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Abstract

Recently, there has been an increasing growth in the optimization processes
in the industrial area. The reduction of costs, improvement in the quality of final
products and minimization of the environmental risks are important issues that
companies must take into consideration. Thus, the development of optimization tools
to efficiently identify problems has become suitable. In this context, real-time
optimization (RTO) methodology is widely used in industrial area to optimize a plant
economically. This is a well-established approach to create a link between a
regulatory control and the economical optimization of a process under control. There
are several RTO methods which can be used in the optimization cycle. The standard
RTO method, called Model Parameter Adaptation (MPA), is one of the most applied
in industry. Albeit a good method, there are some problems related to the MPA as
well as other RTO methods, such as the use of steady-state (SS) data to update SS
models to a dynamic plant, the delay in the detection of the SS condition in the
system to start the optimization cycle, and the difficulty to model a complete unit
since those methods require it. Real-time Optimization with Persistent Adaptation
(ROPA) is a new methodology which tackles those issues. ROPA uses transient data
to update the model aiming to optimize the plant. Thus, there is no need to wait for
the SS condition because the dynamic plant is not updated with stationary
information. Aiming to verify the advantages of this new method, this work presents
the results of the ROPA application to two chemical processes. All simulations are
performed using MATLAB, the dynamic model and the sensitivity equations are
solved by SundialsTB. For the first case study, the Williams-Otto reactor, random and
deterministic disturbances are considered in the system in order to simulate a real
plant. In addition, the Extended Kalman filter (EKF) is used as the online estimator to
obtain the estimated parameters and states in the current time. Regarding the
Williams-Otto reactor study, the state estimate results show that the filter works
consistently, and the state covariance matrix is satisfactorily tuned. Additionally, the
parameter estimation shows that ROPA is able to respond to the disturbances
occurrence reproducing the actual plant parameter profile. ROPA runs the economic
optimization continuously independently of the plant condition. A Monte Carlo
analysis of benefits in applying ROPA method in the RTO cycle shows that the
method is suitable to track the plant optimum. Regarding the second case study, the
Propylene Chlorination process simulated in a commercial dynamic simulator is
optimized by an external ROPA implemented in MATLAB. In this case, ROPA can
also reach the stationary optimum, and the filter works properly. However, the MPA
and ROPA results are similar because the process is in a gas-phase with fast
dynamics. Even in this situation, it can be seen that MPA still has the steady-state
delay issue.

Keywords: Real-time Optimization (RTO). Transient data. Dynamic plant. Extended
Kalman filter (EKF). Online estimation.



Resumo

Recentemente, houve um crescimento crescente nos processos de
otimizacao na area industrial. A reducdo de custos, a melhoria na qualidade dos
produtos finais e a minimizagao dos riscos ambientais sao questdes importantes que
as empresas devem se preocupar. Assim, o desenvolvimento de ferramentas de
otimizacdo tornou-se adequado. Neste contexto, a metodologia de otimizacdo em
tempo real (RTO) é amplamente utilizada na industria para otimizar uma planta
economicamente. Essa é uma abordagem bem estabelecida para criar um vinculo
entre um controle regulatério e a otimizagao econémica de um processo. O método
de RTO classico, também chamado de Model Parameter Adaptation (MPA), € um
dos mais aplicados na industria. Apesar de ser um bom método, existem alguns
problemas relacionados a metodologia MPA e aos outros métodos de RTO, como o
uso de dados de estado estacionario (EE) para atualizar uma planta dinamica, a
demora na deteccdo da condicdo de EE no sistema para iniciar o ciclo de
otimizacao, e a dificuldade de modelar uma unidade completa, uma vez que estes
metodos exigem isso. A otimizagdo em tempo real com adaptagdo persistente
(ROPA) é uma nova metodologia que aborda esses problemas. O método utiliza
dados transientes para atualizar o modelo visando otimizar a planta. Assim, n&o ha
necessidade de esperar pela condicdo de EE, e a planta dindmica ndo € atualizada
com informacgdes estacionarias. Com o objetivo de verificar as vantagens deste novo
método, este trabalho apresenta os resultados da aplicagdo do ROPA em dois
processos quimicos. Todas as simulagdes sao realizadas no software MATLAB, e o
modelo dindmico e as equacdes de sensibilidade sao resolvidos pelo SundialsTB.
No primeiro Estudo de Caso, o reator de Williams-Otto, perturbacdes randdmicas e
deterministicas sdo consideradas no sistema para simular uma planta real. O filtro de
Kalman Estendido (EKF) é usado como o estimador online para obter os parametros
e estados estimados no tempo atual. Em relagdo ao estudo do reator de Williams-
Otto, os resultados da estimativa dos estados mostram que o filtro funciona de forma
consistente e a matriz de covariadncia de estado é ajustada satisfatoriamente. Além
disso, a estimativa de parametros mostra que o método ROPA é capaz de responder
a ocorréncia de disturbios reproduzindo o perfil real dos paradmetros da planta. O
ROPA executa a otimizagdo econdmica continuamente independentemente da
condicdo da planta. Uma analise Monte Carlo dos beneficios na aplicagdo do
método ROPA no ciclo RTO mostra que o método é adequado para obter o étimo da
planta. No segundo Estudo de Caso, o processo € simulado em um simulador
dindmico comercial e € otimizado por um ROPA externo implementado no MATLAB.
O ROPA também pode atingir o 6timo estacionario da planta e o filiro funciona
corretamente. No entanto, os resultados MPA e ROPA sao semelhantes porque o
processo esta na fase gasosa com uma dindmica rapida. Mesmo nesta situacao,
pode-se ver que o MPA ainda lida com o problema de atraso no estado estacionario.

Palavras-chave: Otimizacdo em Tempo Real (RTO). Dados transientes. Planta
dindmica. Filtro de Kalman Estendido. Estimativa em linha.
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1 INTRODUCTION AND LITERATURE REVIEW

This Chapter discusses the real-time optimization (RTO) applied to processes,
and it describes some RTO methods emphasizing the standard method (Model
Parameter Adaptation — MPA) which is the most used method in industrial
applications. Moreover, the common issues and challenges associated with this
methodology are presented, and other kinds of methods which tackle the RTO
problems are shown. The Real-time Optimization with Persistent Adaptation (ROPA)

method is cited as a new option to get better solutions in the optimization cycle.

1.1 Real-time optimization — RTO

More recently, there has been an increasing pressure to improve the quality in
the final products, reduce costs and minimize the environmental risks in the industrial
area, hence the development of optimization tools to efficiently identify problems has
become suitable. Many factors have contributed to develop these optimization tools.
The high technology in the computer area and the power of computers have allowed
the application of mathematical models. Moreover, improved models have been
developed to represent chemical plants, and recently software for optimization has
provided new and better ways to solve problems (GROSSMANN and BIEGLER,
1995).

In general, process optimization can be understood as a procedure involving
five main steps: updating model parameters; determining process constraints;
thermodynamics, equilibrium and kinetic relationships (the process models); feed and
product values, and the control system. The success of the optimization process
depends on the relative accuracy of these respective steps, and its improvements will
enhance the process operation. Otherwise, inaccuracy in even one of these tasks
can decrease the profitability of plant operation (CUTLER; PERRY, 1983).

A well-established approach to create a link between a regulatory control and
a business optimization of a process under control is called real-time optimization -
RTO (ENGELL, 2007). The RTO methodology was made possible for the first time in
the mid to late 1980s, due to several developments, such as: model predictive control

technology; open equation modeling, computer processing capability (speed,
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memory, affordable cost), and large scale, and sparse matrix SQP solvers. This
methodology uses a rigorous steady-state model of the process which implies the
use of multi-component mass and energy balances, vapor-liquid equilibrium
expressions, and reaction kinetics. However, other expressions that are not easily
modeled can be required to describe some effects in the process (DARBY et al.,
2011). There are many applications of real-time optimization in the literature, as: in a
high-purity distillation column (DIEHL et al., 2002), in a SO, conversion process (JIA
et al., 2017), in a fluid catalytic cracking unit (MATIAS and LE ROUX, 2018), in a fed-
batch reactor for penicillin production (AHMAD; GAO; ENGELL, 2018) and in a
reactor (PAPASAVVAS et al., 2019).

Several methods can be used in the RTO methodology. Some of them are
shown and studied in Graciano (2015): the Integrated System Optimization and
Parameter Estimation (ISOPE), the Modifier Adaptation and the Simple Central
Force Optimization (SCFO) methods. Each method tries to solve the economic-
based optimization problem using different assumptions. For instance, the ISOPE
method handles the structural plant-model mismatch adding a term in the objective
function coming from the parameter estimation step. All of these RTO algorithms
have been developed in the literature, and they aim to converge to the real optimum
point.

The Model Parameter Adaptation (MPA) method is the most used method in
industry. There are three main steps in the MPA optimization cycle: steady-state
detection, model adaptation and steady-state optimization. The SS detection is a
difficult task when handling with dynamic plants. The plant data need to pass through
a statistical algorithm in which the SS condition is established when all of the
algorithm requirements are respected. Since a dynamic system is subjected to
disturbances, the SS operating point is not stable. Moreover, when there are
disturbances in the process, the optimization algorithm needs to wait until the new
SS point is settled to run the optimization cycle again. These issues are discussed in

the following Section.

1.2 Problems related to the RTO methodology

There is a general hierarchy for control and decision making in a plant

operation. The main steps of this process are: planning, scheduling, optimization,
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advanced control and regulatory control (ZANIN, 2001), as shown in Figure 1. The
integration of these steps can be a problem in the process of control and optimization
in a plant. The generated information in each layer needs to be accurately used in
the next steps. The coordination between the tasks can avoid conflict and
inconsistency (MATIAS and LE ROUX, 2018).

Information flow Time horizon

A o

days
SCHEDULING

hours
OPTIMIZATION

/ ADVANCED CONTROL \ minutes
/ REGULATORY CONTROL \Secnnds

Figure 1 - Plant hierarchy (Source: Adapted from ZANIN, 2001).

Updating a steady-state model to a dynamic plant is another concern in the
RTO methods. In most of the applications, steady-state models are used for online
process monitoring, product property prediction, online optimization, etc. In an online
optimization, the plant data are used to tune these models from time to time to be
able to represent the dynamic process using the static model. The starting step to
optimize a plant using a RTO method is the steady-state identification, and a total
disorder in the optimization process can appear if the real steady-state is not
correctly detected (BHAT; SARAF, 2004). The steady-state periods detection
depends on the process and on the disturbances that affect the process operation,
and there are cases in which steady-state points are nonexistent. The more complex
the process, the more challenging it is to detect if the plant has reached steady-state.
It is important to use right SS values to have a precise optimization process (MATIAS
and LE ROUX, 2018).

The steady-state wait is another problem in the RTO methods. After the
steady-state point is well-established in a given time, the model will be updated, and
the new optimal values will be sent to the plant. However, there is a specific time in
the implementation of the RTO algorithm in each optimization cycle, and there is no

guarantee that the previously updated model is still in phase with the current plant
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operation. It may due to some new disturbances affecting the process. Moreover, the
steady-state detection takes a long time because complex criteria may need to be
checked to determine that the unit has reached steady-state (FRIEDMAN, 1995).

Modeling of the complete unit is practically impossible, so it is more common
to have the optimization of a single unit in industrial applications. The local optimizers
cover only a local subset of the problem. Although the solution for this problem
cannot encompass the whole process, this is a way to try to optimize the plant since
some units will never have good complete models (FRIEDMAN, 1995). It is possible
to have a single RTO implementation to a specific section of the plant when dealing
with steady-state optimization, but it is necessary to specify the prices and
composition of the intermediary streams which is a challenge to the optimization
process (MATIAS and LE ROUX, 2018).

1.3  Trying to tackle RTO problems

As discussed previously, the standard RTO method (MPA) starts with the
steady-state detection module which decides if the plant has reached steady-state,
based on statistical criteria. Afterwards, the SS point goes through the parameter
estimation block to update the model (GRACIANO, 2015). Thus, the problem related
to the steady-state wait is an issue in this case. Also, as mentioned before, it is not
possible to have the optimization of an isolated unit when using traditional RTO
methods (FRIEDMAN, 1995). Hereby, there are some RTO methods in the literature
which bring solutions to avoid these problems.

Recently, in addition to the static optimization, there have been developments
in the use of Dynamic RTO (DRTO) which use a dynamic model instead of SS
model. Although this type of method may eliminate requirements of the steady-state
detection in the optimization cycle, the solution for large-scale nonlinear dynamic
systems is a challenge for RTO implementations, even with the power technology in
computer area. To try to address the computational challenges, a “Hybrid RTO”
(HRTO) which uses a dynamic model in the model adaptation layer and SS model in
the business optimization step can also be considered (KRISHNAMOORTHYA;
FOSS; SKOGESTAD, 2018). Figure 2 shows a general scheme of the HRTO.
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Figure 2 - General HRTO scheme (Source: KRISHNAMOORTHYA; FOSS; SKOGESTAD, 2018).

In a general HRTO implementation, the process data is sent to the state and
parameter estimator step which uses a dynamic model (transient data) to obtain the
states (%;) and the estimated parameters (@k). These set of parameters are used in
the static economical optimization which generates the optimum of the plant
(y*P) that optimizes the objective function in the current time.

Real-time Optimization with Persistent Adaptation (ROPA) method is a new
methodology in the optimization area, and it brings a different way to treat the
problem. The method aims at tackling the problems associated with classical RTO
methods and getting better solutions for the problem. ROPA is described and

compared to MPA method in Chapter 2.
1.4 Motivation and objectives

Recently, there has been an increasing competition amongst industries, and
the interest in the economic optimization of processes has becoming more crucial. In
this context, the study and development of real-time optimization (RTO) tools overlap
this interest. Commonly, RTO methodology uses nonlinear steady-state process
models to compute the optimal setpoints in order to optimize the process. It can be
due to two reasons: the economic operation process is often done at the steady-state
condition, and the control inputs are provided as setpoints and are kept constant for a
long period of time what makes the implementation easier. Moreover, constraints,

such as process and equipment constraints, storage and capacity constraints and
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product quality constraints are also considered in the RTO cycle
(KRISHNAMOORTHYA; FOSS; SKOGESTAD, 2018). However, this classical RTO
methodology faces some challenges, as mentioned in Section 1.2, such as the
steady-state wait and the update of a steady-state model to a dynamic plant.

Different RTO approaches have been developed to reach a more profitable
process, and they aim at tackling the standard RTO issues. The Dynamic RTO
(DRTO) and Hybrid RTO (HRTO) methods which were previously mentioned in
Section 1.3 are examples of these approaches. In addition, Real-time Optimization
with Persistent Adaptation (ROPA) is also a method that handles with the RTO
challenges aiming to have more efficient optimization processes. According to Darby
et al. (2011), a fundamental limiting factor of the RTO methodology is the steady-
state wait since the optimization process occurs at lower frequencies because the
process needs to be at the SS condition. Once most of the processes are subjected
to disturbances, they are often at a non-steady state condition, so the classical RTO
algorithm needs to wait for the next SS point to start the calculations what spends
more time in the optimization process. ROPA brings an alternative for this issue since
it does not require the SS condition to start the optimization cycle. Hence, the
increase of the optimization process frequency enhances the prediction and
disturbances detection capacity.

There have been many studies in the RTO area with the objective of improving
the RTO method algorithm in which aims to converge to the plant true optimum even
with uncertainties due to disturbances. The RTO application to processes can
provide important information to better understand the process and the best way the
process needs to be modulated in order to reach a more profitable operation.

Given the advantages of the ROPA method, the main contribution of this
project is the application of ROPA method to processes aiming to obtain better
solutions in the optimization cycle. The results of these applications can provide
evidences that ROPA converges to the actual plant optimum even using transient
data in a steady-state optimization. Due to the use of dynamic information, the SS
wait issue is not a problem anymore, and the SS detection layer is not necessary in
the optimization cycle, as in the standard RTO method. Two case studies are used to
identify these ROPA benefits: the Williams-Otto reactor and the Propylene
Chlorination process. In the first case study, the ROPA implementation in the

Williams-Otto reactor, the main objective is to reproduce the ROPA and MPA
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algorithms in MATLAB and show that ROPA can reach the plant stationary optimum
even subjected to disturbances. The results also show that the Extended Kalman
filter works properly. Moreover, in the first case study, Monte Carlo analyses are used
to obtain more information about the economic performance of both methods in
different scenarios. Regarding the second case study, the software Aspen Plus
Dynamics is used to simulate the process. The propylene chlorination process is
considered as the plant. The main contribution of this second case study is that the
process simulated in a commercial dynamic simulator is optimized by an external
MPA and ROPA implemented in MATLAB what represents a more realistic RTO
implementation. In this case, ROPA also reaches the stationary optimum even under
disturbances, and the filter also works correctly with its tuning parameters in the
second case study. However, ROPA and MPA results are similar since the case
study is a gas-phase process with fast dynamics. Therefore, the ROPA benefits
cannot be seen as when the method is applied to a process with low dynamics, as in

liquid phases.

1.5 Thesis overview

The thesis is organized as follows. First, in Chapter 2, Model Parameter
Adaptation (MPA) and Real-time Optimization with Persistent Adaptation (ROPA)
methods are described and compared. In Chapter 3, mathematical preliminaries are
described in order to explain how MPA and ROPA methods work. Chapter 4 focus on
the Williams-Otto reactor study which applies the MPA and ROPA methods to
compare them. Chapter 5 presents the MPA and ROPA implementations in the
Propylene Chlorination process. Finally, Chapter 6 concludes the thesis and

proposes future work recommendations.

1.6 Publication associated with this project

e 2019 - Process Systems Engineering (PSE) — Rio de Janeiro/Brazil.
CARNEIRO A.A.B. and Le ROUX G.A.C. Poster Session: Application of Real-
time Optimization with Persistent Parameter Adaptation (ROPA) to a
Continuous Stirred Tank reactor (CSTR)
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2 MODEL PARAMETER ADAPTATION (MPA) AND REAL-TIME OPTIMIZATION
WITH PERSISTENT ADAPTATION (ROPA) METHODS

This Chapter presents the classical and the new RTO methods which are
called Model Parameter Adaptation (MPA) and Real-time Optimization with
Persistent Adaptation (ROPA), respectively. It also compares them in order to show

the main differences between both of the methods.

21 Model Parameter Adaptation (MPA): the standard RTO method

The RTO methodology is one of the most applied optimization in industry
(DARBY et al., 2011). The classical RTO method which is called Model Parameter
Adaptation (MPA) assumes that model and disturbance transients are neglected if
the optimization sampling time is long enough that the process can be indicated as a
process at the steady-state point (ADETOLA; GUAY, 2010). The three main steps of
this method are steady-state detection, parameter estimation, and economic

optimization, and these steps are shown in Figure 3 below.

v
Parameter
Estimation Data Reconciliation
Y __ & Gross
e ross ; rror
Optimization Detefclon
Process Control Steady State
Detection
W M
DISTURBAMNCES
Process "

Figure 3 - Classical RTO - Model Parameter Adaptation — (MPA) scheme (Source: GRACIANO, 2015).

The first task is to analyze the plant data to detect if the process is
(reasonably) steady. Subsequently, in some cases, the stationary point can go
through the data reconciliation and gross error detection stage. In the parameter
estimation step, the steady-state data are used to update some key parameters of
the model such that it can represent the plant in the actual condition. The third step
uses the fitted (adjusted) model to find a new optimal operation point which becomes
the new set point for the control system (MENDOZA et al., 2013).
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The detection of the steady-state (SS) is an important step, and it needs to be
carefully done. Real-time optimization uses a rigorous steady-state model, so the
process data need to be collected when the process reaches the SS condition.
Otherwise, erroneous parameters will be used, and the aiming to optimize the system
can fail. Furthermore, the application of the steady-state model to the real plant
should be implemented with the right parameter values to guarantee meaningful
results. Different methods have been developed to detect the steady-state points. For
instance, Jiang et al. (2003) present a method based on wavelet transform that can
be used in continuous processes, and an application of this method was done to
crude oil unit and pulp mill recausticizing plant. Also, Rincon, Le Roux and Lima
(2015) show an approach for steady-state identification which is a method based on
the auto-regressive model with exogenous inputs (ARX), and they compare this
method to other three methods: F-like test, wavelet transform and a polynomial-
based approach. The method which will be used to detect the steady-state point in a
RTO implementation will be chosen according to the process characteristics.

After the steady-state condition is established, the first optimization layer in the
classical RTO methodology (the parameter estimation) is done. This step uses the
plant information, and the best values of parameters that represent the current
operating point are found. The economic optimization step, the second optimization
layer, uses the updated rigorous steady-state model to optimize the plant
economically. It is more common to have the profit or the cost of the operation as the
business function (QUELHAS; JESUS; PINTO, 2013).

Between the steady-state detection and the parameter estimation layers there
is the data reconciliation and gross error detection block. In this step, the process
data are submitted to gross error detection aiming to remove errors from instrument
malfunction. Afterwards, the reconciliation is done to correct the model inputs and
outputs and to adjust the measurements, satisfying the material and/or energy
balances. The data reconciliation is formulated as an optimization problem which
minimizes the difference between measured variables and the estimated model
variables (SCHLADT; HU, 2007).
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2.2 Real-time Optimization with Persistent Adaptation (ROPA)

The Real-time Optimization with Persistent Adaptation (ROPA) method was
developed by Matias and Le Roux (2018) to tackle some problems related to the
standard RTO methodology. The method integrates online parameter estimation in
the optimization cycle using transient data via online estimators. Hence, ROPA
avoids the inherent steady-state wait and the use of SS data in a dynamic plant. After
the parameter estimation is done, the parameter values are used to calculate the
economic optimum set points for the plant as in the other RTO methods. ROPA
brings an intermediary solution between static and dynamic optimization, and it is
also a possible key for decoupling the estimation problem aiming to optimize the
entire plant.

In Matias and Le Roux (2018), ROPA was applied to three simulation case
studies: the Williams-Otto reactor, a Fluid Catalytic Cracking unit (FCC) and a
process composed of two stages. In the Williams-Otto plant and the FCC unit, the
objective was to show that when online estimators using transient data are used to
update the steady-state model in a continuous optimization, the computed solution
tends to the SS optimum. Thus, the problem related to the SS wait could be avoided
when using ROPA method. In both cases, ROPA was compared to MPA method,
and there were benefits of using ROPA method in the optimization cycle. In the third
case study, ROPA was applied in a process composed of two stages represented by
a distillation column and a reactor. The aim was to show that ROPA can decouple
the estimation problem to obtain the plant-wide optimum. The results of this case
showed that ROPA is able to drive the complete system to the optimal plant-wide

steady-state.

2.3 Comparison between MPA and ROPA methods

As mentioned before, MPA is the standard RTO approach, and it deals with
the steady-state wait problem. The detection of a SS point is a difficult task in the
optimization of a plant. Many commercial RTO software use either statistical or
heuristic methods or both to verify if the plant has reached the stationary point. The
detection of SS is determined regarding a tolerance specified by the user, and it is

detected when all the measurements are within this value. If the tolerance is not
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specified within proper evaluation, transient data might be used erroneously in the
SS model. Clearly, if transient data has been used in static models, there may be
estimation errors in the optimization cycle (KRISHNAMOORTHYA; FOSS;
SKOGESTAD, 2018).

The main difference between MPA and the new method ROPA is the use of
different types of models in the parameter estimation layer. MPA uses a steady-state
model, and ROPA uses a dynamic model. Figure 4 compares MPA to ROPA.

Process Process
(Dynamic model) (Dynamic model)
1 1
4 ] - State,/Parameter -
P StateEstimator > Controller iy > Controller
MPL L NPT M
OFTIMAL SETPOINTS ESTIMATED PARAMETERS OPFTIMAL SETPOINTS
Model w Steady State
Adaptation “l optimization
Steady State
s 3] Optimization (at
arbitrary time)
Steady Steady State 4
State? Detection
ETD ETD
MPA ROPA

Figure 4 - Comparison between MPA and ROPA methods (Source: MATIAS and LE ROUX, 2018).

A valuable advantage of ROPA method is that the detection of the steady-
state is not necessary since the approach uses transient data to update the model in
the current point. Online estimators are used to estimate the parameters in the
optimization cycle, such as extended Kalman filter and reduced extended Kalman
filter. The online estimator is chosen depending on the model characteristics, and it

estimates the states and the parameters at each sample time.
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3 MATHEMATICAL FUNDAMENTALS FOR REAL-TIME OPTIMIZATION

This Chapter introduces the mathematical preliminaries to solve an
optimization problem using real-time optimization methods. First, the introduction of
useful information about the process (used models and notation) is given. Secondly,
a general nonlinear optimization problem is shown and explained. Lastly, the MPA
and ROPA methodologies are detailed mathematically.
3.1  The process

The equations and notation for each studied process is based on Matias and

Le Roux (2018). The plant is represented by the following steady-state (SS) input-
output mapping:

Yok (uk' dyy, Sp,k) € R™ (1)

in which u, € R™are the system inputs, d,, € R" are the deterministic
disturbances, and g, € R"* the random disturbances. The subscript k indicates the

variable at time t,, assuming a zero-order holder over the interval [t, t;41)-

The steady-state model is represented by (2) and (3):
0= fos(x,up) @
y = h(x,p) + vy 3
where x € R™ are the model state variables and p € R™ is the set of parameters.
The subscript ss is associated with SS, and the lack of time subscript indicates

steady-state values. The steady-state function f, is nonlinear.

The dynamic model, with subscript dyn, is represented by (4) and (5):

Xk+1 = Fayn Xk Wi, Di) + Wy (4)
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Vi = h(xy, uy) + vy ()

where w; and v, are the process and measurement noises. Both are modeled as
white-Gaussian random noises with zero mean and constant covariance matrices
Q € R™™ and R € R™"™, respectively. The state transition function f;,,(xy, ux, px)
is also a mapping over the interval [t;,t;.+1), and it represents the solution of the
differential model during the period. f,,, is assumed to be at least once differentiable

in all points in the studied range, and it has the same dimension and states as f,.

3.2 General nonlinear optimization problem

A general nonlinear optimization problem can be represented by the following
problem (6) considered in Bazaraa; Sherali; Shetty, 2006:

min f(x)

gix) <0 fori=1,..,m
sty h(x) =0 fori=1,..,1 (6)
x€X

where f(x) is the objective function for the problem, and it is a nonlinear function. g;
and h; are the constraints for the problem, and x is a local optimum point. As this is a
nonlinear programming problem, there will be more than one local minimum which

needs to be analyzed to decide if it is the real optimum point for the case study.

3.2.1 General economic optimization

The economic optimization problem aims to obtain the optimal point which
optimizes the plant economically, and it is determined by an optimizer using the plant
model with the most recently updates of measurement adjustments, “a”, parameters
“B”, constraint limits and economic values. In most RTO applications, the objective
function is profit which is given by the product value minus the costs of the operation

(DARBY et al., 2011). The optimization problem can be expressed by (7):
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max P(x,u,p)

s.t. f(x,u,p)=0 (7)

max (x5, x —A) < x < min (xyp, x + A)

in which P is the profit of the process, x are the optimization variables, and there are
minimum and maximum limits for each value of x. A are step limits which represent
the maximum change, from the current value, that x is allowed to move in a single
optimizer execution. These step limits can cause confusion with interpreting optimizer
results. Thus, some implementations automatically solve an additional case to
understand the problem without these values (DARBY et al., 2011).

3.3 Mathematical preliminaries to MPA method

The classical RTO method is called Model Parameter Adaptation (MPA).The
optimization cycle using MPA method starts with the detection of the steady-state
condition in which the process measurements are analyzed in order to decide if the
process has reached the SS point based on statistical criteria. If the SS condition is
satisfied, the next module is the parameter estimation where the model parameters
are used to update the model. Further, these adjustable parameters are used to find
the optimal operating point that optimizes the plant economically in the steady-state

optimization step. Figure 5 shows the main MPA modules.

adj.*

Steady-state Model Steady-state
Detection - Adaptation Optimization

OPTIMAL SETPOINTS
Figure 5 - Main steps in MPA method (Source: Own elaboration).
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3.3.1 Steady-state detection

As previously mentioned, the first layer in the MPA cycle is the steady-state
detection. The following algorithm is based on Rhinehart and Cao (1995), and it is
used in this work as well as in Matias and Le Roux (2018). This algorithm estimates
the measurements variance using two different methods and after this, compares
them to identify if the process is reasonably steady. The first method estimates the
variance between the actual measurement and a filtered tendency of the same value
(zx and zs,_1). The second method calculates the variance between two sequential
values (z, and z,_,). When both of the variances calculated by the two methods are
the same, the process can be considered at SS condition. Rss is the variance ratio,
and it is equal one when the process is static. The steady-state detection algorithm is

represented by (8) - (11).

Zrx = Mzg + (1 — A1)z (8)

8% pk = A2k — Zpp-1)* + (1 = 2)8% f 1 9)

8% pk = A3(2k — 2g-1)* + (1 = 23)8% p k1 (10)

Rgs = M (11)
82 fk

where z; is the given measurement variable (z; € y, ) at time t, and z,is the
filtered value. 6%,y and 6%, are the filtered covariances calculated by the first and

the second methods, respectively.

3.3.2 Model adaptation

After it is established that the process is at a steady-state point, the model
adaptation module starts in the optimization cycle. In this step, the plant data (SS
values) are used to estimate the model parameters by minimizing a weighted sum of
squared errors between the measured and predicted outputs (MATIAS and LE
ROUX, 2018).
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padj,* = argmin Pgg44p ’:||yP - }HZRP )

0 = fSS (x, ul [pnom' padj]T)
s.t. Gaaap=| ¥y = h(x, [prom, padj]T)
pL,adj < padj < pU,adj

where p®¥ are the adjustable parameters, ®Paaap is the adaptation problem objective
function, R, are the weights for squared error function, and G4, are the constraints

of the model adaptation problem. p~2% and pV%4 are the lower and upper bounds of

the adjustable parameters, respectively. p™°™ are the nominal parameters.
3.3.3 Steady-state optimization

In the MPA and ROPA cycles, the SS optimization uses the adjustable
parameters from the online estimation to obtain the optimal setpoint that optimizes
the plant economically in the current time. An economic-based problem can be

represented by (13):

u* = argmin @propr (W, y) (13)

0=f (x' u, [pnom’ padj,*])
s.t. G:= y = h(x, [pnom'padj,*])
ueu

where @propr IS @ scalar economic objective function to be minimized and G is the
set of constraints of the problem. The model equation and operational inequalities
which are defined by U = {u € R™: ul <u <uY» y* <y < yY} are introduced in G.
ut,u,y! and yY are the lower and upper bounds of inputs and outputs. Although
the optimization problem is formalized as the result of the minimization of the
objective function, the aim of this step is to maximize the profit, in practice. After
getting the optimal u*, the optimal y* are obtained in the SS model, and y* are used
as setpoints for the control step which implements the optimal decision for the

process.
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3.4 Mathematical preliminaries to ROPA method

The ROPA methodology works with three main steps which are shown in the
scheme in Figure 6. The ROPA cycle integrates online estimators into the RTO cycle
to compute the set of parameters that is used in the steady-state optimization.
Hence, ROPA does not depend on the SS detection, and the economic optimization
can be done at an arbitrary time. Atzops is the period between two consecutive
ROPA executions. After the adjustable parameters (p®%*) are computed by an online
estimator, the economic-based optimization is executed to obtain the optimal
setpoints for the plant in the current time (MATIAS and LE ROUX, 2018).

adj .+

Online Steady-state

Estimation Optimization

Figure 6 - Main steps in ROPA method (Source: Own elaboration).
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3.4.1 Online estimation

As explained before, online estimation is implemented in ROPA method to
avoid the problem related to the steady-state wait and the SS detection. In this step,
an instrument is used to measure process data, and its inaccuracies generate
measurement errors which can cause severe effects on the accuracy of the online
estimates. Therefore, a good noise filtration algorithm should be employed to
improve the estimation process. The Kalman filter is the optimal state estimator for
unconstrained linear systems. The extended Kalman filter (EKF) is an extension of
the linear Kalman filter approach, and it is used in nonlinear problems. EKF tries to
estimate the states by assuming that the plant model is described by a nonlinear
system and the mean and covariance of the measurement errors are known (ASSIS;
FILHO, 2000).
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3.4.1.1 Extended Kalman Filter — EKF

As previously mentioned, the Kalman filter is the most common choice if the
system is linear and there are no constraints on the estimated values. However, as it
is difficult to have a linear process in industrial applications, the EKF is more common
to be used in practical online estimation. EKF is based on the linearization of the
nonlinear plant model, and it takes advantage of the Kalman filter's computational
efficiency and recursive strategy (MATIAS and LE ROUX, 2018). The extended
Kalman filter has been applied in several systems in the literature. M, P and Jerome
(2014) use EKF to estimate the states of a Continuous Stirred Tank reactor (CSTR)
to compare it to another type of Kalman filter called unscented Kalman filter (UKF)
under various operating conditions and model uncertainties. Prakash, Huang and
Shah (2014) also applied EKF in a gas-phase reactor with irreversible reaction
system and in an isothermal batch reactor, and two novel schemes of extended
Kalman filter are proposed to compare to EKF.

In the ROPA method, the objective is to obtain the states and parameters in
the dynamic process at each time instant k. The online estimator needs to infer the
most likely values based on the dynamic model and the available sensor
measurements. Thus, the dynamic model, represented by (4) and (5), is rearranged
resulting in an augmented state x,¢ = [x,, p,]’, and the parameters are considered
additional states. All of the used equations to apply the EKF are based on Matias and

Le Roux (2018), and all of them are described as follows.

First, the augmented dynamic system is represented by (14) and (15):

xk+1e — I:fdyn(’;k’;uk'pk)] + I:‘:]:kp] = fe(xke,uk) + Wke (14)

Vi = b’ () + vy (15)

where w; P~N'(0, QP).
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To apply EKF in a system, the linearization of the nonlinear plant model needs
to be done. Thus, first-order expansions around the extended state estimate ’iklke
and §k|k_1eare carried out, and it is represented by (16) and (17). The subscript

notation a|b means the estimate at time a based on information available at time b.

e wy) zfe(’ieklk'uk) +Fk(xke —Qekuc) (16)
h®(x,°%) = he(/fek|k—1 ) + Hk(xke - /iek|k—1) (17)
where:

of (xpug,pr)  Of (Xp,Ug,Pr)

6 e e’
e W i (18)
Xk ik 0 Inp e
Xkik
and
H, = afe(x®) _ [6h(xk'l’k) ah(xkrpk)] (19)
BT ool e T LT oprT  lge
X" k|k—1 X" k|lk—-1

in which I,,, is the identity matrix with dimension np.
After the linearization of the plant model, the EKF equations can be directly

applied. In the prediction step, the nonlinear model is used instead of using linear
approximation as shown in (20):

Xk = fe(fekuc »uk) (20)

The EKF prediction and update equations are represented by (21), (23), and
the gain of Kalman filter is computed by (22), as follows:

Py = FkPk|kaT + Q¢ (21)

Kii1 = PrsrpcH i1 [Hir 1P H i + R]7H (22)



Pk+1|k+1 = Pk+1|k - Kk+1Hk+1Pk+1|k
with

=0 o

The extended states are estimated using the prediction error:

~

kst = Xokaje + Kiew1[Viewr — B (RCerapic)]

40

(23)

(24)
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4 CASE STUDY 1: WILLIAMS-OTTO REACTOR

This Chapter discusses the application of the Real-time Optimization with
Persistent Adaptation (ROPA) and the Model Parameter Adaptation (MPA) method to
the Williams-Otto reactor problem. The main objectives are to reproduce the ROPA
and MPA algorithms and to show the benefits of using ROPA in the RTO cycle
comparing both of the methods. MPA uses the steady-state data to optimize the plant
economically while ROPA uses transient information.

The results show that the integration of RTO with online estimators can predict
the states and parameters satisfactorily even with disturbances in the system since
the steady-state detection layer is not necessary, and the period between two
optimization executions is shorter than in other RTO methods which need this step.
Moreover, the computed solution tends to the stationary plant optimum. The

advantages of using ROPA are discussed in this Chapter.
41 The process model

The assumptions for the case study are based on Matias and Le Roux (2018).
The Williams-Otto reactor is widely used for RTO and control studies. A flow diagram

is shown in Figure 7.

Figure 7 - Williams-Otto reactor scheme (Source: MATIAS and LE ROUX, 2018).

The process is fed with the two feed streams which are composed of pure A

and B. There are two products of interest: P and E. Also, there are an undesired
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product G, and an intermediate C. The set of reactions in the process can be seen as

follows:

kq
rn: A+B > C
k2
: B+C > P+E

k3
r3: C+P > G

The assumptions for the problem are described as follows: the reactor is
represented by an ideal continuous stirred-tank reactor (CSTR), and the temperature
of the reactor can be changed without cost and instantaneously, discarding the
energy balances in the model. With these assumptions, the steady-state and
dynamic models are created. The dynamic model is shown below. The SS model is

not shown here because it can be easily derived from the dynamic model.

0=FR_FA_FB

dx (FA—FrXa)

T = Jayna (Xw) = AL — e XX

dx Fp—FgX

d_tB = fayn (X, u) = % — k1 X4Xp — ko XpXc
dx (=FrXc)

d_tc = fdyn,3(X' u) = % + 2k Xy Xp — 2k, XpX¢c — k3XcXp (25)
dx (=FrXE)

d_tE = fayna(X,w) = % + 2k, XpXc

dx —FRrX

d_tP = fayns(X,u) = % + ko XpXc — 0.5k3Xc Xp
4Xc

—-FrX
— = fayne(X,u) = % + 1.5k3 X Xp

_Ei/
ki = Aie TR, = 1, ,3

where k;, A;, and E; are the reaction rate constant, frequency factor, and the
activation energy for reaction i; M,is the reactor mass holdup which is assumed
constant, and X; and F; are the mass fraction and mass flow rate of component j. The
mass flow rate of reactant A, F,, is fixed and the manipulated variables of the system

are the flow of reactant B, Fg, and the reactor temperature, Ty.
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The stationary model is used in the economic optimization layer in the ROPA
and MPA cycles. It is also used in the model adaptation step during the MPA cycle.
On the other hand, the dynamic model is used as a representation of the plant and
for linearization purposes. In respect of the model parameters, although the selection
of adjustable set is composed of the frequency factors and activation energies of
reactions, a parameter rearrangement was carried out in order to avoid a poorly
conditioned parameter estimation problem, as done in Matias and Le Roux (2018)

and shown in (26).

T.
In (k) = @+ (7L = 1), i=1,..3

Ty
®; =log (4;) + ¥; (26)
p, = — Ei
Trer

where @; and ¥; are the rearranged parameters of it" reaction and Tref = 383.15 K.

Thus, the model summary for this process can be described as follows:

X = [XA'XBIXC'XE'XP'XG]T

y = [Xg, Xp]" (27)
u = [Fg,Tg]"

p= [P1:P2'P3:P4:P5'P6]T = [Py, l1”1"1)2"1!'2:‘1)3:'1U3]T

where x is the vector of the complete system model states, y is the vector of the
measurements, u is the vector of the decision variables, and p is the vector of the

adjustable parameters.
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The initial plant condition and the nominal values of the parameters are listed
in Table 1.

Table 1 - Initial plant condition and adjustable parameter set of Williams-Otto model. The values are
based on Matias and Le Roux (2018). The lower and upper bounds of the manipulated variables and
the parameters are used in the economic optimization layer in the ROPA and MPA cycles.

Variable(symbol) [unit] Lower Initial Upper
bound value bound

- Reactor holdup (M,) [Kg] - 2105 -

- Flow of reactant A (F,)[Kg/s] - 1.827 -
uq Flow of reactant B (Fp)[Kg/s] 4 4.787 6
u, Reactor temperature (T;)[°C] 80 89.70 100
X4 Mass fraction of A (X,)[-] - 0.0876 -
X, Mass fraction of B (X3)[-] - 0.3892 -
X3 Mass fraction of C (X.)[-] - 0.0153 -

X4/¥V1 Mass fraction of E (Xg)[-] - 0.1093 -
x5/y, Mass fraction of P (Xp)[-] - 0.2903 -
Xe Mass fraction of G (X;)[-] - 0.1083 -
P1 P[] -3.385 -3.077 -2.769
P2 -] -18.26 -17.39 -14.78
Ps3 P,[-] -1.826 -1.353 -1.217
Pa Y, [-] -22.83 -21.74 -17.39
Ps ?s5[-] -0.5188 -0.3843 -0.3459
Pe Y] -30.44 -28.99 -27.54

4.2 Economic Optimization

For this case study, the objective in this layer is to maximize the unit profit,

@,r0ric- Thus, the objective function in the optimization problem is the profit, and it

can be described as in (28).

®yropie = 1143.38XpFy + 25.92Xp Fy — 76.23F, — 114.34F, (28)

The components E and P are the valuable products, and the numerical values
in the equation are the market prices of these components as well as the purchasing
values of the reactants A and B (all prices are in $/Kg). Xp and X; are the mass

fractions of P and E, respectively. Moreover, the economic optimization is a
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constrained optimization problem where the set of constraints is composed of the

model equations and operational inequality constraints.

4.3 Process Simulation

The process simulations are performed in MATLAB, and the dynamic system
is solved by SundialsTB (HINDMARSH et al.,, 2005) using the CVode function.
Moreover, the sensitivities are calculated by SundialsTB. The information flow

between layers in the ROPA and MPA cycles can be seen in Figure 8 below.

Steady-state | P State/Parameter Steady-state | P Model
optimization Estimation optimization Adaptation
Uk U
W
yp’k W .
Plant Ye. .| Steady-State
Plant > ;

Detection

ROPA
MPA

Figure 8 - ROPA and MPA information flows (Source: Adapted from MATIAS and LE ROUX,
2018).

In this case study, the plant measurements, y,,, are the mass fraction of
components E and P in the current time, and they are obtained using a sensor that is
simulated. Subsequently, these values are used in the estimation layers in order to
estimate the states and parameters in the process. p, are the estimated parameters,
and they are estimated using the Extended Kalman filter (EKF) in the ROPA method
and the model adaptation problem in the MPA cycle. Finally, the vector with the
optimal values of the decision variables, uy, is sent to the plant. The implementation
of a model predictive control (MPC) layer can be done before this last step, but it is
not mandatory.

In order to simulate a real plant, random and deterministic disturbances were
admitted in the system. The noisy plant measurements, y; and y,, are obtained by

adding random disturbances to the outputs of the dynamic model, as shown in (29).

Ynk = Vi +error.y, .randn() (29)
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where y, , is the measurement with noise at time k; y, is its actual value; the error is

equal to 1%; and randn draws a random scalar from the standard normal distribution.

The process is also affected by deterministic disturbances which can be
divided into measured and unmeasured. The measured disturbance affects the flow
rate of reactant A, F,, and the unmeasured disturbance changes the nominal values
of the parameters of the second and third reactions.

After 10 h, a step change of 0.173 kg/s to the nominal value of F, is added.
This value remains disturbed until 15 h. Also, the reaction parameters
(D,, W, @3,¥;) are affected by the unmeasured disturbance, changing from their
nominal values (shown in Table 1) to [-1.642, -22.0391, -0.3582, -28.9730] between
18 h and 21 h. After this, they start to return their nominal values.

As mentioned before, an online estimator is used in the ROPA cycle aiming to
estimate the states and parameters in the current time. In this process, the Extended
Kalman filter (EKF) is used in the estimation layer using (21) - (24). The filter tuning

parameters used for EKF are shown below:

Q = diag([le™%; 1e71; 1e71; 1e72; 1e72; 1e72])
QP = diag([1el; 0.4e3; 1e%;0.2e3; 1€%;0.5¢2]) (30)
R = diag([1e?; 1el])

where Q, the covariance matrix of the process model, is related to the states
(X4, X5, Xc, X5, Xp, X;); R, the measurement noise covariance matrix, is related to the
measured variables (Xy, Xp); and QP, the parameter covariance matrix, corresponds
to the parameters (®,,¥,,®,,¥,, @3, ¥;). The values of Q, R and QP are kept
constants during the RTO implementations. Moreover, the weighting factor for the

model adaptation algorithm, R, is the identity matrix.

Also, the period between two optimization executions, Atzops, IS another
important tuning parameter in the simulations. This value needs to have a similar
order of magnitude as the process settling time. However, it should be large enough
to capture the disturbances. For the case study, a Atzops = 10 min was chosen to

simulate the process.
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Regarding the MPA method, the first step is the steady-state detection in
which the filter values for each measured variable are tuned according to the arrays

below.

A, =[0.2,0.3], 4, = [0.1,0.2], A; = [0.1,0.2], R yir = [2.5,2.5]

where the first and second values of the arrays are related to the component E and

P, respectively. All of these values are also based on Matias and Le Roux (2018).

The economic steady-state optimization was done using the fmincon function
in MATLAB for both of the RTO methods. The interior-point algorithm which is the
default algorithm for fmincon function was used in the optimization executions.
Moreover, the gradient of the objective function (profit) was set in the code manually

to get better solution for the problem.

4.4 Results and discussion

The ROPA and MPA performances are analyzed by the states and
parameters estimation in the simulations as well as the economic results. As ROPA
uses transient information in the estimation layer, these values need to be reliable at
the current time. Thus, the choice of the online estimator must be carefully done, and
the results require a rigorous analysis. The use of transient data to update the model
in a dynamic process ensures that the economic optimization does not stop when the
process is under disturbances. Hence, the steady-state (SS) wait issue is no longer a
problem, and the detection of the SS condition is not necessary anymore. The ROPA
is executed every Atzop,s instants resulting in a short period between two sequential
optimization executions, hence the ROPA estimation capacity under disturbances
enhances when compared to the other RTO methods which require the SS detection
step. Regarding the MPA method, the SS detection step is necessary in which the
economic optimization runs only when the process is at the SS condition. Thus, in
case a disturbance affects the system, the optimization cycle needs to wait for the

next steady-state point to return the calculations.
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The dynamic model is solved by SundialsTB in order to obtain the state
profiles as shown in Figure 9. The initial plant condition, shown in Table 1, is used to
simulate the process. Moreover, random and deterministic disturbances are
considered aiming to handle with a real plant. These values are used as the plant

values in the optimization cycle.
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Figure 9 - Plant condition calculated by SundialsTB (Source: own elaboration).

The first estimation analysis is the state estimation. In both of the RTO
methods, ROPA and MPA, the Extended Kalman filter (EKF) is chosen to be the
online state estimator since the model is nonlinear. Figure 10 shows the state
estimation for ROPA and MPA cycles as well as for the plant (optimal value). Xz and
Xp are not shown because they are assumed to be directly measured in the plant

instead of being estimated by the filter.
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State Estimation
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Figure 10 — State estimation for ROPA and MPA implementations in the Williams-Otto reactor using
the Extended Kalman filter as the online estimator (Source: own elaboration).

Regarding the state estimation, the estimated and actual state profiles are
almost overlapped in the given time horizon for ROPA and MPA methods. These
values are similar because the considered disturbances affecting the system are
equivalent for both of the methods. The results show that the filter works consistently,
and the state covariance matrix is satisfactorily tuned by Matias and Le Roux (2018)

. Although it is not the main focus of the case study, if a model predictive
control (MPC) is added in the system, the filter should satisfactorily predict the states
since these values are used as feedback to the MPC layer.

The parameter estimation for ROPA and MPA implementations is shown in
Figure 11 below. The estimated parameter values are compared to the actual plant
values. It is possible to notice that even with the disturbances which affect the
parameters ps;, ps, ps and pg the ROPA method estimate the parameters correctly.
Clearly, the MPA parameter estimates are unreliable since MPA does not follow the
plant condition as ROPA. Moreover, there is a delay related to the MPA method to
estimate the parameters ps, p, and ps. It is due to the fact that the classical method
needs to wait for the next SS condition to start the optimization cycle after a

disturbance in the system. The gap between the disturbance occurrence and the



50

response of MPA is almost three hours what highlights the critical issue related to
this methodology, the steady-state wait. Thus, the estimates for MPA method are
updated only after this response that takes a longer time when compared to the
ROPA method which does not need to wait for the next SS point. The parameter
estimation shows that ROPA is able to respond to the disturbances occurrence
reproducing the actual plant parameter profile (the lines are almost overlapped). The
most critical advantage of ROPA is that it can update the model even under

disturbances.

Parameter Estimation
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Figure 11 - Estimated parameters for ROPA and MPA implementations in the Williams-Otto reactor
(Source: own elaboration).
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In the optimization cycle, a process with identifiability problem can have
different set of adjustable parameters (p®“/) which result in the same optimum values
for the problem. This problem occurs when the Hessian matrix of the problem is ill-
conditioned, so the process has identifiability problems, and the estimation affects
the performance of the optimizer. Since the Williams-Otto reactor presents
identifiability issues (MATIAS and LE ROUX, 2018), the analysis of the parameter
estimation may not be the only result to be used to assess the methods’
performance. Moreover, it is not enough to conclude if the result of the optimization is
the real plant optimum. However, the assumptions that there is only a unique
optimum solution for the SS optimization (u*) and that this solution matches the true
plant parameter values are used in the case study, as in Matias and Le Roux (2018).
Additionally, there is no plant-model mismatch (the model can be considered
perfect). The ROPA and MPA convergence analysis is based on these assumptions.

A proper indicator when the system presents identifiability problems are the
economic performance of the closed-loop optimization and the optimal decisions
since the parameter estimation result cannot be conclusive. The analysis of the
economic performance is used to evaluate the ROPA and MPA implementations.
The instantaneous profit is shown in Figure 12 for both of the methodologies. It can
be observed that the response of ROPA follows the optimal instantaneous profit,
even after the disturbances in the system. Although bias between the optimal value
and the value obtained with ROPA methodology can be detected during the
simulations, ROPA runs the economic optimization continuously independently of the
plant condition. Clearly, the response of ROPA is faster for both of the disturbances
(measured and unmeasured). ROPA performance shows that the method can
properly converge to the stationary optimum. As in the parameter estimation results,
a delay is detected in the MPA implementation. MPA has an inherent delay on the
optimization cycle due to the steady-state detection. The MPA optimization runs only
after the system reaches the next SS. Furthermore, MPA economic results drift from
the optimal profit (plant). The decision variables of the ROPA and MPA cycles can be
compared to the plant optimal decisions, as shown in Figure 13. It can be seen that
the decision variables calculated by ROPA method move towards the optimal values,
even with the disturbances in the system. For the MPA cycle, the decision variables

also present a delay due to the SS detection layer.
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Figure 13 - Comparison between the plant optimal decisions and the inputs calculated by ROPA and
MPA implementations in the Williams-Otto reactor (Source: own elaboration).

In order to obtain more information about the distribution of the economic

performance for MPA and ROPA methods and the influence of the critical value

(R¢rie ) in the MPA algorithm, Monte Carlo analyses are performed. 100 repetitions of

the simulations are executed in each scenario for ROPA and MPA. Two different

scenarios are used in the simulations aiming at analyzing the economic performance

for both methods: (Scenario 1) disturbances in F, and the nominal parameters ps,

P4, ps and peg, and (Scenario 2) disturbances in F, and the nominal parameter p;.

Furthermore, three different scenarios are used to obtain more information about the
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influence of R..; in the MPA cycle: (Scenario 3) R..;; = 2.0; (Scenario 4) R.,;; =
2.5; (Scenario 5) R_,;; = 3.0. The disturbances in scenario 1 are used for the second
Monte Carlo analysis, varying the R value in the MPA algorithm. Although the
ROPA algorithm does not change with the R..;; value, the ROPA results in the
second Monte Carlo analysis are shown to compare both MPA and ROPA for all of
the scenarios 3, 4 and 5. The frequency distribution of the profit calculated using
MPA and ROPA methods and the true profit value (vertical line) for each scenario is

shown in Figure 14 and Figure 15.
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Figure 14 - Monte Carlo Analysis - Frequency distribution of the profit calculated using MPA and

ROPA methods and the true profit value (vertical line) for each scenario in the Williams-Otto reactor.

(A) Scenario 1 calculated using MPA method; (B) Scenario 1 calculated using ROPA method; (C)
Scenario 2 calculated using MPA method; (D) Scenario 2 calculated using ROPA method.
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Figure 15 - Monte Carlo Analysis - Frequency distribution of the profit calculated using MPA and
ROPA methods and the true profit value (vertical line) for each scenario in the Williams-Otto reactor.
(A) Scenario 3 (R = 2.0) calculated using MPA method; (B) Scenario 3 (R = 2.0) calculated
using ROPA method; (C) Scenario 4 (R, = 2.5) calculated using MPA method; (D) Scenario 4
(Rerit = 2.5) calculated using ROPA method; (E) Scenario 5 (R4 = 3.0) calculated using MPA
method; (F) Scenario 5 (R..;; = 3.0) calculated using ROPA method.
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For the first Monte Carlo analysis, scenarios 1 and 2, it can be seen that the
MPA method results change more significantly than ROPA during the 100 iterations
considering the same range of profit values. It can be due to the fact that MPA uses a
statistical algorithm which may change with random influences. Regarding the
second Monte Carlo analysis, Scenario 4 (R..i; = 2.5) is chosen to be in line with the
value in Matias and Le Roux (2018), and this Monte Carlo analysis shows it is a good
choice when compared to values of R..: = 2.0 and R, = 3.0 since the MPA result
that does not change as in scenarios 3 and 5 using the same range of profit values.
ROPA results also vary in all of the scenarios due to the random disturbances added
to the outputs of the process.

In conclusion, the integration of RTO with online estimator enhances the
estimation capacity of the problem and the disturbance detection, and improves the
economical issue when compared to the classical RTO method (MPA) because the
period between two optimization iterations is shorter than in the MPA method which
requires the SS detection (there is an increase of the model updating frequency).
Also, ROPA does not have the steady-state wait problem since it uses transient data

which are always available.

4.5 Conclusions

The Real-time Optimization with Persistent Adaptation (ROPA) method
integrates transient data to the static optimization. In ROPA cycle, online estimators
are used to obtain the transient data in the current time. If the model is nonlinear, the
Extended Kalman filter (EKF) can be used to estimate the states and parameters that
are used to update the model. As the plant, represented by the dynamic model, is
subjected to disturbances, the use of transient information improves the prediction
capacity of the RTO method. The detection of the SS condition layer is not necessary
in the ROPA cycle since it runs the optimization each Atgzyp, independently of the
plant condition. Therefore, the period between two optimization executions
decreases when compared to the MPA method that requires the SS detection. With
this, the estimation capacity and the disturbances detection increase in the
optimization cycle.

Since the state and parameter estimation capacity in the ROPA cycle

increases when compared to the MPA method, it can satisfactorily reproduce the
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actual plant profile which improves the economic optimization. The results show that
ROPA reaches the stationary plant optimum even using transient data in a SS
optimization, and the EKF works consistently. However, it is important to highlight
that the plant needs to be well tuned to get suitable results for the optimization
problem. The tuning phase may be properly done in the ROPA cycle. Otherwise, the
process cannot be optimized correctly.

ROPA is an intermediary solution between the static RTO (as MPA) and the
dynamic optimization (DRTO/EMPC). ROPA constantly improves the plant
operations if the tuning parameters are well-established. The main contribution of
this study is to show evidences that the ROPA implementation in processes can
converge to the stationary plant optimum, even using transient data to update the
model in a steady-state optimization. ROPA applications can show this convergence
and provide the benefits of using the method instead of using the classical RTO
method (MPA). In the Williams-Otto reactor study, ROPA converges to the steady-
state plant optimum even using dynamic data to update the model, and it is
compared to the MPA method which has an inherent delay due to the steady-state
detection. The results of the comparison show that the decrease in the execution
frequency (the time between two sequential optimization cycles) enhances the

economic optimization for the considered case study.
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5 CASE STUDY 2: PROPYLENE CHLORINATION PROCESS

This Chapter shows the results of the application of the Real-time Optimization
with Persistent Adaptation (ROPA) and the Model Parameter Adaptation (MPA)
methods to a gas-phase Continuous Stirred Tank reactor (CSTR). The results of the
case study are analyzed in order to compare ROPA and MPA methodologies. ROPA
works with transient data to update the plant model in the RTO cycle using online
estimator. On the other hand, MPA uses steady-state data to estimate the
parameters in the optimization problem. The main issue related to the MPA method
is the time the process spends to reach the steady-state condition whether there is a
disturbance in the system. In this case, the optimization algorithm needs to wait for
the next SS condition to run the cycle again. ROPA tackles this problem using
dynamic data to update the model what avoids the steady-state wait issue. The
application of these methodologies to the Propylene Chlorination process can show
the benefits of using ROPA when compared to the classical RTO method, MPA. The
results show that the ROPA is able to reach the stationary optimum even using
transient data in a steady-state optimization. In this case study, ROPA and MPA
results are similar since the system is a gas-phase process which has a fast
dynamics. Because of this, the ROPA benefits cannot appear very different from
MPA method. However, even with the fast dynamics issue, it can be seen that MPA

deals with the steady-state wait what is the main drawback of the algorithm.

5.1 The process model

The second case study is the Propylene Chlorination process in which allyl
chloride is produced. This is a commercial chemical used mainly as an intermediate
in the manufacture of epichlorohydrin and glycerine (BOOZALIS et al., 1982). The
considered process occurs in a gas-phase CSTR reactor with two feed streams as
shown in Figure 16 below. In order to simulate a more realistic system, the process is

simulated using the software Aspen Plus Dynamics.
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CSTR

Figure 16 - Propylene Chlorination process simulated in Aspen Plus Dynamics (Source: own
elaboration).

The process simulated in Aspen Plus Dynamics represents the real plant, and
two feed streams are considered: Cl, and C;H,. The principal and desired product is
the allyl chloride (C;HsCl). The reactions in the process and the rate expressions for
these reactions are based on Biegler and Hughes (1983). The first reaction (1) is

substitution by chlorine to produce allyl chloride:
k1
Cl, + C3Hg — C3H5Cl+ HCI

The second reaction (2) is addition of chlorine that forms 1,2-dichloropropane:

k2
Cl, + C3Hy — C3HyCL,

Finally, the third reaction (3) is chlorine substitution in allyl chloride to yield

1,3-dichloropropene:
k3
Cl, + C3HsCl = C3H,Cl, + HCI
All the three reactions are exothermic and have overall second-order

Arrhenius-type kinetics. The rate expressions and kinetic constants are considered

as follows:
= jpj*pClz (31)

where

[ﬂ
k] = A]e TR (32)
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in which j = 1,2,3 is related to the reactions 1, 2 and 3, respectively. p;- is the partial
pressure of propylene for reactions 1 and 2 and of allyl chloride for reaction 3. The

constants A; and B; are given in Table 2.

In order to simplify the model, the gas is assumed to be ideal. Thus, the rate
expressions (31) can be replaced by (34) considering the equation of state of an

ideal gas, as shown below:

P,V = N;RT (33)
and

2
1 = k;Nj-Neg, (<) (34)

After the rate expressions are established, the material balance for all of the

species in the system is given by (35).

% = _FoutHCl + (7"1 + T'3)V

diilz - Finczz - Fouta2 + (=r—r, —13)V

dNZ—:H{S = FinC3H6 - Foqu3H6 + (=r—m)V (35)
% = _FoutchSCl + (Tl—T'3)V

dNCZZGClz = ~Fourc s, + (r)V

dNCZ+ClZ = - out c,H,cl, + (T3)V

where F;, and F,,; are the inlet and outlet molar flow rate and r;, r, and r; are the

corresponding rate expressions.

As the number of moles is changing and the pressure in the reactor is
constant, it is necessary to consider that F,,;, changes during the process. F,,; is

calculated as shown below:
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Ty T = Fin = Foue + (20, 22, @iV (36)
where

SN = (37)
and

S = wra (38)

where N, and N, are the number of components and the number of reactions,
respectively. Substituting (38) into (36) and considering the stoichiometry of the

reactions, the output flow rate is given by (39).

RT\? PV dT
Fout = Fin — koNeyuNer, (55) V + 2252 (39)

Regarding the energy balance, the kinetic energy terms and the energy
needed for mixing the reactor are neglected to simplify the energy balance. The

energy balance is given by the following equations, and it is based on Makila and
Waller (1980).

auv oy

L= B -H-Q (40)
where U is the internal energy, H is the flow of enthalpy, and Q denotes the heat flow
from the reactor. As the volume of the reactor is considered constant, the energy

balance takes the form below:

dH dp_ Y
w V= H-H-0Q (41)

Assuming the following thermodynamics relations (42) - (45), the energy

balance is given by (46), as shown below:
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dH — Vdp = C,dT — [(Z—’Z)TN _ V] dp + hTdN (42)
(%) =) -v (@3)
-G, -6, = (44)
ap=(2), ar+|@) | av (45)
o Z+|-r(2),, (@), ] +a|2 = -i-g (46)

Considering that N = CV in the material balance in which C is the vector of the
molar concentrations of the species at time t, the energy balance can be written as
(47).

T
a | _r (v or TN _ (T — BT\CV — ATV — O
C, 5 +[ T(aT)p’N [(aN)T’V] +h ]dt = (he" = hT)CeVe — ARTTV — (47)
where Ah is the vector of the heats of the reactions.

The energy balance can be simplified in the following way in order to assume
an ideal mixture of gases in the reactor. The equation of state for an ideal gas is
given by (48):

pV = X; N;RT (48)

gives

-T(G5), =7 (49)
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as well as
ap _ RT
(&), =7 (50)
thus:
(6_p) Td_N:RTdCtot (51)
oN TV dt dt

where C;,; is the vector of total molar concentration of the species.

Moreover, the partial enthalpies are given by (52):
h= f; CpdT + hg (52)

where Ty is a reference temperature and hy is the corresponding partial molar

enthalpies.

Substituting these equations into the energy balance (47), the energy balance
for the case study can be:

Cv% = [f:f CpTdT] CinVin — ARTTV — Q L RT dlZ?t 3)

The process condition and the nominal values of the parameters are listed in
Table 2.



Table 2 - Process condition and parameter set of the Propylene Chlorination model. The

63

values are based on Biegler and Hughes (1983). The lower and upper bounds of the manipulated

variables and the parameters are used in the economic optimization layer in the ROPA and MPA

cycles.
Variable(symbol) [unit] Lower Nominal Upper
bound Value bound

- Reactor volume (V) [ft3] - 100 -

- Reactor pressure (P) [atm] - 72.28 -

- Heat capacity (C,) [BTU/lIbmol °R] - 35 -

- Heat of reaction 1 (Ah;) [BTU/lbmol] - -4800 -

- Heat of reaction 2 (Ah,) [BTU/Ibmol] - -79200 -

- Heat of reaction 3 (Ahz) [BTU/Ibmol] - -91800 -

- Gas constant (R) [BTU/lbmol °R] - 1.987 -

- Flow of reactant Cl, (Fmaz)[lbmollh] - 25.3532 -
uq Flow of reactant C;Hg (Fiy, C3H6)[Ibmollh] 800 101.4128 1050
u, Reactor inlet temperature (T;;,)[°R] 1000 1300 1400
X4 Number of moles of HCI (Ny¢;)[Ibmol] - 0.1976440 -
Xq Number of moles of Cl, (N¢,)[Ibmol] - 0.0001488 -
X3 Number of moles of C3Hg (Nc,y,)[Ibmol] - 0.6885350 -
Xy Number of moles of C3HsCl (N, c)[Ibmol] - 0.0241817 -
X5 Number of moles of C3H¢Cl; (N, p,c1,)[Ibmol] - 0.0027597 -
Xe Number of moles of C3H,Cl; (N¢,p,c1,)[Ibmol] - 0.0867309 -
X7 Reactor temperature (T)[°R] - 1000 -
P1 A4[Ibmol/h ft* atm?] - 206000 -
P2 B;[°R] - 13600 -
P3 A, [Ibmol/h ft* atm?] - 11.7 -
Pa B,[°R] - 3430 -
Ps As[Ibmol/h ft* atm?] - 4.6e8 -
Pe B;[°R] - 21300 -

It is important to note that since the process dynamic is significantly fast, it is

not desirable in a ROPA implementation which aims at comparing ROPA to the MPA

method. In order to decrease the process dynamic, it is considered that the reactor is

thickly covered in steel with a mass of 10000 Ib.
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5.2 Economic Optimization

The economic optimization aims at optimizing the process economically. The
objective function is the unit profit, @,,,;, and the objective is to maximize this
function. The optimization problem is based on Biegler and Hughes (1983), and it

can be described as in (54).

®ropic = 22.17(AC) + 12.48(DPC) + 10.06(DCP*) (54)

where AC,DPC and DCP* are the product rates for allyl chloride (Cs;HsCl),
dichloropropane (C3HqCl,) and dichloropropene (C;H,Cl), respectively. All the rates

are in Ibmol/h, and the profit has units of $/h.

In the RTO cycle, the economic optimization is a constrained optimization
problem where the set of constraints is composed of the model equations and
operational inequality constraints. For ROPA and MPA, the model equations
represent the plant in steady-state condition, and the operational inequality

constraints are the lower and upper bounds as shown in Table 2.

5.3 Process Simulation

The process simulations are performed using MATLAB, Aspen Plus Dynamics
and Sundials (HINDMARSH et al.,, 2005). In order to simulate a more realistic
process, the system is simulated in Aspen Plus Dynamics in which transient data are
collected as the plant measurements, y,,. Sundials is used to provide the
sensitivities equations that are used in the online estimation step, in the Extended
Kalman filter equations. MATLAB runs the real-time optimization using all of the
given information.

The plant measurements, y, ., are the number of moles of the products
Cs;HsCl and C3HgCl,. A sensor is considered in order to measure these values in the
outlet of the process, and random disturbances were admitted in the system to

simulate a plant with noisy measurements, as shown in (55).
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Ynk = Vi +error.y, .randn() (55)

where y, , is the measurement with noise at time k; y, is its actual value; the error is

equal to 1%; and randn draws a random scalar from the standard normal distribution.

The plant measurements are used in the RTO estimation layers to estimate
the states and parameters in the current time. In the ROPA cycle, the parameters are
estimated using the Extended Kalman filter (EKF) in which sensitivity equations are
considered to obtain the matrixes which are used in the EKF algorithm. On the other
hand, MPA estimates the parameters considering the model adaptation problem
shown in (12). Both sets of estimated parameters for ROPA and MPA methods are
used in the steady-state optimization problem obtaining the decision variables vector
that is sent to the plant closing the RTO cycle, for this case study. A model predictive
control (MPC) can be implemented in the RTO cycle; however, it is not mandatory. If
an MPC layer is considered, the states estimated by the Extended Kalman filter are
used as feedback values.

In the simulations, deterministic disturbances also affect the process. They are
divided into measured and unmeasured disturbances. The measured disturbance
affects the reactor inlet temperature (T;,), and the unmeasured disturbance changes
the nominal values of the parameters. First, the model validation is done considering
a step change of 400°R in the inlet temperature value between the time interval of
3.75 and 12.75 hours and a step change in the nominal parameter values between
18.75 and 26.75 hours. For ROPA and MPA implementations, the step change of
400°R in the inlet temperature value is added between 8 and 11.5 hours.
Subsequently, the reaction parameters change their nominal values shown in Table 2
to [2.060, 13600, 0.00117, 3430, 4.6e3, 21300].

The Extended Kalman filter is used to estimate the parameters and states in
the ROPA cycle and to estimate the states in the MPA algorithm. Its tuning

parameters are used in (21) - (24) and chosen as shown below in (56).

Q = diag([1e°; 1e°% 1e% 1e% 1e72; 1e72;1e79))
QP = diag([1e?°; 0.4e73; 8e?%;0.2¢73; 1%, 0.5e7*]) (56)
R = diag([1e?%; 1e?])
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where Q, the covariance matrix of the process model, is related to the states
(Nucw Neiy» Negug» Neangew Neange, Neguy ety T): R, the measurement noise covariance
matrix, is related to the measured variables (N¢,y ci, Ne,ngc1,): @and QP, the parameter
covariance matrix, corresponds to the parameters (A4, B, 4,, B3, A3, B3). The values of

Q, R and QP are kept constants during the RTO implementations.

In the MPA method, the filter values for the steady-state detection step are
tuned as shown below. Moreover, the critical value for the variance ratio, R,;;, is also
chosen for the case study. The weighting factor for the model adaptation

algorithm, R, is the identity matrix.
A, =1002,0.2],4, =[0.1,0.1], 43 = [0.1,0.1], R.,;; = [4.0,7.0]

where the first and second values of the arrays are related to the component C;H:Cl

and C3HCl,, respectively.

The stationary economic optimization was performed using the fmincon
function in MATLAB for both of the RTO methods. The default algorithm for fmincon,
the interior-point algorithm, was used in the optimization executions. The model

summary for this process can be described as follows:

X = [NHCI’ NClz' NC3H6’ NC3H5Cl' NC3H6C12’ NC3H4C[2' T]T
Yy = [NC3H5CI'NC3H6612]T (97)
u = [F;

T
n C3H6]

p= [P1:P2'P3:P4:P5'P6]T = [A1'B1:A2:BZ'A3'B3]T

where x is the vector of the complete system model states, y is the vector of the
measurements, u is the vector of the decision variable, and p is the vector of the

adjustable parameters.



5.4 Results and discussion

The real plant is represented by the simulation performed in Aspen Plus
Dynamics. The Propylene Chlorination process is simulated considering a gas-phase
CSTR reactor. The process model validation is the first analysis in the considered
RTO implementations. As it is known that the model must accurately represent the
real process, the process model validation is an important task in the case study. The
process simulation considers all disturbances and tuning parameters previously
described in Section 5.3, and the plant data are collected in order to compare them to

the model in MATLAB. Figure 17 and Figure 18 show the state profiles for the

studied process considering a time horizon of 35 hours.
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Figure 17 - Propylene Chlorination process model validation. The number of moles of each
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Figure 18 - Propylene Chlorination process model validation for the reactor temperature
(Source: own elaboration).

The process model validation results show that the process dynamics can be
properly represented by the proposed model. Although there is a bias between 18
and 27 hours in the fifth state profile shown in Figure 17, it is still considered that the
model can satisfactorily represent the case study. This gap is due to the fact that
there are differences between the Aspen Plus Dynamics model and the proposed
model during the simulations.

The second analysis addresses the ROPA and MPA state estimation. Both of
the RTO implementations use the Extended Kalman filter to estimate the states.
Since the optimal decision predictions for ROPA and MPA are different, the state
profiles are presented separately. Figure 19, Figure 20, Figure 21 and Figure 22
show the state estimation for ROPA and MPA. In the MPA cycle, only the states are
estimated by the EKF while the states as well as the parameters are estimated by the
EKF in the ROPA method. It can be seen that the estimated and actual state profiles
are almost overlapped for both cases. It means that the filter uses a well tuned state
covariance matrix, and it is working properly. As explained before, the estimated
states could be used as feedback for the Model Predictive Control (MPC)

implementation; however it is not done in the case study. If these state values are
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properly predicted, the MPC performance is satisfactory since it is intrinsically
connected with the estimation quality (MATIAS and LE ROUX, 2018).
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Figure 19 - State estimation for ROPA implementation in the Propylene Chlorination process
using the Extended Kalman filter as the online estimator (Source: own elaboration).
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Figure 20 - Reactor temperature estimation for ROPA implementation in the Propylene
Chlorination process using the Extended Kalman filter as the online estimator (Source: own
elaboration).
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Figure 21 - State estimation for MPA implementation in the Propylene Chlorination process
using the Extended Kalman filter as the online estimator (Source: own elaboration).
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Figure 22 - Reactor temperature estimation for MPA implementation in the Propylene
Chlorination process using the Extended Kalman filter as the online estimator (Source: own

elaboration).
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Regarding the parameter estimation, the MPA method uses the model
adaptation problem shown in (12) while ROPA uses the Extended Kalman filter to
estimate the adjustable parameters. The parameter disturbances that affect the
system are the same for both of the methods, and the predicted parameter values

are compared to the actual plant values as shown in Figure 23.
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Figure 23 - Parameter estimation for ROPA and MPA implementations in the Propylene
Chlorination process (Source: own elaboration).

As explained before, the parameter estimates for ROPA method are predicted

by the EKF, and they are much closer to the actual nominal parameters (plant
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values) than are those for the MPA implementation. This is due to the fact that if the
system is perturbed, the ROPA method does not need to wait for the next steady-
state condition to run the economic optimization cycle. On the other hand, the MPA
method needs to detect the new SS point to optimize the process again what
addresses the main disadvantage of the standard RTO method. It can be seen that
after the disturbance in the nominal parameter values between 15 and 20 hours, the
MPA method takes around 1 hour to reach the actual plant value while the ROPA
methodology follows approximately the real value. As the EKF is used to estimate the
parameter in the ROPA cycle, the results show that the parameter covariance matrix
is well tuned for the case study.

In order to assess a more reliable performance result of both of the RTO
implementations, it is important to address the economic and optimal decisions of the
closed-loop optimization. Figure 24 and Figure 25 show the overall economic

performance (the instantaneous profit) and the decision variables result, respectively.
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Figure 24 - Comparison between the instantaneous profit of the ROPA and MPA methods for
the Propylene Chlorination process (Source: own elaboration).

According to the economic result shown in Figure 24, ROPA method can run

the optimization cycle continually independently of any plant condition. Moreover,
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ROPA is able to respond to both of the disturbances affecting the system. As MPA
waits for the next steady-state value to optimize the process after a disturbance, the
SS wait delay can again be seen in the economic result. Between 8 and 11.5 hours
and 15 and 20 hours, there is a bias between the actual plant value and the value
obtained by MPA. It is due to the SS detection step since the MPA estimates are
updated only after the disturbances ceases what once more highlights the SS wait

delay issue of the classical RTO method in the economic performance result.
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Figure 25 - Comparison between the plant optimal decision and the inputs calculated by
ROPA and MPA implementations in the Propylene Chlorination process (Source: own elaboration).

The analysis of the decision variable in Figure 25 calculated by both of the
methods can also show the ROPA benefits in the RTO cycle. The decision variable
for the case study is the inlet molar flow rate of the reagent C;H;. The ROPA
responses move towards the optimal plant value while the MPA results drift from the
actual plant value during the RTO executions. As the parameter estimation in the
MPA method is not reliable as in the ROPA, there is a considerable amount of
parametric uncertainties. Since these unreliable parameter values are used to update
the model in the SS optimization step, the plant is driven far from the optimality in the

MPA implementation.
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The application of the Real-time Optimization with Persistent Adaptation
(ROPA) and the Model Parameter Adaptation (MPA) methods to the Propylene
Chlorination process provides results that emphasize the benefits of using online
estimator in the RTO cycle. ROPA uses transient data to update the model that is
used in the stationary optimization layer while MPA uses only steady-state points.
The main advantage of ROPA is that the detection of the SS condition is not
necessary avoiding the SS wait delay issue. Thus, the frequency of the predictions
and optimization executions enhances when compared to the MPA, hence ROPA
can continually predict the states/parameters and optimize the plant in any plant
condition, even under disturbances. The steady-state wait is not an issue when an
online estimator is used to predict the parameters in the optimization cycle.

In the case study of the Propylene Chlorination process, it can be seen that
the MPA and ROPA responses are similar. It is due to the fact that the process is a
gas-phase system, and its dynamics is fast. The ROPA benefits can be seen better
when the method is applied in a process with a slow dynamics in which after a
disturbance, the system takes a significant time to reach the next steady-state
operation point emphasizing the greatest advantage of ROPA implementation. When
the dynamics is slow, the difference between MPA and ROPA is greater and more
notable. Otherwise, the RTO implementations results are not very different from each

other as in the studied process.

5.5 Conclusions

The Propylene Chlorination process is used as the representation of a plant in
which two RTO methodologies are implemented: the Real-time Optimization with
Persistent Adaptation (ROPA) and the Model Parameter Adaptation (MPA). The main
goal of this application is to compare both of the methods showing the benefits of
using the online estimation in the RTO cycle. In the ROPA implementation, transient
data are used to estimate the parameters which are used in the stationary
optimization step. On the other hand, MPA starts the optimization cycle with the
detection of the steady-state condition and estimates the parameter values by the
model adaptation problem obtaining the adjustable parameters that are used in the
SS optimization layer. Thus, if the process is affected by a disturbance, MPA cannot

run the RTO cycle until the system reaches the new SS condition promoting a delay
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in the method’s responses. ROPA runs the economic optimization independently of
the plant condition what decreases the period between two sequential optimization
executions since it avoids the steady-state wait.

The main contribution of this case study is the application of a new RTO
method (ROPA) which does not change significantly the formulation of the standard
RTO method (MPA) aiming at exposing the benefits of using this framework.
Moreover, the simulation of the plant in the software Aspen Plus Dynamics, a
commercial dynamic simulator, provides the use of a more realistic RTO
implementation, being optimized by an external MPA and ROPA algorithm in
MATLAB. The use of dynamic data to update the model during the optimization runs
brings a great advantage. Generally, the detection of the steady-state condition is a
problematic task in real processes in industries. It is because even meeting the
methods’ criteria that analyze if the process has reached the SS point, it can be hard
to assure the process is really at steady-state. The results of the considered case
study show that the integration of an online estimator can tackle the SS wait issue in
the RTO cycle.

As explained before, ROPA avoids the steady-state detection due to the use
of transient information. Hence, ROPA is able to run the optimization cycle even
under disturbances what is the main benefit of the method. These dynamic
measurements are used to estimate the parameters by an online estimator. The
target of the ROPA is to continuously improve the RTO response obtaining the
setpoints which reach the stationary plant optimum in the current time. Furthermore,
ROPA is a hybrid RTO method that is between the dynamic and static RTO
methodologies bringing advantage of decreasing the computational effort related to
the dynamic RTO and avoiding the SS wait delay issue related to the static RTO, as
explained before.

The application of ROPA to the Propylene Chlorination process brings results
of the main benefits of using this methodology in the RTO executions. Moreover,
applications of ROPA to more complex processes can handle with a plant-wide

operation trying to tackle the standard RTO method’s issues.
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6 CONCLUDING REMARKS AND FUTURE WORK RECOMMENDATIONS

The Real-time Optimization with Persistent Adaptation (ROPA) method is
applied to two different case studies in this thesis: (1) the Williams-Otto reactor; (2)
the Propylene Chlorination process. ROPA is proposed by Matias and Le Roux
(2018), and it is based on the idea of using dynamic data in the RTO cycle aiming at
optimizing the plant economically. As the formulation of the standard RTO
methodology does not change significantly in this new framework, ROPA is attractive
for both the academia and the industry.

The main advantage of ROPA method is the use of transient information to
update the model in the stationary optimization what eliminates the detection of the
steady-state step tackling the SS wait issue related to the classical RTO method, the
Model Parameter Adaptation (MPA). Even treating dynamic data in a SS
optimization, the results of both applications show that ROPA can continuously
improve the setpoints reaching the stationary plant optimum. In both of the case
studies, the Model Parameter Adaptation method (MPA) is also applied to the
processes in order to compare the RTO methods.

A future work that can be recommended is the use of Model Predictive Control
(MPC) implementation in both the case studies. Considering that the steady-state
optimization layer is followed by the MPC layer, the optimal setpoints found in the
RTO cycle are sent to the controller which implements the decision variables in the
plant. The complete system considering the RTO and MPC layers for ROPA and
MPA methods is represented by Figure 4.
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