which again defines the probability that a dead chain as
an i-mer:

P (i) = Ni

NT

(4.35)

Where:
Ni = total number of dead i-mers. NT = total number of dead polymer formed.

Therefore:

P (i) = Ni

NT

= (i− 1) (1− β)2 (β)i−2 (4.36)

Ni = NT (i− 1) (1− β)2 (β)i−2 (4.37)

NUMBER MOLECULAR WEIGHT DISTRIBUTION (Mn):
Recall that Mn is given by:

Mn =
∑︁

NiMi∑︁
Ni

(4.38)

But; Mi = iM0 and NT = ∑︁
Ni then, the previous Equation (4.38) becomes:

Mn =
∑︂[︃

Ni

NT

(iM0)
]︃

(4.39)

Substituting Equation (4.36) into Equation (4.39):

Mn = M0 (1− β)2∑︂ i (i− 1) βi−2 (4.40)

Furthermore, it can be shown that given that N is large and |β| < 1:

∑︂
i (i− 1) βi−2 = 2

(1− β)3 (4.41)
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Finally by substituting Equation (4.43) into Equation (4.42):

Mn = 2M0

(1− β) (4.42)

WEIGHT MOLECULAR WEIGHT DISTRIBUTION (Mw):
Again by definition;

Mw =
∑︁

NiM
2
i∑︁

NiMi

(4.43)

Given that Wi = NiMi and w∗
i = Wi

WT
are the respective chain weights and weight

fraction of the growing per molecule, then:

Mw =
∑︂[︃

WiMi

WT

]︃
(4.44)

Mw =
∑︂[︃(︃

NiMi

WT

)︃
(iM0)

]︃
=
∑︂[︃

Wi

WT

(iM0)
]︃

(4.45)

Considering the Chain Termination events:

For Chain Disproportionation Reaction Step:

β = 1− NT

N0
(4.46)

For Chain Combination Termination Reaction Step:

β = N0 −NT

N0
= β = 1− 2NT

N0
(4.47)

Again,substituting Equation (4.47) into Equation (4.37):

NT = N0

2 (1− β)3 (i− 1) βi−2 (4.48)

Substituting the above Equation (4.48) into Equation (4.45):



49

Mw =
∑︂ iM0

N0
2 (1− β)3 (i− 1) βi−2iM0

N0M0
(4.49)

Mw = M0

2 (1− β)3∑︂ i2 (i− 1) βi−2 (4.50)

Again, it can be shown that if N is large, and |β| < 1:

N∑︂
i=1

i2 (i− 1) βi−2 = 2 (2 + β)
(1− β)4 (4.51)

Substituting Equation (4.51) into Equation (4.50):

Mw = M0
(2 + β)
(1− β) (4.52)

POLYDISPERSITY INDEX (PDI):
In order to obtain the corresponding mathematical expression for the Polydispersity
Index, Equation (4.52) is divided by Equation (4.42):

PDI = Mw

Mn
= 2 + β

2 (4.53)

Error Calculation:
Given the benchmark experimental values (FULLIN et al., 2015) and the obtained
simulation results discussed in the next chapter, the absolute error or deviations, E and
Percentage Relative Error, E% are calculated as follows:

E = |Ei − Si| (4.54)

E% =
⃓⃓⃓⃓
Ei − Si

Ei

⃓⃓⃓⃓
X100% (4.55)

Where, i = 1, 2, 3, . . . , N

Another statistical tool for validating the numerical simulation outcomes is the Average
Percentage Error (APE) to measure the accuracy of the monomer conversion rate (X)
and polydispersity index (PDI) obtained from the HSSA simulation.

The Average Percentage Error (APE) is computed as follows:

APE =
(︃ 1

n

)︃
∗
∑︂ |Ei − Si|

|Ei|
X100% (4.56)
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4.3 Application of the Hybrid Stochastic Simulation
Algorithm (HSSA)

Hybrid Stochastic Simulation Algorithms (HSSA) are variants or a subset of the
Stochastic Simulation Algorithms (SSA) that integrate the functionalities of two or
more variants depicted in the classification tree in Figure (3.2) of the SSA to increase
the speed of computation, as well as the robustness to solve complex chemical reactions.
As earlier stated, the inherent stochasticity of these chemical reactions is interpreted
based on the principles of the Chemical Master Equation (CME). In this context, each
of the possible reaction channels or sub-reactions is interpreted by the CME which
comprises both slow and fast dynamics in the entire chemical reaction as the chain
propagation progresses and then, terminates. Hence, the choice of the HSSA is based on
the context of the problem at hand. (HSSA, 2022)

As earlier introduced in Chapter 3, Haseltine and Rawlings (2002) proposed the HR

algorithm or the Hybrid Stochastic Simulation Algorithm (HSSA) with a framework
close to the one adopted in this work. (HASELTINE and RAWLINGS, 2002) It aims at
improving accuracy and increasing computational speed by partitioning the reaction
into fast and slow components or simply by applying “Stochastic Partitioning”.

Generally, an ODE is represented by:

dx(t′)
dx

= f(x(t′)) (4.57)

Upon manipulating Equation (3.8) and equation (3.4) within a time of t→ t + τ :

P (τ, j) = cjhjdτexp(−
∫︂ t+τ

t
cjhjdt) (4.58)

Alternatively:

P (τ, j) = αjdτexp(−
∫︂ t+τ

t
αjdt) (4.59)

Considering Equation (3.14) and upon further mathematical manipulation, the time
for the next reaction and the corresponding propensity to occur are given by:

∫︂ t+τ

t
αj(x(t′))dt

′ + ln ξ1 = 0 (4.60)
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Where t
′ is the time taken for a corresponding " slow" reaction to take place.

It is worth noting according to the HR algorithm, the computation of the "fast"
reactions of the partitioned chemical reaction system takes place within the infinitesimal
time, t

′ according to the above Equation (4.60). Notwithstanding, the LSODA solver
from the SciPy python library was used in this project which is also capable of computing
DAEs of index 1.

As shown in the computational steps below, the gillespy2 python module used was
earlier developed by Drawert et al. (2017). (DRAWERT et al., 2017) The program
allows the parallel simulation of both the stochastic and deterministic simulation of
the FRP of the styrene model. With C++ integration, version 1.8.2 of the gillespy2
python library is computationally robust and scalable for a number of complex chemical
reaction systems such as the FRP with chain lengths of up to 231 - 1 per macromolecule.

The deterministic profiles obtained from every simulation produced were compared
with every stochastic trajectories generated. Usually, analytical solutions for a complex
chemical reaction system such as the FRP of styrene produce over 100,000 stiff ODEs.
Moreover, with approximate methods like the application of Methods of Moments
(MoM), these large sets of ODEs are reduced to a fewer number of non-stiff differential
equations or differential algebraic equations (DAEs) of index 1. This reduces the accuracy
of the prediction of the polymer’s end-use properties. Nonetheless, it is worth noting
that the HSSA used in this work combines ODE and SSA solvers for the chain growth
reaction mechanism for every propensity change without partitioning the system. It
can be further employed to track the polymer’s end-use properties for an increasing
number of chain lengths. However, in this work, the maximum chain length simulated
per macromolecule was limited to 100 chains per macromolecule based on the computing
capacity of the computer.1

Furthermore, for wider scale applications, when considering Free Radical
Polymerization or Chain Growth Polymerization, the transition from microscopic
to macroscopic scale occurs as a function of the number of molecular reacting species
(i.e., monomer) initiating the polymerization reaction mechanisms. Another key factor
is the reaction volume (a volume of 4mL is used in this study). Thus, for small volume
systems, a stochastic algorithm finds its application useful in this case.

Generally, as elaborated in Section 4.3, stochastic simulation algorithms track
each reaction mechanism (taking into account of molecular species concentration and

1All performed simulations were carried out using the computational architecture: Windows intel
(R) i5-M480, 500GB of DDR4, 2.67GHZ RAM 4GB.
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kinetic constant) of the growing chain by computing the propensity of each reaction
step in addition to calculating a number “r” from a uniform random distribution U(0, 1).

The Hybrid Stochastic Simulation Algorithm or HSSA is illustrated in the following
steps below. The stochastic and deterministic computation for the FRP model were
carried-out in STEP 5 and STEP 8 respectively. It is also worth noting that in STEP
6, the tau-leaping algorithm was deployed to simulate an ensemble of 100 stochastic
trajectories which was also used in the analysis.

STEP 1 Initiate the FRP of the Styrene model according to the chemistry of reaction in
the Table (4.1) using gillespy2. Next, define the microchannel volume and input
the reaction parameters.

STEP 2 By applying the stochastic constants, cj from the Table (3.1), compute the
respective cumulative propensities for each of the chain reaction, Rj by using the
equation :

αj =
∑︂

j

cjhj

Where j = (1, 2, 3, . . . , N) and hj is the number of instant combinations of reactants
for reaction, Rj.

STEP 3 Generate two pseudo-random numbers ξ1 , ξ2 from a Uniform Random Distribution
(URD) or ∼ U(0, 1).

STEP 4 Initiate the stochastic simulation according to Equations (3.14) and (3.16) for the
next reaction time and propensity at t→ t + τ .

STEP 5 Update the chemical reaction system such that:

t← t + τ and X ← X + vij

The iteration continues until the number of iterations n exceeds the simulation
time, tf where: n > tf

Else:
Repeat STEP 3

STEP 6 Initiate the stochastic simulation to generate an ensemble of 100 stochastic
trajectories according to the Equations used in STEP 4 and Equation (3.17) for
the next reaction time and propensity at t→ t + τ given that:

λ = e−αj(x)τ (αj(x)τ)k

k!
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STEP 7 Update the chemical reaction system such that:

t← t + τ and X ← X + λ

The iteration continues until the number of iterations n exceeds the simulation
time, tf where: n > tf

Else:
Repeat STEP 3

STEP 8 Initiate the deterministic simulation by integrating the ODEs developed from the
reaction for every occurring reaction channel, Rj according to Equations used in
STEP 4.

STEP 9 Data Processing and Computation of the values of X, Mn, Mw, and PDI using
Equation (4.28) to Equation (4.55).

The results obtained from the simulation are further discussed in the "Results and
Discussions" chapter of this project. Also, the code used in this project can be found in
GitHub repository.2

2Project Code



CHAPTER 5
RESULTS AND DISCUSSIONS

5.1 Results of the HSSA

The FRP of Styrene was carried out by adhering to the same feeding conditions in
the experiment performed by Fullin et al. (2015) to validate the HSSA. The feeding
conditions and operating temperatures used are shown in Tables (5.1), (5.2) and (5.3).
Moreso, the styrene monomer was polymerized in a Syrris Asia 120 microreactor with a
volume of 4mL. Thus, the reacting volume adapted in the simulation is also the same.
In addition, the similar set of kinetic values used in the HSSA simulation were also
reported from the referenced experiment as shown in Table (4.2). (FULLIN et al., 2015)

For completeness, the referenced experimental work and the simulation results which
were obtained from the parallel simulation capabilities of the HSSA simulation outcomes
were compared. The results generated as shown in Tables (5.1), (5.2) and (5.3) were used
to validate the proposed HSSA model. Furthermore, by applying the same operating
conditions used in the experimental work of Fullin et.al (2015) according to tables
presented below which were the mass of the monomer, solvent and initiator as well as
operating temperatures, the HSSA provided a very good agreement with experimental
results. In addition, within a simulation time of 20 to 80 minutes, the Average Percentage
Errors or APEs for both the Monomer Conversion (X) and Polydispersity Index (PDI)
were 23.27%, 11.83% and 20.04%, 13.24% for this work and the referenced experiment
respectively in terms of the deterministic simulations carried-out. However, referring to
Table (5.1), while the HSSA produced agreeable outcomes for the Polydispersity Index
(PDA) and the molecular weight distributions (Mn and Mw) for the first five 5 minutes
of the simulation, the monomer conversion rate (X) was twice that of the experiment.

As shown in the tables, the stochasticity of the model was not captured within
the conditions used in the experiment. Moreso, as reported in the work of Fullin et.al
(2015), the graphs of the rate of monomer conversion, polydispersity and the number
and weight average molar masses showed no perturbation within the conditions. This
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implied that there was no clogging of the milli-reactor pores and also, the monomer,
solvent and initiator were well-mixed within the reactor.

Table 5.1: A Comparative Table of Results from the Hybrid Stochastic Simulation
Algorithm (HSSA) and Experimental Results from FULLIN et al., 2015

Table of Results for Mn, Mw, PDI and X Operating Temperature, T = 100◦C

DETERMINISTIC
SIMULATION *

STOCHASTIC
SIMULATION *

EXPERIMENTAL
RESULTS *

Mn Mw PDI X Mn Mw PDI X Mn Mw PDI X

10008 14908 1.49 0.18 - - - - 6768 13607 1.57 0.091

DETERMINISTIC
SIMULATION **

STOCHASTIC
SIMULATION **

EXPERIMENTAL
RESULTS **

Mn Mw PDI X Mn Mw PDI X Mn Mw PDI X

6384 9471 1.49 0.24 - - - - 5640 8223 1.68 0.391

∗ M/S = 60/40 v/v OR 41g / 59g ; I = 1g Simulation Time, t = 5 mins.
∗∗ M/S = 60/40 v/v OR 41g / 59g ; I = 1g Simulation Time, t = 20 mins.
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Table 5.2: A Comparative Table of Results from the Hybrid Stochastic Simulation
Algorithm (HSSA) and Experimental Results from FULLIN et al., 2015

Table of Results for Mn, Mw, PDI and X Operating Temperature, T = 100◦C

DETERMINISTIC
SIMULATION *

STOCHASTIC
SIMULATION *

EXPERIMENTAL
RESULTS *

Mn Mw PDI X Mn Mw PDI X Mn Mw PDI X

11440 17055 1.49 0.36 - - - - 10264 16313 1.59 0.411

DETERMINISTIC
SIMULATION **

STOCHASTIC
SIMULATION **

EXPERIMENTAL
RESULTS **

Mn Mw PDI X Mn Mw PDI X Mn Mw PDI X

10354 15427 1.49 0.41 - - - - 14169 23337 1.65 0.61

∗ M/S = 40/60 v/v OR 61g / 39g ; I = 1g Simulation Time, t = 40 mins.
∗∗ M/S = 40/60 v/v OR 61g / 39g ; I = 1g Simulation Time, t = 80 mins.

Table 5.3: A Comparative Table of Results from the Hybrid Stochastic Simulation
Algorithm (HSSA) and Experimental Results from FULLIN et al., 2015

Table of Results for Mn, Mw, PDI and X Operating Temperature, T = 115◦C

DETERMINISTIC
SIMULATION *

STOCHASTIC
SIMULATION *

EXPERIMENTAL
RESULTS *

Mn Mw PDI X Mn Mw PDI X Mn Mw PDI X

10510 15661 1.49 0.42 - - - - 8512 15603 1.83 0.653

DETERMINISTIC
SIMULATION **

STOCHASTIC
SIMULATION **

EXPERIMENTAL
RESULTS **

Mn Mw PDI X Mn Mw PDI X Mn Mw PDI X

22282 33319 1.50 0.40 - - - - 26088 50576 1.94 0.524

∗ M/S = 70/30 v/v OR 70.9g / 29.1g ; I = 1g Simulation Time, t = 80 mins.
∗∗ M/S = 70/30 v/v OR 70.9g / 29.1g ; I = 0.5 g Simulation Time, t = 80 mins.
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5.1.1 Deterministic Versus Stochastic simulation Results.

Again, in this work, the feeding ratios of the monomer, solvents and initiator were
increased with a multiplicative scale factor k as shown in Tables (5.4), (5.5) and
(5.6) in order to further test HSSA. In addition, the operating temperature, T ,
was also increased to 140◦C in order to reduce viscosity, increase the reaction rates
and also improve overall polymer properties. (Jafarzadeh-Kashi et al., 2011; Nising, 2006)

The graphical plots in the Figures shows the resulting outcomes of the Hybrid
Stochastic Simulation Algorithm (HSSA) illustrated in Section 4.3. Throughout the
simulations carried out, three (3) separate stochastic simulation trajectories were
generated, and an ensemble of 100 stochastic trajectories was also generated using
the Tau-Leaping algorithm. Also, the corresponding deterministic trajectory of the same
chemical reaction system was also generated.

Table 5.4: Deterministic Versus Stochastic simulation Results.

Table of Results for Mn, Mw, PDI and X
Operating Temperature, T = 140◦C
Multiplicative Scale Factor, k = 102

DETERMINISTIC
SIMULATION *

STOCHASTIC
SIMULATION *

Mn Mw PDI X Mn Mw PDI X

1257 1782 1.42 0.96 1609 2309 1.43 0.40

DETERMINISTIC
SIMULATION **

STOCHASTIC
SIMULATION **

Mn Mw PDI X Mn Mw PDI X

978 1364 1.39 0.97 1024 1432 1.40 0.52

∗ M/S = 60/40 v/v OR 41g / 59g ; I = 1g Simulation time, t = 30 mins.
∗∗ M/S = 60/40 v/v OR 41g / 59g ; I = 1 g Simulation time, t = 60 mins.
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Table 5.5: Deterministic Versus Stochastic simulation Results.

Table of Results for Mn, Mw, PDI and X
Operating Temperature, T = 140◦C
Multiplicative Scale Factor, k = 102

DETERMINISTIC
SIMULATION *

STOCHASTIC
SIMULATION *

Mn Mw PDI X Mn Mw PDI X

1455 2079 1.43 0.97 1013 1414 1.40 0.54

DETERMINISTIC
SIMULATION **

STOCHASTIC
SIMULATION **

Mn Mw PDI X Mn Mw PDI X

1163 1640 1.41 0.98 627 837 1.33 0.65

∗ M/S = 40/60 v/v OR 61g / 39g ; I = 1g Simulation time, t = 30 mins.
∗∗ M/S = 40/60 v/v OR 61g / 39g ; I = 1 g Simulation time, t = 60 mins.

Table 5.6: Deterministic Versus Stochastic simulation Results.

Table of Results for Mn, Mw, PDI and X
Operating Temperature, T = 140◦C
Multiplicative Scale Factor, k = 102

DETERMINISTIC
SIMULATION *

STOCHASTIC
SIMULATION *

Mn Mw PDI X Mn Mw PDI X

1526 2185 1.43 0.97 819 1125 1.37 0.59

DETERMINISTIC
SIMULATION **

STOCHASTIC
SIMULATION **

Mn Mw PDI X Mn Mw PDI X

1235 1748 1.42 0.98 517 671 1.30 0.70

∗ M/S = 30/70 v/v OR 70.9g / 29.1g ; I = 1g Simulation time, t = 30 mins.
∗∗ M/S = 30/70 v/v OR 70.9g / 29.1g ; I = 1g Simulation time, t = 60 mins.
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Figure 5.1: A graphical plot of the stochastic trajectories versus the corresponding
deterministic profiles of the FRP of Styrene in microchannel (4mL). The green dashes line
represents an ensemble of 100 stochastic trajectories. The initial value of Monomer (M) to
Solvent (S) in grammes = 41g/59g and Initiator (I) = 1g. Operating Temperature, T =
140◦C, time = 30 mins and Multiplicative Scale Factor, k = 102.
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Figure 5.2: A graphical plot of the stochastic trajectories versus the corresponding
deterministic profiles of the FRP of Styrene in microchannel (4mL). The green dashes line
represents an ensemble of 100 stochastic trajectories. The initial value of Monomer (M) to
Solvent (S) in grammes = 41g/59g and Initiator (I) = 1g. Operating Temperature, T=
140◦C, time= 60 mins and Multiplicative Scale Factor, k = 102.
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The graph in Figure (5.1) above, shows a plot of stochastic versus deterministic
simulations using the HSSA for the FRP model. In this work, the simulation was
carried-out for 30 and 60 minutes along with the conditions stipulated in Table (5.4).
As shown in the graphs above, there are deterministic profiles representing the FRP
chemical reaction reaction and its corresponding stochastic trajectories as illustrated.
For the stochastic trajectories generated, there are 3 separate trajectories representing
the FRP system denoted by red stochastic lines. Also, an ensemble of 100 stochastic
trajectories were also generated using the Tau-Leaping technique to further validate the
stochastic simulation.

In addition, confidence interval plots based on the deterministic profiles were only
plotted for the monomer conversion rate (X) and polydispersity index (PDI) due to the
deviations generated as denoted by the blue dashed lines. Moreover, it can be seen that
based on the conditions stipulated in Table (5.4), the stochastic trajectories generated
for the monomer conversion rate (X) were deviated from the corresponding deterministic
profile. However, for another additional 30 minutes the deterministic profile and the
corresponding stochastic trajectories become more aligned as the deviation decreased
as shown in Figure (5.2). Notwithstanding, when considering the polydispersity index
(PDI), number average molecular mass (Mn) and weight average Molecular mass (Mw)
from Figures (5.1) and (5.2), the deterministic profiles and the corresponding stochastic
trajectories were more aligned.

Furthermore, referring to Figure (5.2), the stochastic trajectories and the
corresponding deterministic profile were more aligned for the monomer conversion rate
(X) when compared to Figure (5.1). Although, the stochastic trajectories including the
ensemble of 100 stochastic trajectories and the 3 separate stochastic trajectories deviated
from the deterministic graphical profile, they were within the three standard deviation
envelope or confidence interval . Again, the number average molecular mass (Mn) and
weight average molecular mass (Mw) were more aligned based on the conditions stated
in Table (5.4). Once again, it can be projected that with a higher simulation time, the
stochastic trajectories would align more with the deterministic profile for the monomer
conversion rate (X). However, the MWD also becomes narrower with the increment of
simulation time. All in all, the results of the MWD obtained based on the conditions of
Table (5.4), recorded less deviation thus,the graphical outcome were more aligned as a
result when compared to the results recorded in Tables (5.5) and (5.6).
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Figure 5.3: A graphical plot of the stochastic trajectories versus the corresponding
deterministic profiles of the FRP of Styrene in microchannel (4mL). The green dashes line
represents an ensemble of 100 stochastic trajectories. The initial value of Monomer (M) to
Solvent (S) in grammes = 61g/39g and Initiator (I) = 1g. Operating Temperature, T =
140◦C, time = 30 mins and Multiplicative Scale Factor, k = 102.
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Figure 5.4: A graphical plot of the stochastic trajectories versus the corresponding
deterministic profiles of the FRP of Styrene in microchannel (4mL). The green dashes line
represents an ensemble of 100 stochastic trajectories. The initial value of Monomer (M) to
Solvent (S) in grammes = 61g/39g and Initiator (I) = 1g. Operating Temperature, T =
140◦C, time = 60 mins and Multiplicative Scale Factor, k = 102.
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Figure 5.5: A graphical plot of the stochastic trajectories versus the corresponding
deterministic profiles of the FRP of Styrene in microchannel (4mL). The green dashes line
represents an ensemble of 100 stochastic trajectories. The initial value of Monomer (M) to
Solvent (S) in grammes = 29.1g/70.9g and Initiator (I) = 1g. Operating Temperature, T
= 140◦C, time = 30 mins and Multiplicative Scale Factor, k = 102.
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Figure 5.6: A graphical plot of the stochastic trajectories versus the corresponding
deterministic profiles of the FRP of Styrene in microchannel (4mL). The green dashes line
represents an ensemble of 100 stochastic trajectories. The initial value of Monomer (M) to
Solvent (S) in grammes = 29.1g/70.9g and Initiator, (I) = 1g. Operating Temperature, T
= 140◦C, time = 60 mins and Multiplicative Scale Factor, k = 102.

Similarly, referring to Figures (5.3), (5.4), (5.5) and (5.6) as well as adhering to
the conditions in the Table (5.5) and Table (5.6), the stochastic trajectories were more
aligned when considering the monomer conversion rate (X) thus, this reveals that a
higher amount of the styrene monomer resulted to higher conversion rates with the same
operating temperature of 140◦C. However, as seen in Tables (5.5) and (5.6), the PDIs
values resulted in more disparity between the deterministic and stochastic simulations.
Notwithstanding, as shown in Figures (5.3), (5.4), (5.5) and (5.6), the generated results
agreed closely for both the stochastic and deterministic simulation outcomes in terms
of the molecular weight distribution or MWD. Furthermore, the PDIs from both the
stochastic and deterministic simulation were more deviated from one another as shown in
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the illustrated figures above. The deviations in terms of the PDI were more pronounced
when considering Figures (5.5) and (5.6) as the stochastic trajectories were out of the
confidence interval plot. Conclusively, this reveals that the conditions in Table (5.4)
provided the best monomer to solvent input ratio when compared to Tables (5.5) and
(5.6).

5.1.2 Discussions of Simulated Results

The obtained results of the end-use properties of polystyrene such as monomer
conversion rate (X), polydispersity index (PDI), number-average molar mass (Mn)
and the weight-average molar mass (Mw) were compared to experimental data. With
residence times of 30 to 60 minutes, varying operating conditions of initial monomer
(M), solvent (S) and initiator (I), as well as an operating temperature of 140◦C were
implemented.

As for the monomer conversion rates (X), conversion values of 96% to 99% were
obtained from the deterministic simulation based on input conditions in Table (5.4),(5.5)
and (5.6). Moreso, the main factors responsible for the high values were the operating
temperature and increased input values due to the multiplicative scale factor, k .
While the corresponding stochastic values for the monomer conversion (X) were less
at 40% to 70% , the values are projected to increase with respect to simulation time
as well as increased relative monomer mass based on the outcomes shown in Tables
(5.4),(5.5) and (5.6). (ZAYOUD et al., 2022; CURTEANU, 2003) It is worth noting
also that these adjusted input values as shown in Tables (5.4), (5.5) and (5.6) were
applied in order to capture the stochasticity of the FRP of the styrene reaction by
the HSSA. Moreso, the deviations for the polydispersity indices or PDIs for both the
stochastic and deterministic recorded were reportedly minimal. However, due to the
operating temperature of 140◦C, the polymerization chain reaction transits to a more
narrower MWD region as depicted in Figures (5.1) to (5.6). Overall, as observed for
both deterministic and stochastic simulation outcomes, the PDIs shown in Tables (5.4),
(5.5) and (5.6) were lesser than 1.50 which further signifies a narrower MWD thus, this
implies that the polymer chains have a more uniform size or length.

Furthermore, in terms of the number-average molar mass (Mn) and weight-average
molar mass (Mw), Figures (5.1) and (5.2) shows more numerical deviations for the MWD
compared to the Figures (5.3) to (5.6) when comparing both the deterministic profiles
and the corresponding stochastic trajectories at lower simulation times. However, the
stochastic perturbations were more feasible in Figures (5.1) and (5.2) than in the Figure
(5.3) through to Figure (5.4). All in all, the monomer (M) to solvent (S) ratio of 60/40
v/v compared to the other ratios used in the simulation provided a better comparative
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MWD, considering the multiplicative scale factor, k and operating temperature, T .
Overall, based on the conditions used to validate the HSSA in this work, it is worth
noting that, the increased value of the molar concentration (mol/L) for the Monomer
(M), Solvent (S) and Initiator (I) were subjected to a higher operating temperature
(140◦C) to accelerate the chemical reaction. This resulted in narrower molecular weight
distribution (MWD) or uniformity as shown by PDIs less than a value of 1.50 which
denotes improved mechanical strength, structural stability and application performance
when compared to higher PDIs. SHRIVASTAVA, 2018

In summary, one of the advantages of this technique is that there is no need to
complement the simulation of the FRP chemical reaction system by solving a set of
stiff nonlinear ODEs or first-degree Differential Algebraic Equations (DAEs) which are
obtained from the traditional Methods of Moments technique deployed in deterministic
simulation approaches. (MAAFA, J. B. P. SOARES, and ELKAMEL, 2007) In order
words, the mathematical modelling procedure usually deployed in FRP reaction systems
involves the application of assumptions such as the Long Chain Approximation (LCA)
and Quasi-Steady State Approximation (QSSA) that were not considered in this work.
(MASTAN and ZHU, 2015) The HSSA used in this work is proven to be an effective tool
for tracking the rate of monomer consumption and the molecular weight distributions
of the growing chain of the polymer. With this technique, the feeding conditions and
operating temperature can be effectively optimized to meet large-scale production
expectations.



CHAPTER 6
CONCLUDING REMARKS AND

FUTURE OUTLOOK

6.0.1 Concluding Remarks of Simulated Results

In this project, the FRP of styrene in microchannels (reactions in milli- or
micro-reactor) was modelled by applying the HSSA. The algorithm used in this project
was validated by the experiment performed by Fullin et al. (2015). Polymers are a
function of reactive sites or complex radicals which affects the chain performance thus,
average molecular weight distribution is not enough to control the end-use properties of
the formed polymer. Therefore, it suffices to say that based of the nature of the obtained
results, the HSSA provided a good prediction of the earlier experiment performed using
a mill-reactor. (NASRESFAHANI and R. A. HUTCHINSON, 2018)

Furthermore, it is worth noting that, the HSSA proved to be successful in the
prediction of the end-use characteristic of polystyrene such as monomer conversion
rate (X), Molecular weight distribution (MWD) and, the polydispersity index (PDI)
of polystyrene. However, the polymer end-use properties such as the number-average
molar mass (Mn), weight-average molar mass (Mw), polydispersity indices (PDI) and
monomer conversion rate (X) produced more numerical deviations when when the
operating conditions different from the reference experiment were changed.

Conclusively, the HSSA can provide a solid foundation for the optimization, process
intensification and scaling-up of the FRP of styrene production while maintaining the
desired end-use properties of the polymer.

6.1 Future Outlook

Several research efforts are made to fully model non-linear reactions like chain
growth polymerization or Free Radical Polymerization reactions to predict the end-
use properties of polymers. Until now, investigations are still ongoing to develop
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an algorithm that could predict both the rheological and fluid flow properties of
polymeric materials as well as track other phenomena such as gel, cage and glass
effects during polymerization in microchannels due to low residence time involved.
(Wang and Hutchinson, 2011; Gao et al., 2020) However, with the ever-increasing
experimental and mechanistic data representing various polymerization reactions as
well as other non-linear complex chemical reactions, the power of "learning" this vast
expanse of data can not be overemphasized. (Nguyen, Tao, and Li, 2022; Sha et al., 2021)

This set of data can be trained, validate and tested by deploying robust Machine
Learning (ML) algorithms or Hybrid Neural Networks (HNN). Thus, this powerful tool
could prove pivotal to unravelling polymerization reactions by splitting the problem
into logical steps or data-driven workflows which is poised for streamlined industrial
manufacturing in the near future. (GU et al., 2021)

Applications of simple Neural Networks (NNs) have been employed to determine
conversion rates, polydispersity index, mass and number molecular weight distributions
using experimental and mechanistic data from a batch reactor for the bulk Free Radical
Polymerization of Methyl Methacrylate (MMA) by Curteanu et al.(2020). This simple
neural network modelling methodology produced a very good representation of the bulk
polymerization of MMA. (CURTEANU, 2020) Also, Neural Network (NN) topology
like the multilayer perceptron (MLP) has been designed to simulate FRP of styrene,
showing a very good standard deviation ratio and correlation with experimental data.
(DA CUNHA, DE SOUZA, and FOLLY, 2007)

A powerful variant of a hybrid neural network is the Hybrid Stochastic Neural
Network (HSNN). They can also simulate intrinsically non-linear chemical reactions,
which can be applied to a range of problems with stochastic behaviour phenomena.
(CAMPOS, VELLASCO, and LAZO, 2011) These variant neural networks are trained
using a maximum propensity function on the posterior one-step of the density
of the training data samples. (DRIDI, DRUMETZ, and FABLET, 2021) Another
advantage of a robust and effective HSNN is that preliminary results obtained from
learning complex dynamical reaction systems illustrate the relevance of considering a
Stochastic Differentiation Equation (SDE) formulation as well as good performance
in terms of Root Mean Square Error (RMSE). (DRIDI, DRUMETZ, and FABLET, 2021)

Hence, it is believed that the data obtained from FRP reactions using micro- or
milli-reactors would serve effectively at both microscale (pilot experimentation) and
macroscale (industrial scale). The simulation of the FRP reaction using HSNN would
be robust and computationally effective to predict and control the rheological, and fluid
flow properties of the end-use polymer.
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6.2 Publications

Below is a publication from the thesis.

Conference Paper
Edward, U. I. , Vianna A.S.(Oct,2022). "Stochastic Modelling and Simulation of Free
Radical Polymerization of Styrene in Microchannels using a Hybrid Gillespie Algorithm."
XXV National Meeting of Computational Modeling (XXV ENMC) and the XIII Meeting
of Materials Science and Technology (XIII ECTM).

Peer-Reviewed Journal
Edward, U. I., Vianna A.S.(Feb,2023). "Stochastic Modelling and Simulation of Free
Radical Polymerization of Styrene in Microchannels using a Hybrid Gillespie Algorithm."
The Journal of Engineering and Exact Sciences – (jCEC).

6.2.1 Publication(s) by DOI

Feb, 2023 doi:10.18540/jcecvl9iss1pp15327-01e
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