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Abstract 

 

Recently, there has been an increasing growth in the optimization processes 
in the industrial area. The reduction of costs, improvement in the quality of final 
products and minimization of the environmental risks are important issues that 
companies must take into consideration. Thus, the development of optimization tools 
to efficiently identify problems has become suitable. In this context, real-time 
optimization (RTO) methodology is widely used in industrial area to optimize a plant 
economically. This is a well-established approach to create a link between a 
regulatory control and the economical optimization of a process under control. There 
are several RTO methods which can be used in the optimization cycle. The standard 
RTO method, called Model Parameter Adaptation (MPA), is one of the most applied 
in industry. Albeit a good method, there are some problems related to the MPA as 
well as other RTO methods, such as the use of steady-state (SS) data to update SS 
models to a dynamic plant, the delay in the detection of the SS condition in the 
system to start the optimization cycle, and the difficulty to model a complete unit 
since those methods require it. Real-time Optimization with Persistent Adaptation 
(ROPA) is a new methodology which tackles those issues. ROPA uses transient data 
to update the model aiming to optimize the plant. Thus, there is no need to wait for 
the SS condition because the dynamic plant is not updated with stationary 
information. Aiming to verify the advantages of this new method, this work presents 
the results of the ROPA application to two chemical processes. All simulations are 
performed using MATLAB, the dynamic model and the sensitivity equations are 
solved by SundialsTB. For the first case study, the Williams-Otto reactor, random and 
deterministic disturbances are considered in the system in order to simulate a real 
plant. In addition, the Extended Kalman filter (EKF) is used as the online estimator to 
obtain the estimated parameters and states in the current time. Regarding the 
Williams-Otto reactor study, the state estimate results show that the filter works 
consistently, and the state covariance matrix is satisfactorily tuned. Additionally, the 
parameter estimation shows that ROPA is able to respond to the disturbances 
occurrence reproducing the actual plant parameter profile. ROPA runs the economic 
optimization continuously independently of the plant condition. A Monte Carlo 
analysis of benefits in applying ROPA method in the RTO cycle shows that the 
method is suitable to track the plant optimum. Regarding the second case study, the 
Propylene Chlorination process simulated in a commercial dynamic simulator is 
optimized by an external ROPA implemented in MATLAB. In this case, ROPA can 
also reach the stationary optimum, and the filter works properly. However, the MPA 
and ROPA results are similar because the process is in a gas-phase with fast 
dynamics. Even in this situation, it can be seen that MPA still has the steady-state 
delay issue.  

 
Keywords: Real-time Optimization (RTO). Transient data. Dynamic plant. Extended 
Kalman filter (EKF). Online estimation.    



 
 

Resumo 

 
Recentemente, houve um crescimento crescente nos processos de 

otimização na área industrial. A redução de custos, a melhoria na qualidade dos 
produtos finais e a minimização dos riscos ambientais são questões importantes que 
as empresas devem se preocupar. Assim, o desenvolvimento de ferramentas de 
otimização tornou-se adequado. Neste contexto, a metodologia de otimização em 
tempo real (RTO) é amplamente utilizada na indústria para otimizar uma planta 
economicamente. Essa é uma abordagem bem estabelecida para criar um vínculo 
entre um controle regulatório e a otimização econômica de um processo. O método 
de RTO clássico, também chamado de Model Parameter Adaptation (MPA), é um 
dos mais aplicados na indústria. Apesar de ser um bom método, existem alguns 
problemas relacionados à metodologia MPA e aos outros métodos de RTO, como o 
uso de dados de estado estacionário (EE) para atualizar uma planta dinâmica, a 
demora na detecção da condição de EE no sistema para iniciar o ciclo de 
otimização, e a dificuldade de modelar uma unidade completa, uma vez que estes 
métodos exigem isso. A otimização em tempo real com adaptação persistente 
(ROPA) é uma nova metodologia que aborda esses problemas. O método utiliza 
dados transientes para atualizar o modelo visando otimizar a planta. Assim, não há 
necessidade de esperar pela condição de EE, e a planta dinâmica não é atualizada 
com informações estacionárias. Com o objetivo de verificar as vantagens deste novo 
método, este trabalho apresenta os resultados da aplicação do ROPA em dois 
processos químicos. Todas as simulações são realizadas no software MATLAB, e o 
modelo dinâmico e as equações de sensibilidade são resolvidos pelo SundialsTB. 
No primeiro Estudo de Caso, o reator de Williams-Otto, perturbações randômicas e 
determinísticas são consideradas no sistema para simular uma planta real. O filtro de 
Kalman Estendido (EKF) é usado como o estimador online para obter os parâmetros 
e estados estimados no tempo atual. Em relação ao estudo do reator de Williams-
Otto, os resultados da estimativa dos estados mostram que o filtro funciona de forma 
consistente e a matriz de covariância de estado é ajustada satisfatoriamente. Além 
disso, a estimativa de parâmetros mostra que o método ROPA é capaz de responder 
à ocorrência de distúrbios reproduzindo o perfil real dos parâmetros da planta. O 
ROPA executa a otimização econômica continuamente independentemente da 
condição da planta. Uma análise Monte Carlo dos benefícios na aplicação do 
método ROPA no ciclo RTO mostra que o método é adequado para obter o ótimo da 
planta. No segundo Estudo de Caso, o processo é simulado em um simulador 
dinâmico comercial e é otimizado por um ROPA externo implementado no MATLAB. 
O ROPA também pode atingir o ótimo estacionário da planta e o filtro funciona 
corretamente. No entanto, os resultados MPA e ROPA são semelhantes porque o 
processo está na fase gasosa com uma dinâmica rápida. Mesmo nesta situação, 
pode-se ver que o MPA ainda lida com o problema de atraso no estado estacionário. 
 
Palavras-chave: Otimização em Tempo Real (RTO). Dados transientes. Planta 
dinâmica. Filtro de Kalman Estendido. Estimativa em linha. 
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1 INTRODUCTION AND LITERATURE REVIEW  

 

This Chapter discusses the real-time optimization (RTO) applied to processes, 

and it describes some RTO methods emphasizing the standard method (Model 

Parameter Adaptation – MPA) which is the most used method in industrial 

applications. Moreover, the common issues and challenges associated with this 

methodology are presented, and other kinds of methods which tackle the RTO 

problems are shown. The Real-time Optimization with Persistent Adaptation (ROPA) 

method is cited as a new option to get better solutions in the optimization cycle. 

 

1.1  Real-time optimization – RTO 

 

 More recently, there has been an increasing pressure to improve the quality in 

the final products, reduce costs and minimize the environmental risks in the industrial 

area, hence the development of optimization tools to efficiently identify problems has 

become suitable. Many factors have contributed to develop these optimization tools. 

The high technology in the computer area and the power of computers have allowed 

the application of mathematical models. Moreover, improved models have been 

developed to represent chemical plants, and recently software for optimization has 

provided new and better ways to solve problems (GROSSMANN and BIEGLER, 

1995). 

In general, process optimization can be understood as a procedure involving 

five main steps: updating model parameters; determining process constraints; 

thermodynamics, equilibrium and kinetic relationships (the process models); feed and 

product values, and the control system.  The success of the optimization process 

depends on the relative accuracy of these respective steps, and its improvements will 

enhance the process operation. Otherwise, inaccuracy in even one of these tasks 

can decrease the profitability of plant operation (CUTLER; PERRY, 1983). 

 
A well-established approach to create a link between a regulatory control and 

a business optimization of a process under control is called real-time optimization - 

RTO (ENGELL, 2007). The RTO methodology was made possible for the first time in 

the mid to late 1980s, due to several developments, such as: model predictive control 

technology; open equation modeling, computer processing capability (speed, 
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memory, affordable cost), and large scale, and sparse matrix SQP solvers. This 

methodology uses a rigorous steady-state model of the process which implies the 

use of multi-component mass and energy balances, vapor-liquid equilibrium 

expressions, and reaction kinetics. However, other expressions that are not easily 

modeled can be required to describe some effects in the process (DARBY et al., 

2011). There are many applications of real-time optimization in the literature, as: in a 

high-purity distillation column (DIEHL et al., 2002), in a SO2 conversion process (JIA 

et al., 2017), in a fluid catalytic cracking unit (MATIAS and LE ROUX, 2018), in a fed-

batch reactor for penicillin production (AHMAD; GAO; ENGELL, 2018) and in a 

reactor (PAPASAVVAS et al., 2019). 

Several methods can be used in the RTO methodology. Some of them are 

shown and studied in Graciano (2015): the Integrated System Optimization and 

Parameter Estimation (ISOPE), the Modifier Adaptation and the Simple Central 

Force Optimization (SCFO) methods. Each method tries to solve the economic-

based optimization problem using different assumptions. For instance, the ISOPE 

method handles the structural plant-model mismatch adding a term in the objective 

function coming from the parameter estimation step. All of these RTO algorithms 

have been developed in the literature, and they aim to converge to the real optimum 

point. 

The Model Parameter Adaptation (MPA) method is the most used method in 

industry. There are three main steps in the MPA optimization cycle: steady-state 

detection, model adaptation and steady-state optimization. The SS detection is a 

difficult task when handling with dynamic plants. The plant data need to pass through 

a statistical algorithm in which the SS condition is established when all of the 

algorithm requirements are respected. Since a dynamic system is subjected to 

disturbances, the SS operating point is not stable. Moreover, when there are 

disturbances in the process, the optimization algorithm needs to wait until the new 

SS point is settled to run the optimization cycle again. These issues are discussed in 

the following Section. 

 

1.2 Problems related to the RTO methodology 

 

There is a general hierarchy for control and decision making in a plant 

operation. The main steps of this process are: planning, scheduling, optimization, 
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advanced control and regulatory control (ZANIN, 2001), as shown in Figure 1. The 

integration of these steps can be a problem in the process of control and optimization 

in a plant. The generated information in each layer needs to be accurately used in 

the next steps. The coordination between the tasks can avoid conflict and 

inconsistency (MATIAS and LE ROUX, 2018).  

 
Figure 1 - Plant hierarchy (Source: Adapted from ZANIN, 2001). 

 
Updating a steady-state model to a dynamic plant is another concern in the 

RTO methods. In most of the applications, steady-state models are used for online 

process monitoring, product property prediction, online optimization, etc. In an online 

optimization, the plant data are used to tune these models from time to time to be 

able to represent the dynamic process using the static model. The starting step to 

optimize a plant using a RTO method is the steady-state identification, and a total 

disorder in the optimization process can appear if the real steady-state is not 

correctly detected (BHAT; SARAF, 2004). The steady-state periods detection 

depends on the process and on the disturbances that affect the process operation, 

and there are cases in which steady-state points are nonexistent. The more complex 

the process, the more challenging it is to detect if the plant has reached steady-state.  

It is important to use right SS values to have a precise optimization process (MATIAS 

and LE ROUX, 2018). 

The steady-state wait is another problem in the RTO methods. After the 

steady-state point is well-established in a given time, the model will be updated, and 

the new optimal values will be sent to the plant. However, there is a specific time in 

the implementation of the RTO algorithm in each optimization cycle, and there is no 

guarantee that the previously updated model is still in phase with the current plant 
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operation. It may due to some new disturbances affecting the process. Moreover, the 

steady-state detection takes a long time because complex criteria may need to be 

checked to determine that the unit has reached steady-state (FRIEDMAN, 1995). 

Modeling of the complete unit is practically impossible, so it is more common 

to have the optimization of a single unit in industrial applications. The local optimizers 

cover only a local subset of the problem. Although the solution for this problem 

cannot encompass the whole process, this is a way to try to optimize the plant since 

some units will never have good complete models (FRIEDMAN, 1995). It is possible 

to have a single RTO implementation to a specific section of the plant when dealing 

with steady-state optimization, but it is necessary to specify the prices and 

composition of the intermediary streams which is a challenge to the optimization 

process (MATIAS and LE ROUX, 2018). 

 

1.3 Trying to tackle RTO problems 

 

As discussed previously, the standard RTO method (MPA) starts with the 

steady-state detection module which decides if the plant has reached steady-state, 

based on statistical criteria. Afterwards, the SS point goes through the parameter 

estimation block to update the model (GRACIANO, 2015). Thus, the problem related 

to the steady-state wait is an issue in this case. Also, as mentioned before, it is not 

possible to have the optimization of an isolated unit when using traditional RTO 

methods (FRIEDMAN, 1995). Hereby, there are some RTO methods in the literature 

which bring solutions to avoid these problems.  

Recently, in addition to the static optimization, there have been developments 

in the use of Dynamic RTO (DRTO) which use a dynamic model instead of SS 

model. Although this type of method may eliminate requirements of the steady-state 

detection in the optimization cycle, the solution for large-scale nonlinear dynamic 

systems is a challenge for RTO implementations, even with the power technology in 

computer area. To try to address the computational challenges, a “Hybrid RTO” 

(HRTO) which uses a dynamic model in the model adaptation layer and SS model in 

the business optimization step can also be considered (KRISHNAMOORTHYA; 

FOSS; SKOGESTAD, 2018). Figure 2 shows a general scheme of the HRTO.  



24 
 

 
Figure 2 - General HRTO scheme (Source: KRISHNAMOORTHYA; FOSS; SKOGESTAD, 2018). 

In a general HRTO implementation, the process data is sent to the state and 

parameter estimator step which uses a dynamic model (transient data) to obtain the 

states (𝑥ො௞)  and the estimated parameters ൫𝛩෠௞൯. These set of parameters are used in 

the static economical optimization which generates the optimum of the plant 

(𝑦௦௣) that optimizes the objective function in the current time.  

Real-time Optimization with Persistent Adaptation (ROPA) method is a new 

methodology in the optimization area, and it brings a different way to treat the 

problem. The method aims at tackling the problems associated with classical RTO 

methods and getting better solutions for the problem. ROPA is described and 

compared to MPA method in Chapter 2. 

 

1.4 Motivation and objectives 

 

Recently, there has been an increasing competition amongst industries, and 

the interest in the economic optimization of processes has becoming more crucial. In 

this context, the study and development of real-time optimization (RTO) tools overlap 

this interest. Commonly, RTO methodology uses nonlinear steady-state process 

models to compute the optimal setpoints in order to optimize the process. It can be 

due to two reasons: the economic operation process is often done at the steady-state 

condition, and the control inputs are provided as setpoints and are kept constant for a 

long period of time what makes the implementation easier. Moreover, constraints, 

such as process and equipment constraints, storage and capacity constraints and 
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product quality constraints are also considered in the RTO cycle 

(KRISHNAMOORTHYA; FOSS; SKOGESTAD, 2018). However, this classical RTO 

methodology faces some challenges, as mentioned in Section 1.2, such as the 

steady-state wait and the update of a steady-state model to a dynamic plant.  

Different RTO approaches have been developed to reach a more profitable 

process, and they aim at tackling the standard RTO issues. The Dynamic RTO 

(DRTO) and Hybrid RTO (HRTO) methods which were previously mentioned in 

Section 1.3 are examples of these approaches. In addition, Real-time Optimization 

with Persistent Adaptation (ROPA) is also a method that handles with the RTO 

challenges aiming to have more efficient optimization processes. According to Darby 

et al. (2011), a fundamental limiting factor of the RTO methodology is the steady-

state wait since the optimization process occurs at lower frequencies because the 

process needs to be at the SS condition. Once most of the processes are subjected 

to disturbances, they are often at a non-steady state condition, so the classical RTO 

algorithm needs to wait for the next SS point to start the calculations what spends 

more time in the optimization process. ROPA brings an alternative for this issue since 

it does not require the SS condition to start the optimization cycle. Hence, the 

increase of the optimization process frequency enhances the prediction and 

disturbances detection capacity.  

There have been many studies in the RTO area with the objective of improving 

the RTO method algorithm in which aims to converge to the plant true optimum even 

with uncertainties due to disturbances. The RTO application to processes can 

provide important information to better understand the process and the best way the 

process needs to be modulated in order to reach a more profitable operation.  

Given the advantages of the ROPA method, the main contribution of this 

project is the application of ROPA method to processes aiming to obtain better 

solutions in the optimization cycle. The results of these applications can provide 

evidences that ROPA converges to the actual plant optimum even using transient 

data in a steady-state optimization. Due to the use of dynamic information, the SS 

wait issue is not a problem anymore, and the SS detection layer is not necessary in 

the optimization cycle, as in the standard RTO method. Two case studies are used to 

identify these ROPA benefits: the Williams-Otto reactor and the Propylene 

Chlorination process. In the first case study, the ROPA implementation in the 

Williams-Otto reactor, the main objective is to reproduce the ROPA and MPA 
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algorithms in MATLAB and show that ROPA can reach the plant stationary optimum 

even subjected to disturbances. The results also show that the Extended Kalman 

filter works properly. Moreover, in the first case study, Monte Carlo analyses are used 

to obtain more information about the economic performance of both methods in 

different scenarios. Regarding the second case study, the software Aspen Plus 

Dynamics is used to simulate the process. The propylene chlorination process is 

considered as the plant. The main contribution of this second case study is that the 

process simulated in a commercial dynamic simulator is optimized by an external 

MPA and ROPA implemented in MATLAB what represents a more realistic RTO 

implementation. In this case, ROPA also reaches the stationary optimum even under 

disturbances, and the filter also works correctly with its tuning parameters in the 

second case study. However, ROPA and MPA results are similar since the case 

study is a gas-phase process with fast dynamics. Therefore, the ROPA benefits 

cannot be seen as when the method is applied to a process with low dynamics, as in 

liquid phases.  

 

1.5 Thesis overview 

 

The thesis is organized as follows. First, in Chapter 2, Model Parameter 

Adaptation (MPA) and Real-time Optimization with Persistent Adaptation (ROPA) 

methods are described and compared. In Chapter 3, mathematical preliminaries are 

described in order to explain how MPA and ROPA methods work. Chapter 4 focus on 

the Williams-Otto reactor study which applies the MPA and ROPA methods to 

compare them. Chapter 5 presents the MPA and ROPA implementations in the 

Propylene Chlorination process. Finally, Chapter 6 concludes the thesis and 

proposes future work recommendations.  

 

1.6 Publication associated with this project  

 

  2019 - Process Systems Engineering (PSE) – Rio de Janeiro/Brazil. 

CARNEIRO A.A.B. and Le ROUX G.A.C. Poster Session: Application of Real-

time Optimization with Persistent Parameter Adaptation (ROPA) to a 

Continuous Stirred Tank reactor (CSTR) 
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2 MODEL PARAMETER ADAPTATION (MPA) AND REAL-TIME OPTIMIZATION 

WITH PERSISTENT ADAPTATION (ROPA) METHODS 

 

This Chapter presents the classical and the new RTO methods which are 

called Model Parameter Adaptation (MPA) and Real-time Optimization with 

Persistent Adaptation (ROPA), respectively. It also compares them in order to show 

the main differences between both of the methods.  

 

2.1 Model Parameter Adaptation (MPA): the standard RTO method 

 

The RTO methodology is one of the most applied optimization in industry 

(DARBY et al., 2011). The classical RTO method which is called Model Parameter 

Adaptation (MPA) assumes that model and disturbance transients are neglected if 

the optimization sampling time is long enough that the process can be indicated as a 

process at the steady-state point (ADETOLA; GUAY, 2010). The three main steps of 

this method are steady-state detection, parameter estimation, and economic 

optimization, and these steps are shown in Figure 3 below.  

 
Figure 3 - Classical RTO - Model Parameter Adaptation – (MPA) scheme (Source: GRACIANO, 2015). 

The first task is to analyze the plant data to detect if the process is 

(reasonably) steady. Subsequently, in some cases, the stationary point can go 

through the data reconciliation and gross error detection stage. In the parameter 

estimation step, the steady-state data are used to update some key parameters of 

the model such that it can represent the plant in the actual condition. The third step 

uses the fitted (adjusted) model to find a new optimal operation point which becomes 

the new set point for the control system (MENDOZA et al., 2013).  
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The detection of the steady-state (SS) is an important step, and it needs to be 

carefully done. Real-time optimization uses a rigorous steady-state model, so the 

process data need to be collected when the process reaches the SS condition. 

Otherwise, erroneous parameters will be used, and the aiming to optimize the system 

can fail. Furthermore, the application of the steady-state model to the real plant 

should be implemented with the right parameter values to guarantee meaningful 

results. Different methods have been developed to detect the steady-state points. For 

instance, Jiang et al. (2003) present a method based on wavelet transform that can 

be used in continuous processes, and an application of this method was done to 

crude oil unit and pulp mill recausticizing plant. Also, Rincón, Le Roux and Lima 

(2015) show an approach for steady-state identification which is a method based on 

the auto-regressive model with exogenous inputs (ARX), and they compare this 

method to other three methods: F-like test, wavelet transform and a polynomial-

based approach. The method which will be used to detect the steady-state point in a 

RTO implementation will be chosen according to the process characteristics. 

After the steady-state condition is established, the first optimization layer in the 

classical RTO methodology (the parameter estimation) is done. This step uses the 

plant information, and the best values of parameters that represent the current 

operating point are found. The economic optimization step, the second optimization 

layer, uses the updated rigorous steady-state model to optimize the plant 

economically. It is more common to have the profit or the cost of the operation as the 

business function (QUELHAS; JESUS; PINTO, 2013). 

Between the steady-state detection and the parameter estimation layers there 

is the data reconciliation and gross error detection block. In this step, the process 

data are submitted to gross error detection aiming to remove errors from instrument 

malfunction. Afterwards, the reconciliation is done to correct the model inputs and 

outputs and to adjust the measurements, satisfying the material and/or energy 

balances. The data reconciliation is formulated as an optimization problem which 

minimizes the difference between measured variables and the estimated model 

variables (SCHLADT; HU, 2007). 
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2.2 Real-time Optimization with Persistent Adaptation (ROPA) 

 

The Real-time Optimization with Persistent Adaptation (ROPA) method was 

developed by Matias and Le Roux (2018) to tackle some problems related to the 

standard RTO methodology. The method integrates online parameter estimation in 

the optimization cycle using transient data via online estimators. Hence, ROPA 

avoids the inherent steady-state wait and the use of SS data in a dynamic plant. After 

the parameter estimation is done, the parameter values are used to calculate the 

economic optimum set points for the plant as in the other RTO methods. ROPA 

brings an intermediary solution between static and dynamic optimization, and it is 

also a possible key for decoupling the estimation problem aiming to optimize the 

entire plant.  

In Matias and Le Roux (2018), ROPA was applied to three simulation case 

studies: the Williams-Otto reactor, a Fluid Catalytic Cracking unit (FCC) and a 

process composed of two stages. In the Williams-Otto plant and the FCC unit, the 

objective was to show that when online estimators using transient data are used to 

update the steady-state model in a continuous optimization, the computed solution 

tends to the SS optimum. Thus, the problem related to the SS wait could be avoided 

when using ROPA method. In both cases, ROPA was compared to MPA method, 

and there were benefits of using ROPA method in the optimization cycle. In the third 

case study, ROPA was applied in a process composed of two stages represented by 

a distillation column and a reactor. The aim was to show that ROPA can decouple 

the estimation problem to obtain the plant-wide optimum. The results of this case 

showed that ROPA is able to drive the complete system to the optimal plant-wide 

steady-state.  

 

2.3 Comparison between MPA and ROPA methods 

 

As mentioned before, MPA is the standard RTO approach, and it deals with 

the steady-state wait problem. The detection of a SS point is a difficult task in the 

optimization of a plant. Many commercial RTO software use either statistical or 

heuristic methods or both to verify if the plant has reached the stationary point. The 

detection of SS is determined regarding a tolerance specified by the user, and it is 

detected when all the measurements are within this value. If the tolerance is not 
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specified within proper evaluation, transient data might be used erroneously in the 

SS model. Clearly, if transient data has been used in static models, there may be 

estimation errors in the optimization cycle (KRISHNAMOORTHYA; FOSS; 

SKOGESTAD, 2018).  

The main difference between MPA and the new method ROPA is the use of 

different types of models in the parameter estimation layer. MPA uses a steady-state 

model, and ROPA uses a dynamic model. Figure 4 compares MPA to ROPA. 

 
Figure 4 - Comparison between MPA and ROPA methods (Source: MATIAS and LE ROUX, 2018). 

A valuable advantage of ROPA method is that the detection of the steady-

state is not necessary since the approach uses transient data to update the model in 

the current point. Online estimators are used to estimate the parameters in the 

optimization cycle, such as extended Kalman filter and reduced extended Kalman 

filter. The online estimator is chosen depending on the model characteristics, and it 

estimates the states and the parameters at each sample time. 
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3 MATHEMATICAL FUNDAMENTALS FOR REAL-TIME OPTIMIZATION 

 

This Chapter introduces the mathematical preliminaries to solve an 

optimization problem using real-time optimization methods. First, the introduction of 

useful information about the process (used models and notation) is given. Secondly, 

a general nonlinear optimization problem is shown and explained. Lastly, the MPA 

and ROPA methodologies are detailed mathematically.  

 

3.1 The process 

 

The equations and notation for each studied process is based on Matias and 

Le Roux (2018). The plant is represented by the following steady-state (SS) input-

output mapping: 

 

𝒚௣,௞൫𝒖௞, 𝒅௣,௞ , 𝜺௣,௞൯ ∈ ℝ௡೤                                                                   (1) 

 

in which 𝒖௞ ∈ ℝ௡ೠ  are the system inputs, 𝒅௣,௞ ∈ ℝ௡೏ are the deterministic 

disturbances, and 𝜺௣,௞ ∈ ℝ௡೙ the random disturbances. The subscript 𝑘 indicates the 

variable at time 𝒕௞ assuming a zero-order holder over the interval [𝑡௞ , 𝑡௞ାଵ). 

 

The steady-state model is represented by (2) and (3): 

 

𝟎 = 𝒇௦௦(𝒙, 𝒖, 𝒑)                                                                                                           (2) 

 

𝒚 = 𝒉(𝒙, 𝒑) + 𝒗௦௦                                                                          (3) 

 

where 𝒙 ∈ ℝ௡ೣ  are the model state variables and 𝒑 ∈ ℝ௡೛ is the set of parameters. 

The subscript 𝑠𝑠 is associated with SS, and the lack of time subscript indicates 

steady-state values. The steady-state function 𝒇௦௦ is nonlinear. 

 

The dynamic model, with subscript 𝑑𝑦𝑛, is represented by (4) and (5): 

 

𝒙௞ାଵ = 𝒇ௗ௬௡(𝒙௞ , 𝒖௞, 𝒑௞) + 𝒘௞                                                  (4)   
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 𝒚௞ = 𝒉(𝒙௞ , 𝒖௞) + 𝒗௞                                                             (5) 

                                                       

where 𝒘௞ and 𝒗௞ are the process and measurement noises. Both are modeled as 

white-Gaussian random noises with zero mean and constant covariance matrices 

𝑸 ∈ ℝ௡ೣ,௡ೣ and 𝑹 ∈ ℝ௡೤,௡೤, respectively. The state transition function  𝒇ௗ௬௡(𝒙௞ , 𝒖௞, 𝒑௞) 

is also a mapping over the interval [𝑡௞ , 𝑡௞ାଵ), and it represents the solution of the 

differential model during the period. 𝒇ௗ௬௡ is assumed to be at least once differentiable 

in all points in the studied range, and it has the same dimension and states as 𝒇௦௦.  

 

3.2 General nonlinear optimization problem 

 

A general nonlinear optimization problem can be represented by the following 

problem (6) considered in Bazaraa; Sherali; Shetty, 2006: 

 

𝑚𝑖𝑛 𝒇(𝒙) 

 

𝑠. 𝑡.  ൝
𝒈𝒊(𝒙) ≤ 𝟎      𝑓𝑜𝑟 𝑖 = 1, … , 𝑚

𝒉𝒊(𝒙) = 𝟎     𝑓𝑜𝑟 𝑖 = 1, … , 𝑙
𝒙 ∈ 𝑋

                           (6) 

 

where 𝒇(𝒙) is the objective function for the problem, and it is a nonlinear function. 𝒈௜ 

and 𝒉௜ are the constraints for the problem, and 𝑥̅ is a local optimum point. As this is a 

nonlinear programming problem, there will be more than one local minimum which 

needs to be analyzed to decide if it is the real optimum point for the case study.  

 

3.2.1 General economic optimization 

 

The economic optimization problem aims to obtain the optimal point which 

optimizes the plant economically, and it is determined by an optimizer using the plant 

model with the most recently updates of measurement adjustments, “𝜶”, parameters 

“β”, constraint limits and economic values. In most RTO applications, the objective 

function is profit which is given by the product value minus the costs of the operation 

(DARBY et al., 2011). The optimization problem can be expressed by (7): 
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𝑚𝑎𝑥 𝑃(𝒙, 𝒖, 𝒑) 

 

𝑠. 𝑡.    𝒇(𝒙, 𝒖, 𝒑) = 0                                                                                                     (7) 

 

max (𝒙௅஻, 𝒙 − ∆) ≤ 𝒙 ≤ min (𝒙௎஻, 𝒙 + ∆) 

 

in which P is the profit of the process, 𝒙 are the optimization variables, and there are 

minimum and maximum limits for each value of 𝒙. ∆ are step limits which represent 

the maximum change, from the current value, that 𝒙 is allowed to move in a single 

optimizer execution. These step limits can cause confusion with interpreting optimizer 

results. Thus, some implementations automatically solve an additional case to 

understand the problem without these values (DARBY et al., 2011). 

 

3.3 Mathematical preliminaries to MPA method 

 

The classical RTO method is called Model Parameter Adaptation (MPA).The 

optimization cycle using MPA method starts with the detection of the steady-state 

condition in which the process measurements are analyzed in order to decide if the 

process has reached the SS point based on statistical criteria. If the SS condition is 

satisfied, the next module is the parameter estimation where the model parameters 

are used to update the model. Further, these adjustable parameters are used to find 

the optimal operating point that optimizes the plant economically in the steady-state 

optimization step. Figure 5 shows the main MPA modules.  

  

 
Figure 5 - Main steps in MPA method (Source: Own elaboration). 
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3.3.1 Steady-state detection 

 

As previously mentioned, the first layer in the MPA cycle is the steady-state 

detection. The following algorithm is based on Rhinehart and Cao (1995), and it is 

used in this work as well as in Matias and Le Roux (2018). This algorithm estimates 

the measurements variance using two different methods and after this, compares 

them to identify if the process is reasonably steady. The first method estimates the 

variance between the actual measurement and a filtered tendency of the same value 

(𝑧௞ and 𝑧௙,௞ିଵ). The second method calculates the variance between two sequential 

values (𝑧௞ and 𝑧௞ିଵ). When both of the variances calculated by the two methods are 

the same, the process can be considered at SS condition. 𝑅ௌௌ is the variance ratio, 

and it is equal one when the process is static. The steady-state detection algorithm is 

represented by (8) - (11). 

 

𝑧௙,௞ = 𝜆ଵ𝑧௞ + (1 − 𝜆ଵ)𝑧௞ିଵ              (8) 

𝛿²ଵ,௙,௞ = 𝜆ଶ(𝑧௞ − 𝑧௙,௞ିଵ)ଶ + (1 − 𝜆ଶ)𝛿²ଵ,௙,௞ିଵ             (9) 

𝛿²ଶ,௙,௞ = 𝜆ଷ(𝑧௞ − 𝑧௞ିଵ)ଶ + (1 − 𝜆ଷ)𝛿²ଶ,௙,௞ିଵ            (10) 

𝑅ௌௌ =
(ଶିఒభ)ఋ²భ,೑,ೖ

ఋ²మ,೑,ೖ
             (11) 

 

where 𝑧௞  is the given measurement variable (𝑧௞ ∈ 𝒚௣,௞) at time 𝑡௞ and 𝑧௙,௞ is the 

filtered value. 𝛿²ଵ,௙ and 𝛿²ଶ,௙ are the filtered covariances calculated by the first and 

the second methods, respectively.  

 

3.3.2 Model adaptation 

 

After it is established that the process is at a steady-state point, the model 

adaptation module starts in the optimization cycle. In this step, the plant data (SS 

values) are used to estimate the model parameters by minimizing a weighted sum of 

squared errors between the measured and predicted outputs (MATIAS and LE 

ROUX, 2018).  
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𝒑𝒂𝒅𝒋,⋆ = argmin   𝛷௔ௗ௔௣ ≔ |⃦𝒚𝒑 − 𝒚|⃦²𝑹𝒑
                             (12) 

          

𝑠. 𝑡.    𝐺௔ௗ௔௣ ≔ ൦

𝟎 = 𝒇௦௦൫𝒙, 𝒖, [𝒑௡௢௠ , 𝒑௔ௗ௝]்൯

𝒚 = 𝒉൫𝒙, [𝒑௡௢௠, 𝒑௔ௗ௝]்൯

𝒑௅,௔ௗ௝ ≤ 𝒑௔ௗ௝ ≤ 𝒑௎,௔ௗ௝

൪                                                                    

 

where 𝒑௔ௗ௝ are the adjustable parameters, 𝛷௔ௗ௔௣ is the adaptation problem objective 

function, 𝑹𝒑 are the weights for squared error function, and 𝐺௔ௗ௔௣ are the constraints 

of the model adaptation problem. 𝒑௅,௔ௗ௝ and 𝒑𝑼,௔ௗ௝ are the lower and upper bounds of 

the adjustable parameters, respectively. 𝒑௡௢௠ are the nominal parameters. 

 

3.3.3 Steady-state optimization  

 

In the MPA and ROPA cycles, the SS optimization uses the adjustable 

parameters from the online estimation to obtain the optimal setpoint that optimizes 

the plant economically in the current time.  An economic-based problem can be 

represented by (13): 

 

𝒖⋆ = argmin   𝛷௉ோைிூ் (𝒖, 𝒚)                     (13) 

 

𝑠. 𝑡.    𝐺 ≔ ቎

𝟎 = 𝒇௦௦൫𝒙, 𝒖, [𝒑௡௢௠, 𝒑௔ௗ௝,⋆]൯

𝒚 = 𝒉൫𝒙, [𝒑௡௢௠, 𝒑௔ௗ௝,⋆]൯

𝒖 ∈ 𝓤

቏                                                                    

 

where 𝛷௉ோைிூ் is a scalar economic objective function to be minimized and 𝐺 is the 

set of constraints of the problem. The model equation and operational inequalities 

which are defined by 𝓤 = {𝒖 ∈ ℝ௡ೠ: 𝒖௅ ≤ 𝒖 ≤ 𝒖௎^  𝒚௅ ≤ 𝒚 ≤ 𝒚௎} are introduced in G. 

𝒖௅, 𝒖௎, 𝒚௅ and  𝒚௎ are the lower and upper bounds of inputs and outputs. Although 

the optimization problem is formalized as the result of the minimization of the 

objective function, the aim of this step is to maximize the profit, in practice. After 

getting the optimal 𝒖⋆, the optimal 𝑦⋆ are obtained in the SS model, and 𝑦⋆ are used 

as setpoints for the control step which implements the optimal decision for the 

process.  
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3.4 Mathematical preliminaries to ROPA method 

 

The ROPA methodology works with three main steps which are shown in the 

scheme in Figure 6. The ROPA cycle integrates online estimators into the RTO cycle 

to compute the set of parameters that is used in the steady-state optimization. 

Hence, ROPA does not depend on the SS detection, and the economic optimization 

can be done at an arbitrary time.  ∆𝑡ோை௉஺  is the period between two consecutive 

ROPA executions. After the adjustable parameters (𝑝௔ௗ௝,⋆) are computed by an online 

estimator, the economic-based optimization is executed to obtain the optimal 

setpoints for the plant in the current time (MATIAS and LE ROUX, 2018).  

 

 
Figure 6 - Main steps in ROPA method (Source: Own elaboration). 

 

3.4.1 Online estimation  

 

As explained before, online estimation is implemented in ROPA method to 

avoid the problem related to the steady-state wait and the SS detection. In this step, 

an instrument is used to measure process data, and its inaccuracies generate 

measurement errors which can cause severe effects on the accuracy of the online 

estimates. Therefore, a good noise filtration algorithm should be employed to 

improve the estimation process. The Kalman filter is the optimal state estimator for 

unconstrained linear systems.  The extended Kalman filter (EKF) is an extension of 

the linear Kalman filter approach, and it is used in nonlinear problems. EKF tries to 

estimate the states by assuming that the plant model is described by a nonlinear 

system and the mean and covariance of the measurement errors are known (ASSIS; 

FILHO, 2000). 
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3.4.1.1 Extended Kalman Filter – EKF 

 

As previously mentioned, the Kalman filter is the most common choice if the 

system is linear and there are no constraints on the estimated values. However, as it 

is difficult to have a linear process in industrial applications, the EKF is more common 

to be used in practical online estimation. EKF is based on the linearization of the 

nonlinear plant model, and it takes advantage of the Kalman filter’s computational 

efficiency and recursive strategy (MATIAS and LE ROUX, 2018). The extended 

Kalman filter has been applied in several systems in the literature. M, P and Jerome 

(2014) use EKF to estimate the states of a Continuous Stirred Tank reactor (CSTR) 

to compare it to another type of Kalman filter called unscented Kalman filter (UKF) 

under various operating conditions and model uncertainties. Prakash, Huang and 

Shah (2014) also applied EKF in a gas-phase reactor with irreversible reaction 

system and in an isothermal batch reactor, and two novel schemes of extended 

Kalman filter are proposed to compare to EKF.  

In the ROPA method, the objective is to obtain the states and parameters in 

the dynamic process at each time instant 𝑘. The online estimator needs to infer the 

most likely values based on the dynamic model and the available sensor 

measurements. Thus, the dynamic model, represented by (4) and (5), is rearranged 

resulting in an augmented state 𝒙௞
௘ = [𝒙௞ , 𝒑௞]், and the parameters are considered 

additional states. All of the used equations to apply the EKF are based on Matias and 

Le Roux (2018), and all of them are described as follows.  

 

First, the augmented dynamic system is represented by (14) and (15): 

 

𝒙௞ାଵ
௘ = ቂ𝒇೏೤೙(𝒙ೖ,𝒖ೖ,𝒑ೖ)

𝒑ೖ
ቃ + ቂ 𝒘ೖ

𝒘ೖ
೛ቃ = 𝒇௘(𝒙௞

௘, 𝒖௞) + 𝒘௞
௘                                     (14) 

 

𝒚௞ = 𝒉௞
௘(𝒙௞

௘) + 𝒗௞                               (15) 

 

where 𝒘௞
௣~𝓝(𝟎, 𝑸௣).  
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To apply EKF in a system, the linearization of the nonlinear plant model needs 

to be done. Thus, first-order expansions around the extended state estimate 𝒙ෝ௞|௞
௘ 

and 𝒙ෝ௞|௞ିଵ
௘are carried out, and it is represented by (16) and (17). The subscript 

notation a|𝒃 means the estimate at time a based on information available at time b. 

 

𝒇௘(𝒙௞
௘ , 𝒖௞) ≈ 𝒇௘൫𝒙ෝ௘

௞|௞  , 𝒖௞൯ + 𝑭௞൫𝒙௞
௘ − 𝒙ෝ௘

௞|௞൯                   (16) 

 

𝒉௘(𝒙௞
௘) ≈ 𝒉௘൫𝒙ෝ௘

௞|௞ିଵ ൯ + 𝑯௞൫𝒙௞
௘ − 𝒙ෝ௘

௞|௞ିଵ൯                   (17) 

 

where: 

 

𝑭௞ =  డ𝒇೐(𝒙ೖ
೐,𝒖ೖ)

డ𝒙ೖ
೐,೅ ቚ

𝒙ෝ೐
ೖ|ೖ

= ൥

డ𝒇(𝒙ೖ,𝒖ೖ,𝒑ೖ)

డ𝒙ೖ
೅

డ𝒇(𝒙ೖ,𝒖ೖ,𝒑ೖ)

డ𝒑ೖ
೅

𝟎 𝑰௡௣

൩

𝒙ෝ೐
ೖ|ೖ

                (18) 

and 

 

𝑯௞ =  డ𝒇೐(𝒙ೖ
೐)

డ𝒙ೖ
೐,೅ ቚ

𝒙ෝ೐
ೖ|ೖషభ

= ቂ
డ𝒉(𝒙ೖ,𝒑ೖ)

డ𝒙ೖ
೅

డ𝒉(𝒙ೖ,𝒑ೖ)

డ𝒑ೖ
೅ ቃ

𝒙ෝ೐
ೖ|ೖషభ

                           (19) 

 

in which 𝐼௡௣ is the identity matrix with dimension 𝑛𝑝.  

 

After the linearization of the plant model, the EKF equations can be directly 

applied. In the prediction step, the nonlinear model is used instead of using linear 

approximation as shown in (20): 

 

𝒙ෝ௘
௞ାଵ|௞ = 𝒇௘൫𝒙ෝ௘

௞|௞  , 𝒖௞൯                      (20) 

 

The EKF prediction and update equations are represented by (21), (23), and 

the gain of Kalman filter is computed by (22), as follows: 

 

𝑷௞ାଵ|௞ = 𝑭௞𝑷௞|௞𝑭௞
் + 𝑸௘                        (21) 

 

𝑲௞ାଵ = 𝑷௞ାଵ|௞𝑯்
௞ାଵ[𝑯௞ାଵ𝑷௞ାଵ|௞𝑯்

௞ାଵ + 𝑹]ିଵ                  (22) 
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𝑷௞ାଵ|௞ାଵ = 𝑷௞ାଵ|௞ −  𝑲௞ାଵ𝑯௞ାଵ𝑷௞ାଵ|௞                             (23) 

 

with  

 

𝑸𝒆 = ൤
𝑸 𝟎
𝟎 𝑸𝒑൨ 

 

The extended states are estimated using the prediction error: 

 

𝒙ෝ௘
௞ାଵ|௞ାଵ = 𝒙ෝ௘

௞ାଵ|௞ + 𝑲௞ାଵ[𝒚௞ାଵ − 𝒉௘൫𝒙ෝ௘
௞ାଵ|௞൯]                (24) 
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4 CASE STUDY 1: WILLIAMS-OTTO REACTOR 

 

This Chapter discusses the application of the Real-time Optimization with 

Persistent Adaptation (ROPA) and the Model Parameter Adaptation (MPA) method to 

the Williams-Otto reactor problem. The main objectives are to reproduce the ROPA 

and MPA algorithms and to show the benefits of using ROPA in the RTO cycle 

comparing both of the methods. MPA uses the steady-state data to optimize the plant 

economically while ROPA uses transient information.    

The results show that the integration of RTO with online estimators can predict 

the states and parameters satisfactorily even with disturbances in the system since 

the steady-state detection layer is not necessary, and the period between two 

optimization executions is shorter than in other  RTO methods which need this step. 

Moreover, the computed solution tends to the stationary plant optimum. The 

advantages of using ROPA are discussed in this Chapter.  

 

4.1 The process model 

 

The assumptions for the case study are based on Matias and Le Roux (2018). 

The Williams-Otto reactor is widely used for RTO and control studies. A flow diagram 

is shown in Figure 7. 

 
Figure 7 - Williams-Otto reactor scheme (Source: MATIAS and LE ROUX, 2018). 

 
 
The process is fed with the two feed streams which are composed of pure A 

and B. There are two products of interest: P and E. Also, there are an undesired 
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product G, and an intermediate C. The set of reactions in the process can be seen as 

follows: 

 

𝑟ଵ:   𝐴 + 𝐵  
௞భ
→  𝐶 

𝑟ଶ:   𝐵 + 𝐶 
௞మ
→  𝑃 + 𝐸 

𝑟ଷ:   𝐶 + 𝑃 
௞య
→  𝐺 

 

The assumptions for the problem are described as follows: the reactor is 

represented by an ideal continuous stirred-tank reactor (CSTR), and the temperature 

of the reactor can be changed without cost and instantaneously, discarding the 

energy balances in the model. With these assumptions, the steady-state and 

dynamic models are created. The dynamic model is shown below. The SS model is 

not shown here because it can be easily derived from the dynamic model.  

 

0 = 𝐹ோ − 𝐹஺ − 𝐹஻ 

ௗ௑ಲ

ௗ௧
= 𝑓ௗ௬௡,ଵ(𝑿, 𝒖) =

(ிಲିிೃ௑ಲ)

ெ೟
− 𝑘ଵ𝑋஺𝑋஻  

ௗ௑ಳ

ௗ௧
= 𝑓ௗ௬௡,ଶ(𝑿, 𝒖) =

(ிಳିிೃ௑ಳ)

ெ೟
− 𝑘ଵ𝑋஺𝑋஻ − 𝑘ଶ𝑋஻𝑋஼  

ௗ௑಴

ௗ௧
= 𝑓ௗ௬௡,ଷ(𝑿, 𝒖) =

(ିிೃ௑಴)

ெ೟
+ 2𝑘ଵ𝑋஺𝑋஻ − 2𝑘ଶ𝑋஻𝑋஼ − 𝑘ଷ𝑋஼𝑋௉                   (25) 

ௗ௑ಶ

ௗ௧
= 𝑓ௗ௬௡,ସ(𝑿, 𝒖) =

(ିிೃ௑ಶ)

ெ೟
+ 2𝑘ଶ𝑋஻𝑋஼  

ௗ௑ು

ௗ௧
= 𝑓ௗ௬௡,ହ(𝑿, 𝒖) =

(ିிೃ௑ು)

ெ೟
+ 𝑘ଶ𝑋஻𝑋஼ − 0.5𝑘ଷ𝑋஼𝑋௉  

ௗ௑ಸ

ௗ௧
= 𝑓ௗ௬௡,଺(𝑿, 𝒖) =

(ିிೃ௑ಸ)

ெ೟
+ 1.5𝑘ଷ𝑋஼𝑋௉  

𝑘௜ = 𝐴௜𝑒
ି

ா೔
்ೃ

ൗ
,       𝑖 = 1, … ,3   

 

where 𝑘௜, 𝐴௜, and 𝐸௜ are the reaction rate constant, frequency factor, and the 

activation energy for reaction 𝑖; 𝑀௧  is the reactor mass holdup which is assumed 

constant, and 𝑋௝ and 𝐹௝ are the mass fraction and mass flow rate of component j. The 

mass flow rate of reactant A, 𝐹஺, is fixed and the manipulated variables of the system 

are the flow of reactant B, 𝐹஻, and the reactor temperature, 𝑇ோ. 
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The stationary model is used in the economic optimization layer in the ROPA 

and MPA cycles. It is also used in the model adaptation step during the MPA cycle. 

On the other hand, the dynamic model is used as a representation of the plant and 

for linearization purposes. In respect of the model parameters, although the selection 

of adjustable set is composed of the frequency factors and activation energies of 

reactions, a parameter rearrangement was carried out in order to avoid a poorly 

conditioned parameter estimation problem, as done in Matias and Le Roux (2018) 

and shown in (26). 

 

ln (𝑘௜) = 𝛷௜ + ൬
𝑇௥௘௙

𝑇ோ
− 1൰ 𝛹௜,        𝑖 = 1, … ,3 

𝛷௜ = log (𝐴௜) +  𝛹௜                                        (26) 

𝛹௜ = −
𝐸௜

𝑇௥௘௙
 

 

where 𝛷௜ and 𝛹௜ are the rearranged parameters of 𝑖௧௛ reaction and 𝑇௥௘௙ = 383.15 K. 

Thus, the model summary for this process can be described as follows:  

 

𝒙 = [𝑋஺, 𝑋஻ , 𝑋஼ , 𝑋ா , 𝑋௉ , 𝑋ீ]் 

𝒚 = [𝑋ா , 𝑋௉]்                      (27) 

𝒖 = [𝐹஻, 𝑇ோ]் 

𝒑 = [𝑝ଵ, 𝑝ଶ, 𝑝ଷ, 𝑝ସ, 𝑝ହ, 𝑝଺]் = [𝛷ଵ, 𝛹ଵ, 𝛷ଶ, 𝛹ଶ, 𝛷ଷ, 𝛹ଷ]் 

 

where 𝒙 is the vector of the complete system model states, 𝒚 is the vector of the 

measurements, 𝒖 is the vector of the decision variables, and 𝒑 is the vector of the 

adjustable parameters.  
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The initial plant condition and the nominal values of the parameters are listed 

in Table 1. 

 

Table 1 - Initial plant condition and adjustable parameter set of Williams-Otto model. The values are 
based on Matias and Le Roux (2018). The lower and upper bounds of the manipulated variables and 

the parameters are used in the economic optimization layer in the ROPA and MPA cycles. 

 Variable(symbol) [unit] Lower 
bound 

Initial 
value 

Upper 
bound 

- Reactor holdup (𝑀௧) [Kg] - 2105 - 

- Flow of reactant A (𝐹஺)[Kg/s] - 1.827 - 

𝒖𝟏 Flow of reactant B (𝐹஻)[Kg/s] 4 4.787 6 

𝒖𝟐 Reactor temperature (𝑇ோ)[ºC] 80 89.70 100 

𝒙𝟏 Mass fraction of A (𝑋஺)[-] - 0.0876 - 

𝒙𝟐 Mass fraction of B (𝑋஻)[-] - 0.3892 - 

𝒙𝟑 Mass fraction of C (𝑋஼)[-] - 0.0153 - 

𝒙𝟒 𝒚𝟏⁄  Mass fraction of E (𝑋ா)[-] - 0.1093 - 

𝒙𝟓 𝒚𝟐⁄  Mass fraction of P (𝑋௉)[-] - 0.2903 - 

𝒙𝟔 Mass fraction of G (𝑋ீ)[-] - 0.1083 - 

𝒑𝟏 𝛷ଵ[-] -3.385 -3.077 -2.769 

𝒑𝟐 𝛹ଵ[-] -18.26 -17.39 -14.78 

𝒑𝟑 𝛷ଶ[-] -1.826 -1.353 -1.217 

𝒑𝟒 𝛹ଶ[-] -22.83 -21.74 -17.39 

𝒑𝟓 𝛷ଷ[-] -0.5188 -0.3843 -0.3459 

𝒑𝟔 𝛹ଷ[-] -30.44 -28.99 -27.54 

 

4.2 Economic Optimization 

 

For this case study, the objective in this layer is to maximize the unit profit, 

𝛷௣௥௢௙௜௧. Thus, the objective function in the optimization problem is the profit, and it 

can be described as in (28). 

 

𝛷௣௥௢௙௜௧ = 1143.38𝑋௉𝐹ோ + 25.92𝑋ா𝐹ோ − 76.23𝐹஺ − 114.34𝐹஻                                  (28) 

 

The components E and P are the valuable products, and the numerical values 

in the equation are the market prices of these components as well as the purchasing 

values of the reactants A and B (all prices are in $/𝐾𝑔). 𝑋௉ and 𝑋ா are the mass 

fractions of P and E, respectively. Moreover, the economic optimization is a 
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constrained optimization problem where the set of constraints is composed of the 

model equations and operational inequality constraints.   

 

4.3 Process Simulation 

 

The process simulations are performed in MATLAB, and the dynamic system 

is solved by SundialsTB (HINDMARSH et al., 2005) using the CVode function. 

Moreover, the sensitivities are calculated by SundialsTB. The information flow 

between layers in the ROPA and MPA cycles can be seen in Figure 8 below.  

 
Figure 8 - ROPA and MPA information flows (Source: Adapted from MATIAS and LE ROUX, 

2018). 

 
 In this case study, the plant measurements, 𝑦௣,௞, are the mass fraction of 

components E and P in the current time, and they are obtained using a sensor that is 

simulated. Subsequently, these values are used in the estimation layers in order to 

estimate the states and parameters in the process. 𝑝̂௞ are the estimated parameters, 

and they are estimated using the Extended Kalman filter (EKF) in the ROPA method 

and the model adaptation problem in the MPA cycle. Finally, the vector with the 

optimal values of the decision variables, 𝑢௞, is sent to the plant. The implementation 

of a model predictive control (MPC) layer can be done before this last step, but it is 

not mandatory.  

In order to simulate a real plant, random and deterministic disturbances were 

admitted in the system. The noisy plant measurements, 𝑦ଵ and 𝑦ଶ, are obtained by 

adding random disturbances to the outputs of the dynamic model, as shown in (29).  

 

𝑦௡,௞ = 𝑦௞ + 𝑒𝑟𝑟𝑜𝑟 . 𝑦௞  . 𝑟𝑎𝑛𝑑𝑛()                                                          (29) 
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where 𝑦௡,௞  is the measurement with noise at time 𝑘; 𝑦௞ is its actual value; the 𝑒𝑟𝑟𝑜𝑟 is 

equal to 1%; and 𝑟𝑎𝑛𝑑𝑛 draws a random scalar from the standard normal distribution. 

 

The process is also affected by deterministic disturbances which can be 

divided into measured and unmeasured. The measured disturbance affects the flow 

rate of reactant A, 𝐹஺, and the unmeasured disturbance changes the nominal values 

of the parameters of the second and third reactions.  

After 10 h, a step change of 0.173 kg/s to the nominal value of 𝐹஺ is added. 

This value remains disturbed until 15 h. Also, the reaction parameters 

(Φଶ, 𝛹ଶ, Φଷ, 𝛹ଷ)  are affected by the unmeasured disturbance, changing from their 

nominal values (shown in Table 1) to [-1.642, -22.0391, -0.3582, -28.9730] between 

18 h and 21 h. After this, they start to return their nominal values.  

As mentioned before, an online estimator is used in the ROPA cycle aiming to 

estimate the states and parameters in the current time. In this process, the Extended 

Kalman filter (EKF) is used in the estimation layer using (21) - (24). The filter tuning 

parameters used for EKF are shown below: 

 

𝑸 = 𝑑𝑖𝑎𝑔([1𝑒ିଵ;  1𝑒ିଵ;  1𝑒ିଵ;  1𝑒ିଶ;  1𝑒ିଶ;  1𝑒ିଶ]) 

𝑸𝒑 = 𝑑𝑖𝑎𝑔([1𝑒ଵ;  0.4𝑒ଷ;  1𝑒ଵ; 0.2𝑒ଷ;  1𝑒଴; 0.5𝑒ଶ])                                               (30) 

𝑹 = 𝑑𝑖𝑎𝑔([1𝑒ଵ;  1𝑒ଵ]) 

 

where 𝑸, the covariance matrix of the process model, is related to the states 

(𝑋஺, 𝑋஻ , 𝑋஼ , 𝑋ா , 𝑋௉, 𝑋ீ); 𝑹,  the measurement noise covariance matrix, is related to the 

measured variables (𝑋ா , 𝑋௉); and 𝑸𝒑, the parameter covariance matrix, corresponds 

to the parameters (𝛷ଵ, 𝛹ଵ, 𝛷ଶ, 𝛹ଶ, 𝛷ଷ, 𝛹ଷ). The values of 𝑸, 𝑹 and 𝑸𝒑 are kept 

constants during the RTO implementations. Moreover, the weighting factor for the 

model adaptation algorithm, 𝑹௉, is the identity matrix. 

 

Also, the period between two optimization executions, ∆𝑡ோை௉஺,  is another 

important tuning parameter in the simulations. This value needs to have a similar 

order of magnitude as the process settling time. However, it should be large enough 

to capture the disturbances. For the case study, a ∆𝑡ோை௉஺ = 10 𝑚𝑖𝑛 was chosen to 

simulate the process. 



47 
 
Regarding the MPA method, the first step is the steady-state detection in 

which the filter values for each measured variable are tuned according to the arrays 

below.  

 

𝝀ଵ = [0.2, 0.3], 𝝀ଶ = [0.1, 0.2], 𝝀ଷ = [0.1, 0.2], 𝑹௖௥௜௧ = [2.5, 2.5] 

 

where the first and second values of the arrays are related to the component E and 

P, respectively. All of these values are also based on Matias and Le Roux (2018). 

 

The economic steady-state optimization was done using the fmincon function 

in MATLAB for both of the RTO methods. The interior-point algorithm which is the 

default algorithm for fmincon function was used in the optimization executions. 

Moreover, the gradient of the objective function (profit) was set in the code manually 

to get better solution for the problem.  

 

4.4 Results and discussion 

 

The ROPA and MPA performances are analyzed by the states and 

parameters estimation in the simulations as well as the economic results. As ROPA 

uses transient information in the estimation layer, these values need to be reliable at 

the current time. Thus, the choice of the online estimator must be carefully done, and 

the results require a rigorous analysis. The use of transient data to update the model 

in a dynamic process ensures that the economic optimization does not stop when the 

process is under disturbances. Hence, the steady-state (SS) wait issue is no longer a 

problem, and the detection of the SS condition is not necessary anymore. The ROPA 

is executed every ∆𝑡ோை௉஺ instants resulting in a short period between two sequential 

optimization executions, hence the ROPA estimation capacity under disturbances 

enhances when compared to the other RTO methods which require the SS detection 

step. Regarding the MPA method, the SS detection step is necessary in which the 

economic optimization runs only when the process is at the SS condition. Thus, in 

case a disturbance affects the system, the optimization cycle needs to wait for the 

next steady-state point to return the calculations. 
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The dynamic model is solved by SundialsTB in order to obtain the state 

profiles as shown in Figure 9. The initial plant condition, shown in Table 1, is used to 

simulate the process. Moreover, random and deterministic disturbances are 

considered aiming to handle with a real plant. These values are used as the plant 

values in the optimization cycle. 

 
Figure 9 - Plant condition calculated by SundialsTB (Source: own elaboration). 

 
The first estimation analysis is the state estimation. In both of the RTO 

methods, ROPA and MPA, the Extended Kalman filter (EKF) is chosen to be the 

online state estimator since the model is nonlinear. Figure 10 shows the state 

estimation for ROPA and MPA cycles as well as for the plant (optimal value).  𝑋ா and 

𝑋௉ are not shown because they are assumed to be directly measured in the plant 

instead of being estimated by the filter.  
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Figure 10 – State estimation for ROPA and MPA implementations in the Williams-Otto reactor using 

the Extended Kalman filter as the online estimator (Source: own elaboration). 

 

Regarding the state estimation, the estimated and actual state profiles are 

almost overlapped in the given time horizon for ROPA and MPA methods. These 

values are similar because the considered disturbances affecting the system are 

equivalent for both of the methods. The results show that the filter works consistently, 

and the state covariance matrix is satisfactorily tuned by Matias and Le Roux (2018)

 . Although it is not the main focus of the case study, if a model predictive 

control (MPC) is added in the system, the filter should satisfactorily predict the states 

since these values are used as feedback to the MPC layer.   

The parameter estimation for ROPA and MPA implementations is shown in 

Figure 11 below. The estimated parameter values are compared to the actual plant 

values. It is possible to notice that even with the disturbances which affect the 

parameters pଷ,  pସ, pହ and p଺ the ROPA method estimate the parameters correctly. 

Clearly, the MPA parameter estimates are unreliable since MPA does not follow the 

plant condition as ROPA. Moreover, there is a delay related to the MPA method to 

estimate the parameters pଷ,  pସ and pହ. It is due to the fact that the classical method 

needs to wait for the next SS condition to start the optimization cycle after a 

disturbance in the system. The gap between the disturbance occurrence and the 
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response of MPA is almost three hours what highlights the critical issue related to 

this methodology, the steady-state wait. Thus, the estimates for MPA method are 

updated only after this response that takes a longer time when compared to the 

ROPA method which does not need to wait for the next SS point. The parameter 

estimation shows that ROPA is able to respond to the disturbances occurrence 

reproducing the actual plant parameter profile (the lines are almost overlapped). The 

most critical advantage of ROPA is that it can update the model even under 

disturbances.  

 
Figure 11 - Estimated parameters for ROPA and MPA implementations in the Williams-Otto reactor 

(Source: own elaboration). 
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In the optimization cycle, a process with identifiability problem can have 

different set of adjustable parameters (𝒑௔ௗ௝) which result in the same optimum values 

for the problem. This problem occurs when the Hessian matrix of the problem is ill-

conditioned, so the process has identifiability problems, and the estimation affects 

the performance of the optimizer. Since the Williams-Otto reactor presents 

identifiability issues (MATIAS and LE ROUX, 2018), the analysis of the parameter 

estimation may not be the only result to be used to assess the methods’ 

performance. Moreover, it is not enough to conclude if the result of the optimization is 

the real plant optimum. However, the assumptions that there is only a unique 

optimum solution for the SS optimization (𝒖⋆) and that this solution matches the true 

plant parameter values are used in the case study, as in Matias and Le Roux (2018). 

Additionally, there is no plant-model mismatch (the model can be considered 

perfect). The ROPA and MPA convergence analysis is based on these assumptions.  

A proper indicator when the system presents identifiability problems are the 

economic performance of the closed-loop optimization and the optimal decisions 

since the parameter estimation result cannot be conclusive. The analysis of the 

economic performance is used to evaluate the ROPA and MPA implementations. 

The instantaneous profit is shown in Figure 12 for both of the methodologies. It can 

be observed that the response of ROPA follows the optimal instantaneous profit, 

even after the disturbances in the system. Although bias between the optimal value 

and the value obtained with ROPA methodology can be detected during the 

simulations, ROPA runs the economic optimization continuously independently of the 

plant condition. Clearly, the response of ROPA is faster for both of the disturbances 

(measured and unmeasured). ROPA performance shows that the method can 

properly converge to the stationary optimum. As in the parameter estimation results, 

a delay is detected in the MPA implementation. MPA has an inherent delay on the 

optimization cycle due to the steady-state detection. The MPA optimization runs only 

after the system reaches the next SS. Furthermore, MPA economic results drift from 

the optimal profit (plant). The decision variables of the ROPA and MPA cycles can be 

compared to the plant optimal decisions, as shown in Figure 13. It can be seen that 

the decision variables calculated by ROPA method move towards the optimal values, 

even with the disturbances in the system. For the MPA cycle, the decision variables 

also present a delay due to the SS detection layer. 
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Figure 12 – Comparison between the instantaneous profit of the ROPA and MPA methods for the 

Williams-Otto reactor study (Source: own elaboration). 

 
Figure 13 - Comparison between the plant optimal decisions and the inputs calculated by ROPA and 

MPA implementations in the Williams-Otto reactor (Source: own elaboration).  

In order to obtain more information about the distribution of the economic 

performance for MPA and ROPA methods and the influence of the critical value 

(𝑅௖௥௜௧ ) in the MPA algorithm, Monte Carlo analyses are performed. 100 repetitions of 

the simulations are executed in each scenario for ROPA and MPA. Two different 

scenarios are used in the simulations aiming at analyzing the economic performance 

for both methods: (Scenario 1) disturbances in 𝐹஺ and the nominal parameters 𝑝ଷ, 

𝑝ସ, 𝑝ହ and 𝑝଺, and (Scenario 2) disturbances in 𝐹஺ and the nominal parameter 𝑝ଷ. 

Furthermore, three different scenarios are used to obtain more information about the 



 
influence of 𝑅௖௥௜௧  in the MPA cycle

2.5; (Scenario 5) 𝑅௖௥௜௧ = 3.

Monte Carlo analysis, varying the 

ROPA algorithm does not change with the 

second Monte Carlo analysis are shown to compare both MPA and ROPA for all of 

the scenarios 3, 4 and 5. 

MPA and ROPA methods and the true profit value (vertical line) for each scenario

shown in Figure 14 and Figur

Figure 14  - Monte Carlo Analysis 
ROPA methods and the true profit value (vertic

(A) Scenario 1 calculated using MPA method; (
Scenario 2 calculated using MPA method

in the MPA cycle: (Scenario 3) 𝑅௖௥௜௧ = 2.0; (Scenario 

.0. The disturbances in scenario 1 are used for the second 

Monte Carlo analysis, varying the 𝑅௖௥௜௧  value in the MPA algorithm

algorithm does not change with the 𝑅௖௥௜௧  value, the ROPA results in the 

second Monte Carlo analysis are shown to compare both MPA and ROPA for all of 

the scenarios 3, 4 and 5.  The frequency distribution of the profit calculated using 

and the true profit value (vertical line) for each scenario

Figure 15.  

 

 

Monte Carlo Analysis - Frequency distribution of the profit calculated using 
and the true profit value (vertical line) for each scenario in the Williams
calculated using MPA method; (B) Scenario 1 calculated using ROPA method; (
calculated using MPA method; (D) Scenario 2 calculated using ROPA method.
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Scenario 4) 𝑅௖௥௜௧ =

The disturbances in scenario 1 are used for the second 

the MPA algorithm. Although the 

value, the ROPA results in the 

second Monte Carlo analysis are shown to compare both MPA and ROPA for all of 

requency distribution of the profit calculated using 

and the true profit value (vertical line) for each scenario is 

 

 

Frequency distribution of the profit calculated using MPA and 
in the Williams-Otto reactor. 

Scenario 1 calculated using ROPA method; (C) 
Scenario 2 calculated using ROPA method. 



 

Figure 15  - Monte Carlo Analysis 
ROPA methods and the true profit value (vertical line) for each scenario in the Williams
(A) Scenario 3 (Rୡ୰୧୲ = 2.0) calculate
using ROPA method; (C) Scenario 
(Rୡ୰୧୲ = 2.5) calculated using ROPA method

method; (F) Scenario 5

 

 

 

 

 

Monte Carlo Analysis - Frequency distribution of the profit calculated using MPA and 
ROPA methods and the true profit value (vertical line) for each scenario in the Williams

calculated using MPA method; (B) Scenario 3 (Rୡ୰୧୲ =
using ROPA method; (C) Scenario 4 (Rୡ୰୧୲ = 2.5) calculated using MPA method; (D) Scenario 

calculated using ROPA method; (E) Scenario 5 (Rୡ୰୧୲ = 3.0) calculated using MPA 
cenario 5 (Rୡ୰୧୲ = 3.0)  calculated using ROPA method
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Frequency distribution of the profit calculated using MPA and 
ROPA methods and the true profit value (vertical line) for each scenario in the Williams-Otto reactor. 

= 2.0)  calculated 
calculated using MPA method; (D) Scenario 4 

calculated using MPA 
calculated using ROPA method. 
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For the first Monte Carlo analysis, scenarios 1 and 2, it can be seen that the 

MPA method results change more significantly than ROPA during the 100 iterations 

considering the same range of profit values. It can be due to the fact that MPA uses a 

statistical algorithm which may change with random influences. Regarding the 

second Monte Carlo analysis, Scenario 4 (Rୡ୰୧୲ = 2.5) is chosen to be in line with the 

value in Matias and Le Roux (2018), and this Monte Carlo analysis shows it is a good 

choice when compared to values of  Rୡ୰୧୲ = 2.0 and Rୡ୰୧୲ = 3.0 since the MPA result 

that does not change as in scenarios 3 and 5 using the same range of profit values. 

ROPA results also vary in all of the scenarios due to the random disturbances added 

to the outputs of the process. 

In conclusion, the integration of RTO with online estimator enhances the 

estimation capacity of the problem and the disturbance detection, and improves the 

economical issue when compared to the classical RTO method (MPA) because the 

period between two optimization iterations is shorter than in the MPA method which 

requires the SS detection (there is an increase of the model updating frequency). 

Also, ROPA does not have the steady-state wait problem since it uses transient data 

which are always available.  

 

4.5 Conclusions 

 

 The Real-time Optimization with Persistent Adaptation (ROPA) method 

integrates transient data to the static optimization. In ROPA cycle, online estimators 

are used to obtain the transient data in the current time. If the model is nonlinear, the 

Extended Kalman filter (EKF) can be used to estimate the states and parameters that 

are used to update the model. As the plant, represented by the dynamic model, is 

subjected to disturbances, the use of transient information improves the prediction 

capacity of the RTO method. The detection of the SS condition layer is not necessary 

in the ROPA cycle since it runs the optimization each ∆𝑡ோை௉஺ independently of the 

plant condition. Therefore, the period between two optimization executions 

decreases when compared to the MPA method that requires the SS detection. With 

this, the estimation capacity and the disturbances detection increase in the 

optimization cycle.  

Since the state and parameter estimation capacity in the ROPA cycle 

increases when compared to the MPA method, it can satisfactorily reproduce the 
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actual plant profile which improves the economic optimization. The results show that 

ROPA reaches the stationary plant optimum even using transient data in a SS 

optimization, and the EKF works consistently. However, it is important to highlight 

that the plant needs to be well tuned to get suitable results for the optimization 

problem. The tuning phase may be properly done in the ROPA cycle. Otherwise, the 

process cannot be optimized correctly.  

ROPA is an intermediary solution between the static RTO (as MPA) and the 

dynamic optimization (DRTO/EMPC). ROPA constantly improves the plant 

operations if the tuning parameters are well-established.  The main contribution of 

this study is to show evidences that the ROPA implementation in processes can 

converge to the stationary plant optimum, even using transient data to update the 

model in a steady-state optimization. ROPA applications can show this convergence 

and provide the benefits of using the method instead of using the classical RTO 

method (MPA). In the Williams-Otto reactor study, ROPA converges to the steady-

state plant optimum even using dynamic data to update the model, and it is 

compared to the MPA method which has an inherent delay due to the steady-state 

detection. The results of the comparison show that the decrease in the execution 

frequency (the time between two sequential optimization cycles) enhances the 

economic optimization for the considered case study. 

  



57 
 

5 CASE STUDY 2: PROPYLENE CHLORINATION PROCESS 

 

This Chapter shows the results of the application of the Real-time Optimization 

with Persistent Adaptation (ROPA) and the Model Parameter Adaptation (MPA) 

methods to a gas-phase Continuous Stirred Tank reactor (CSTR). The results of the 

case study are analyzed in order to compare ROPA and MPA methodologies. ROPA 

works with transient data to update the plant model in the RTO cycle using online 

estimator. On the other hand, MPA uses steady-state data to estimate the 

parameters in the optimization problem. The main issue related to the MPA method 

is the time the process spends to reach the steady-state condition whether there is a 

disturbance in the system. In this case, the optimization algorithm needs to wait for 

the next SS condition to run the cycle again. ROPA tackles this problem using 

dynamic data to update the model what avoids the steady-state wait issue. The 

application of these methodologies to the Propylene Chlorination process can show 

the benefits of using ROPA when compared to the classical RTO method, MPA. The 

results show that the ROPA is able to reach the stationary optimum even using 

transient data in a steady-state optimization. In this case study, ROPA and MPA 

results are similar since the system is a gas-phase process which has a fast 

dynamics. Because of this, the ROPA benefits cannot appear very different from 

MPA method. However, even with the fast dynamics issue, it can be seen that MPA 

deals with the steady-state wait what is the main drawback of the algorithm.  

 

5.1 The process model 

 

The second case study is the Propylene Chlorination process in which allyl 

chloride is produced. This is a commercial chemical used mainly as an intermediate 

in the manufacture of epichlorohydrin and glycerine (BOOZALIS et al., 1982). The 

considered process occurs in a gas-phase CSTR reactor with two feed streams as 

shown in Figure 16 below. In order to simulate a more realistic system, the process is 

simulated using the software Aspen Plus Dynamics.  
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Figure 16 - Propylene Chlorination process simulated in Aspen Plus Dynamics (Source: own 

elaboration). 

 

The process simulated in Aspen Plus Dynamics represents the real plant, and 

two feed streams are considered:  𝐶𝑙ଶ and 𝐶ଷ𝐻଺. The principal and desired product is 

the allyl chloride (𝐶ଷ𝐻ହ𝐶𝑙). The reactions in the process and the rate expressions for 

these reactions are based on Biegler and Hughes (1983). The first reaction (1) is 

substitution by chlorine to produce allyl chloride: 

 

𝐶𝑙ଶ + 𝐶ଷ𝐻଺  
௞ଵ
ሱሮ  𝐶ଷ𝐻ହ𝐶𝑙 + 𝐻𝐶𝑙 

 

The second reaction (2) is addition of chlorine that forms 1,2-dichloropropane: 

𝐶𝑙ଶ + 𝐶ଷ𝐻଺  
௞ଶ
ሱሮ  𝐶ଷ𝐻଺𝐶𝑙ଶ 

 

Finally, the third reaction (3) is chlorine substitution in allyl chloride to yield 

1,3-dichloropropene: 

𝐶𝑙ଶ + 𝐶ଷ𝐻ହ𝐶𝑙  
௞ଷ
ሱሮ  𝐶ଷ𝐻ସ𝐶𝑙ଶ + 𝐻𝐶𝑙 

 

All the three reactions are exothermic and have overall second-order 

Arrhenius-type kinetics. The rate expressions and kinetic constants are considered 

as follows: 

 

𝑟௝ = 𝑘௝𝑝௝
∗𝑝஼௟మ

             (31) 

 

where  

𝑘௝ = 𝐴௝𝑒
൤

షಳೕ

೅ೃ
൨
               (32) 
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in which 𝑗 = 1,2,3 is related to the reactions 1, 2 and 3, respectively. 𝑝௝∗ is the partial 

pressure of propylene for reactions 1 and 2 and of allyl chloride for reaction 3. The 

constants 𝐴௝ and 𝐵௝ are given in Table 2. 

 

In order to simplify the model, the gas is assumed to be ideal. Thus, the rate 

expressions (31) can be replaced by (34) considering the equation of state of an 

ideal gas, as shown below: 

 

𝑃௜𝑉 = 𝑁௜𝑅𝑇                (33) 

 

and 

𝑟௝ = 𝑘௝𝑁௝∗𝑁஼௟మ
ቀ

ோ்

௏
ቁ

ଶ
               (34) 

 

After the rate expressions are established, the material balance for all of the 

species in the system is given by (35). 

 

ௗேಹ಴೗

ௗ௧
= −𝐹௢௨௧ு஼௟

+ (𝑟ଵ + 𝑟ଷ)𝑉  

ௗே಴೗మ

ௗ௧
= 𝐹௜௡஼௟మ

− 𝐹௢௨௧஼௟మ
+ (−𝑟ଵ−𝑟ଶ − 𝑟ଷ)𝑉  

ௗே಴యಹల

ௗ௧
= 𝐹௜௡஼యுల

− 𝐹௢௨௧஼యுల
+ (−𝑟ଵ−𝑟ଶ)𝑉         (35) 

ௗே಴యಹఱ಴೗

ௗ௧
= −𝐹௢௨௧஼యுఱ஼௟

+ (𝑟ଵ−𝑟ଷ)𝑉  

ௗே಴యಹల಴೗మ

ௗ௧
= −𝐹௢௨௧஼యுల஼௟మ

+ (𝑟ଶ)𝑉  

ௗே಴యಹర಴೗మ

ௗ௧
= −𝐹௢௨௧஼యுర஼௟మ

+ (𝑟ଷ)𝑉  

 

where 𝐹௜௡ and 𝐹௢௨௧ are the inlet and outlet molar flow rate and 𝑟ଵ, 𝑟ଶ and 𝑟ଷ are the 

corresponding rate expressions.  

 

As the number of moles is changing and the pressure in the reactor is 

constant, it is necessary to consider that 𝐹௢௨௧ changes during the process. 𝐹௢௨௧ is 

calculated as shown below: 
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∑
ௗே೔

ௗ௧
=

ே೎
௜ୀଵ 𝐹௜௡ − 𝐹௢௨௧ + ൫∑ ∑ 𝛼௜௝𝑟௝

ேೝ
௝ୀଵ

ே೎
௜ୀଵ ൯𝑉         (36) 

 

where  

 

∑ 𝑁௜
ே೎
௜ୀଵ =

௉௏

ோ்
             (37) 

 

and 

 

∑
ௗே೔

ௗ௧
=

ே೎
௜ୀଵ −

௉௏

ோ்²

ௗ்

ௗ௧
             (38) 

 

where 𝑁௖ and 𝑁௥ are the number of components and the number of reactions, 

respectively. Substituting (38) into (36) and considering the stoichiometry of the 

reactions, the output flow rate is given by (39). 

 

𝐹௢௨௧ =  𝐹௜௡ − 𝑘ଶ𝑁஼యுల
𝑁஼௟మ

ቀ
ோ்

௏
ቁ

ଶ
𝑉 +

௉௏

ோ்²

ௗ்

ௗ௧
           (39) 

 

Regarding the energy balance, the kinetic energy terms and the energy 

needed for mixing the reactor are neglected to simplify the energy balance. The 

energy balance is given by the following equations, and it is based on Mäkilä and 

Waller (1980).  

 

ௗ௎

ௗ௧
=  𝐻̇௙ − 𝐻̇ − 𝑄̇                        (40) 

 

where 𝑈 is the internal energy, 𝐻̇  is the flow of enthalpy, and 𝑄̇ denotes the heat flow 

from the reactor. As the volume of the reactor is considered constant, the energy 

balance takes the form below: 

 

ௗு

ௗ௧
− 𝑉

ௗ௣

ௗ௧
=  𝐻̇௙ − 𝐻̇ − 𝑄̇                         (41) 

 

Assuming the following thermodynamics relations (42) - (45), the energy 

balance is given by (46), as shown below: 
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𝑑𝐻 − 𝑉𝑑𝑝 = 𝐶௣𝑑𝑇 − ൤ቀ
డு

డ௣
ቁ

்,ே
− 𝑉൨ 𝑑𝑝 + ℎ்𝑑𝑁          (42) 

 

−𝑇 ቀ
డ௏

డ்
ቁ

௣,ே
= ቀ

డு

డ௣
ቁ

்,ே
− 𝑉            (43) 

 

− ൤ቀ
డு

డ௣
ቁ

்,ே
− 𝑉൨ ቀ

డ௣

డ்
ቁ

௏,ே
= 𝐶௣ − 𝐶௩            (44) 

 

𝑑𝑝 = ቀ
డ௣

డ்
ቁ

௏,ே
𝑑𝑇 + ൤ቀ

డ௣

డே
ቁ

்,௏
൨

்

𝑑𝑁            (45) 

 

𝐶௩
ௗ்

ௗ௧
+ ቈ−𝑇 ቀ

డ௏

డ்
ቁ

௣,ே
൤ቀ

డ௣

డே
ቁ

்,௏
൨

்

+ ℎ்቉
ௗே

ௗ௧
= 𝐻̇௙ − 𝐻̇ − 𝑄̇           (46) 

 

Considering that 𝑁 = 𝐶𝑉 in the material balance in which 𝐶 is the vector of the 

molar concentrations of the species at time 𝑡, the energy balance can be written as 

(47). 

 

𝐶௩
ௗ்

ௗ௧
+ ቈ−𝑇 ቀ

డ௏

డ்
ቁ

௣,ே
൤ቀ

డ௣

డே
ቁ

்,௏
൨

்

+ ℎ்቉
ௗே

ௗ௧
= ൫ℎ௙

் − ℎ்൯𝐶௙𝑉̇௙ − ∆ℎ்𝑟𝑉 − 𝑄̇             (47) 

 

where ∆ℎ is the vector of the heats of the reactions.  

 

The energy balance can be simplified in the following way in order to assume 

an ideal mixture of gases in the reactor. The equation of state for an ideal gas is 

given by (48): 

 

𝑝𝑉 = ∑ 𝑁௜𝑅𝑇௜                        (48) 

 

gives 

 

−𝑇 ቀ
డ௏

డ்
ቁ

௣,ே
= −𝑉              (49) 
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as well as 

 

ቀ
డ௣

డே೔
ቁ

்,௏
=

ோ்

௏
                        (50) 

 

thus: 

 

ቀ
డ௣

డே
ቁ

்,௏

் ௗே

ௗ௧
= 𝑅𝑇

ௗ஼೟೚೟

ௗ௧
             (51) 

 

where 𝐶௧௢௧ is the vector of total molar concentration of the species.  

 

Moreover, the partial enthalpies are given by (52): 

 

ℎ = ∫ 𝐶௣𝑑𝑇
்

்ೃ
+  ℎோ              (52) 

 

where 𝑇ோ is a reference temperature and ℎோ is the corresponding partial molar 

enthalpies.  

 

Substituting these equations into the energy balance (47), the energy balance 

for the case study can be: 

 

𝐶௩
ௗ்

ௗ௧
= ቂ∫ 𝐶௣

்𝑑𝑇
்೑

்
ቃ 𝐶௜௡𝑉̇௜௡ − ∆ℎ்𝑟𝑉 − 𝑄̇ + 𝑅𝑇

ௗே೟೚೟

ௗ௧
        (53) 

 

The process condition and the nominal values of the parameters are listed in 

Table 2. 
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Table 2 - Process condition and parameter set of the Propylene Chlorination model. The 
values are based on Biegler and Hughes (1983). The lower and upper bounds of the manipulated 
variables and the parameters are used in the economic optimization layer in the ROPA and MPA 

cycles. 

Variable(symbol) [unit] Lower 
bound 

Nominal 
Value 

Upper 
bound 

- Reactor volume (V) [ftଷ] - 100 - 

- Reactor pressure (P) [atm] - 72.28 - 

- Heat capacity (𝐶௣) [BTU/lbmol °R] - 35 - 

- Heat of reaction 1 (∆ℎଵ) [BTU/lbmol] - -4800 - 

- Heat of reaction 2 (∆ℎଶ) [BTU/lbmol] - -79200 - 

- Heat of reaction 3 (∆ℎଷ) [BTU/lbmol] - -91800 - 

- Gas constant (R) [BTU/lbmol °R] - 1.987 - 

- Flow of reactant 𝐶𝑙ଶ (𝐹௜௡஼௟మ
)[lbmol/h] - 25.3532 - 

𝒖𝟏 Flow of reactant 𝐶ଷ𝐻଺ (𝐹௜௡ ஼యுల
)[lbmol/h] 800 101.4128 1050 

𝒖𝟐 Reactor inlet temperature (𝑇௜௡)[ºR] 1000 1300 
 

1400 

𝒙𝟏 Number of moles of 𝐻𝐶𝑙 (𝑁ு஼௟)[lbmol] - 0.1976440 - 

𝒙𝟐 Number of moles of 𝐶𝑙ଶ (𝑁஼௟మ
)[lbmol] - 0.0001488 - 

𝒙𝟑 Number of moles of 𝐶ଷ𝐻଺ (𝑁஼యுల
)[lbmol] - 0.6885350 

 
- 

𝒙𝟒 Number of moles of 𝐶ଷ𝐻ହ𝐶𝑙 (𝑁஼యுఱ஼௟)[lbmol] - 0.0241817 - 

𝒙𝟓 Number of moles of 𝐶ଷ𝐻଺𝐶𝑙ଶ (𝑁஼యுల஼௟మ
)[lbmol] - 0.0027597 - 

𝒙𝟔 Number of moles of 𝐶ଷ𝐻ସ𝐶𝑙ଶ (𝑁஼యுర஼௟మ
)[lbmol] - 0.0867309 - 

𝒙𝟕 Reactor temperature (T)[ºR] - 1000 - 

𝒑𝟏 𝐴ଵ[lbmol/h ft³ atm²] - 206000 - 

𝒑𝟐 𝐵ଵ[ºR] - 13600 - 

𝒑𝟑 𝐴ଶ[lbmol/h ft³ atm²] - 11.7 - 

𝒑𝟒 𝐵ଶ[ºR] - 3430 - 

𝒑𝟓 𝐴ଷ[lbmol/h ft³ atm²] - 4.6𝑒଼ - 

𝒑𝟔 𝐵ଷ[ºR] - 21300 - 

 

It is important to note that since the process dynamic is significantly fast, it is 

not desirable in a ROPA implementation which aims at comparing ROPA to the MPA 

method. In order to decrease the process dynamic, it is considered that the reactor is 

thickly covered in steel with a mass of 10000 lb.  
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5.2 Economic Optimization 

 

The economic optimization aims at optimizing the process economically. The 

objective function is the unit profit, 𝛷௣௥௢௙௜௧, and the objective is to maximize this 

function. The optimization problem is based on Biegler and Hughes (1983), and it 

can be described as in (54). 

 

𝛷௣௥௢௙௜௧ = 22.17(𝐴𝐶) + 12.48(𝐷𝑃𝐶) + 10.06(𝐷𝐶𝑃∗)                                     (54) 

 

where 𝐴𝐶, 𝐷𝑃𝐶 and 𝐷𝐶𝑃∗ are the product rates for allyl chloride (𝐶ଷ𝐻ହ𝐶𝑙), 

dichloropropane (𝐶ଷ𝐻଺𝐶𝑙ଶ) and dichloropropene (𝐶ଷ𝐻ସ𝐶𝑙), respectively. All the rates 

are in lbmol/h, and the profit has units of $/h.  

 

In the RTO cycle, the economic optimization is a constrained optimization 

problem where the set of constraints is composed of the model equations and 

operational inequality constraints. For ROPA and MPA, the model equations 

represent the plant in steady-state condition, and the operational inequality 

constraints are the lower and upper bounds as shown in Table 2.  

 

5.3 Process Simulation 

 

The process simulations are performed using MATLAB, Aspen Plus Dynamics 

and Sundials (HINDMARSH et al., 2005). In order to simulate a more realistic 

process, the system is simulated in Aspen Plus Dynamics in which transient data are 

collected as the plant measurements, 𝑦௣,௞. Sundials is used to provide the 

sensitivities equations that are used in the online estimation step, in the Extended 

Kalman filter equations. MATLAB runs the real-time optimization using all of the 

given information.  

The plant measurements, 𝑦௣,௞, are the number of moles of the products 

𝐶ଷ𝐻ହ𝐶𝑙 and  𝐶ଷ𝐻଺𝐶𝑙ଶ. A sensor is considered in order to measure these values in the 

outlet of the process, and random disturbances were admitted in the system to 

simulate a plant with noisy measurements, as shown in (55). 
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𝑦௡,௞ = 𝑦௞ + 𝑒𝑟𝑟𝑜𝑟 . 𝑦௞  . 𝑟𝑎𝑛𝑑𝑛()                                                          (55) 

 

where 𝑦௡,௞  is the measurement with noise at time 𝑘; 𝑦௞ is its actual value; the 𝑒𝑟𝑟𝑜𝑟 is 

equal to 1%; and 𝑟𝑎𝑛𝑑𝑛 draws a random scalar from the standard normal distribution. 

 

The plant measurements are used in the RTO estimation layers to estimate 

the states and parameters in the current time. In the ROPA cycle, the parameters are 

estimated using the Extended Kalman filter (EKF) in which sensitivity equations are 

considered to obtain the matrixes which are used in the EKF algorithm. On the other 

hand, MPA estimates the parameters considering the model adaptation problem 

shown in (12). Both sets of estimated parameters for ROPA and MPA methods are 

used in the steady-state optimization problem obtaining the decision variables vector 

that is sent to the plant closing the RTO cycle, for this case study. A model predictive 

control (MPC) can be implemented in the RTO cycle; however, it is not mandatory. If 

an MPC layer is considered, the states estimated by the Extended Kalman filter are 

used as feedback values.  

In the simulations, deterministic disturbances also affect the process. They are 

divided into measured and unmeasured disturbances. The measured disturbance 

affects the reactor inlet temperature (𝑇௜௡), and the unmeasured disturbance changes 

the nominal values of the parameters. First, the model validation is done considering 

a step change of 400ºR in the inlet temperature value between the time interval of 

3.75 and 12.75 hours and a step change in the nominal parameter values between 

18.75 and 26.75 hours. For ROPA and MPA implementations, the step change of 

400ºR in the inlet temperature value is added between 8 and 11.5 hours. 

Subsequently, the reaction parameters change their nominal values shown in Table 2 

to [2.060, 13600, 0.00117, 3430, 4.6eଷ, 21300].  

The Extended Kalman filter is used to estimate the parameters and states in 

the ROPA cycle and to estimate the states in the MPA algorithm. Its tuning 

parameters are used in (21) - (24) and chosen as shown below in (56).  

 

𝑸 = 𝑑𝑖𝑎𝑔([1𝑒଴;  1𝑒଴;  1𝑒଴;  1𝑒଴;  1𝑒ିଶ;  1𝑒ିଶ; 1𝑒ି଺]) 

𝑸𝒑 = 𝑑𝑖𝑎𝑔([1𝑒ଶ଴;  0.4𝑒ିଷ;  8𝑒ଶ; 0.2𝑒ିଷ;  1𝑒଴; 0.5𝑒ିସ])                                                (56) 

𝑹 = 𝑑𝑖𝑎𝑔([1𝑒ଶ;  1𝑒ଶ]) 
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where 𝑸, the covariance matrix of the process model, is related to the states 

(𝑁ு஼௟, 𝑁஼௟మ
, 𝑁஼యுల

, 𝑁஼యுఱ஼௟, 𝑁஼యுల஼௟మ
, 𝑁஼యுర஼௟మ

, 𝑇); 𝑹,  the measurement noise covariance 

matrix, is related to the measured variables (𝑁஼యுఱ஼௟, 𝑁஼యுల஼௟మ
); and 𝑸𝒑, the parameter 

covariance matrix, corresponds to the parameters (𝐴ଵ, 𝐵ଵ, 𝐴ଶ, 𝐵ଶ, 𝐴ଷ, 𝐵ଷ). The values of 

𝑸, 𝑹 and 𝑸𝒑 are kept constants during the RTO implementations.  

 

In the MPA method, the filter values for the steady-state detection step are 

tuned as shown below. Moreover, the critical value for the variance ratio, 𝑹௖௥௜௧, is also 

chosen for the case study. The weighting factor for the model adaptation 

algorithm, 𝑹௉, is the identity matrix.  

 

𝝀ଵ = [0.2, 0.2], 𝝀ଶ = [0.1, 0.1], 𝝀ଷ = [0.1, 0.1], 𝑹௖௥௜௧ = [4.0, 7.0] 

 

where the first and second values of the arrays are related to the component 𝐶ଷ𝐻ହ𝐶𝑙 

and  𝐶ଷ𝐻଺𝐶𝑙ଶ, respectively.  

 

The stationary economic optimization was performed using the fmincon 

function in MATLAB for both of the RTO methods. The default algorithm for fmincon, 

the interior-point algorithm, was used in the optimization executions. The model 

summary for this process can be described as follows:  

 

𝒙 = [𝑁ு஼௟ , 𝑁஼௟మ
, 𝑁஼యுల

, 𝑁஼యுఱ஼௟, 𝑁஼యுల஼௟మ
, 𝑁஼యுర஼௟మ

, 𝑇]் 

𝒚 = [𝑁஼యுఱ஼௟, 𝑁஼యுల஼௟మ
]்                    (57) 

𝒖 = [𝐹௜௡ ஼యுల
]் 

𝒑 = [𝑝ଵ, 𝑝ଶ, 𝑝ଷ, 𝑝ସ, 𝑝ହ, 𝑝଺]் = [𝐴ଵ, 𝐵ଵ, 𝐴ଶ, 𝐵ଶ, 𝐴ଷ, 𝐵ଷ]் 

 

where 𝒙 is the vector of the complete system model states, 𝒚 is the vector of the 

measurements, 𝒖 is the vector of the decision variable, and 𝒑 is the vector of the 

adjustable parameters.  
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5.4 Results and discussion 

 

The real plant is represented by the simulation performed in Aspen Plus 

Dynamics. The Propylene Chlorination process is simulated considering a gas-phase 

CSTR reactor. The process model validation is the first analysis in the considered 

RTO implementations. As it is known that the model must accurately represent the 

real process, the process model validation is an important task in the case study. The 

process simulation considers all disturbances and tuning parameters previously 

described in Section 5.3, and the plant data are collected in order to compare them to 

the model in MATLAB. Figure 17 and Figure 18 show the state profiles for the 

studied process considering a time horizon of 35 hours. 

 
Figure 17 - Propylene Chlorination process model validation. The number of moles of each 

component in the process is in lbmol (Source: own elaboration). 
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Figure 18 - Propylene Chlorination process model validation for the reactor temperature 

(Source: own elaboration). 

 

The process model validation results show that the process dynamics can be 

properly represented by the proposed model. Although there is a bias between 18 

and 27 hours in the fifth state profile shown in Figure 17, it is still considered that the 

model can satisfactorily represent the case study. This gap is due to the fact that 

there are differences between the Aspen Plus Dynamics model and the proposed 

model during the simulations. 

The second analysis addresses the ROPA and MPA state estimation. Both of 

the RTO implementations use the Extended Kalman filter to estimate the states. 

Since the optimal decision predictions for ROPA and MPA are different, the state 

profiles are presented separately. Figure 19, Figure 20, Figure 21 and Figure 22 

show the state estimation for ROPA and MPA. In the MPA cycle, only the states are 

estimated by the EKF while the states as well as the parameters are estimated by the 

EKF in the ROPA method. It can be seen that the estimated and actual state profiles 

are almost overlapped for both cases. It means that the filter uses a well tuned state 

covariance matrix, and it is working properly. As explained before, the estimated 

states could be used as feedback for the Model Predictive Control (MPC) 

implementation; however it is not done in the case study. If these state values are 
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properly predicted, the MPC performance is satisfactory since it is intrinsically 

connected with the estimation quality (MATIAS and LE ROUX, 2018).  

 

Figure 19 - State estimation for ROPA implementation in the Propylene Chlorination process 
using the Extended Kalman filter as the online estimator (Source: own elaboration). 

 
Figure 20 - Reactor temperature estimation for ROPA implementation in the Propylene 

Chlorination process using the Extended Kalman filter as the online estimator (Source: own 
elaboration). 
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Figure 21 - State estimation for MPA implementation in the Propylene Chlorination process 
using the Extended Kalman filter as the online estimator (Source: own elaboration). 

 

 
Figure 22 - Reactor temperature estimation for MPA implementation in the Propylene 

Chlorination process using the Extended Kalman filter as the online estimator (Source: own 
elaboration). 
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Regarding the parameter estimation, the MPA method uses the model 

adaptation problem shown in (12) while ROPA uses the Extended Kalman filter to 

estimate the adjustable parameters. The parameter disturbances that affect the 

system are the same for both of the methods, and the predicted parameter values 

are compared to the actual plant values as shown in Figure 23.  

 

 
Figure 23 - Parameter estimation for ROPA and MPA implementations in the Propylene 

Chlorination process (Source: own elaboration). 

As explained before, the parameter estimates for ROPA method are predicted 

by the EKF, and they are much closer to the actual nominal parameters (plant 
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values) than are those for the MPA implementation. This is due to the fact that if the 

system is perturbed, the ROPA method does not need to wait for the next steady-

state condition to run the economic optimization cycle. On the other hand, the MPA 

method needs to detect the new SS point to optimize the process again what 

addresses the main disadvantage of the standard RTO method. It can be seen that 

after the disturbance in the nominal parameter values between 15 and 20 hours, the 

MPA method takes around 1 hour to reach the actual plant value while the ROPA 

methodology follows approximately the real value. As the EKF is used to estimate the 

parameter in the ROPA cycle, the results show that the parameter covariance matrix 

is well tuned for the case study.  

In order to assess a more reliable performance result of both of the RTO 

implementations, it is important to address the economic and optimal decisions of the 

closed-loop optimization. Figure 24 and Figure 25 show the overall economic 

performance (the instantaneous profit) and the decision variables result, respectively. 

 

 
Figure 24 - Comparison between the instantaneous profit of the ROPA and MPA methods for 

the Propylene Chlorination process (Source: own elaboration). 

According to the economic result shown in Figure 24, ROPA method can run 

the optimization cycle continually independently of any plant condition. Moreover, 
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ROPA is able to respond to both of the disturbances affecting the system. As MPA 

waits for the next steady-state value to optimize the process after a disturbance, the 

SS wait delay can again be seen in the economic result. Between 8 and 11.5 hours 

and 15 and 20 hours, there is a bias between the actual plant value and the value 

obtained by MPA. It is due to the SS detection step since the MPA estimates are 

updated only after the disturbances ceases what once more highlights the SS wait 

delay issue of the classical RTO method in the economic performance result.  

 
Figure 25 - Comparison between the plant optimal decision and the inputs calculated by 

ROPA and MPA implementations in the Propylene Chlorination process (Source: own elaboration).  

 

The analysis of the decision variable in Figure 25 calculated by both of the 

methods can also show the ROPA benefits in the RTO cycle. The decision variable 

for the case study is the inlet molar flow rate of the reagent 𝐶ଷ𝐻଺. The ROPA 

responses move towards the optimal plant value while the MPA results drift from the 

actual plant value during the RTO executions. As the parameter estimation in the 

MPA method is not reliable as in the ROPA, there is a considerable amount of 

parametric uncertainties. Since these unreliable parameter values are used to update 

the model in the SS optimization step, the plant is driven far from the optimality in the 

MPA implementation. 
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The application of the Real-time Optimization with Persistent Adaptation 

(ROPA) and the Model Parameter Adaptation (MPA) methods to the Propylene 

Chlorination process provides results that emphasize the benefits of using online 

estimator in the RTO cycle. ROPA uses transient data to update the model that is 

used in the stationary optimization layer while MPA uses only steady-state points. 

The main advantage of ROPA is that the detection of the SS condition is not 

necessary avoiding the SS wait delay issue. Thus, the frequency of the predictions 

and optimization executions enhances when compared to the MPA, hence ROPA 

can continually predict the states/parameters and optimize the plant in any plant 

condition, even under disturbances. The steady-state wait is not an issue when an 

online estimator is used to predict the parameters in the optimization cycle.  

In the case study of the Propylene Chlorination process, it can be seen that 

the MPA and ROPA responses are similar. It is due to the fact that the process is a 

gas-phase system, and its dynamics is fast. The ROPA benefits can be seen better 

when the method is applied in a process with a slow dynamics in which after a 

disturbance, the system takes a significant time to reach the next steady-state 

operation point emphasizing the greatest advantage of ROPA implementation. When 

the dynamics is slow, the difference between MPA and ROPA is greater and more 

notable. Otherwise, the RTO implementations results are not very different from each 

other as in the studied process.  

 

5.5 Conclusions 

 

The Propylene Chlorination process is used as the representation of a plant in 

which two RTO methodologies are implemented: the Real-time Optimization with 

Persistent Adaptation (ROPA) and the Model Parameter Adaptation (MPA). The main 

goal of this application is to compare both of the methods showing the benefits of 

using the online estimation in the RTO cycle. In the ROPA implementation, transient 

data are used to estimate the parameters which are used in the stationary 

optimization step. On the other hand, MPA starts the optimization cycle with the 

detection of the steady-state condition and estimates the parameter values by the 

model adaptation problem obtaining the adjustable parameters that are used in the 

SS optimization layer. Thus, if the process is affected by a disturbance, MPA cannot 

run the RTO cycle until the system reaches the new SS condition promoting a delay 
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in the method’s responses. ROPA runs the economic optimization independently of 

the plant condition what decreases the period between two sequential optimization 

executions since it avoids the steady-state wait.  

The main contribution of this case study is the application of a new RTO 

method (ROPA) which does not change significantly the formulation of the standard 

RTO method (MPA) aiming at exposing the benefits of using this framework. 

Moreover, the simulation of the plant in the software Aspen Plus Dynamics, a 

commercial dynamic simulator, provides the use of a more realistic RTO 

implementation, being optimized by an external MPA and ROPA algorithm in 

MATLAB. The use of dynamic data to update the model during the optimization runs 

brings a great advantage. Generally, the detection of the steady-state condition is a 

problematic task in real processes in industries. It is because even meeting the 

methods’ criteria that analyze if the process has reached the SS point, it can be hard 

to assure the process is really at steady-state. The results of the considered case 

study show that the integration of an online estimator can tackle the SS wait issue in 

the RTO cycle.  

As explained before, ROPA avoids the steady-state detection due to the use 

of transient information. Hence, ROPA is able to run the optimization cycle even 

under disturbances what is the main benefit of the method. These dynamic 

measurements are used to estimate the parameters by an online estimator. The 

target of the ROPA is to continuously improve the RTO response obtaining the 

setpoints which reach the stationary plant optimum in the current time. Furthermore, 

ROPA is a hybrid RTO method that is between the dynamic and static RTO 

methodologies bringing advantage of decreasing the computational effort related to 

the dynamic RTO and avoiding the SS wait delay issue related to the static RTO, as 

explained before. 

The application of ROPA to the Propylene Chlorination process brings results 

of the main benefits of using this methodology in the RTO executions. Moreover, 

applications of ROPA to more complex processes can handle with a plant-wide 

operation trying to tackle the standard RTO method’s issues.  
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6 CONCLUDING REMARKS AND FUTURE WORK RECOMMENDATIONS  

 

The Real-time Optimization with Persistent Adaptation (ROPA) method is 

applied to two different case studies in this thesis: (1) the Williams-Otto reactor; (2) 

the Propylene Chlorination process. ROPA is proposed by Matias and Le Roux 

(2018), and it is based on the idea of using dynamic data in the RTO cycle aiming at 

optimizing the plant economically. As the formulation of the standard RTO 

methodology does not change significantly in this new framework, ROPA is attractive 

for both the academia and the industry.  

The main advantage of ROPA method is the use of transient information to 

update the model in the stationary optimization what eliminates the detection of the 

steady-state step tackling the SS wait issue related to the classical RTO method, the 

Model Parameter Adaptation (MPA). Even treating dynamic data in a SS 

optimization, the results of both applications show that ROPA can continuously 

improve the setpoints reaching the stationary plant optimum. In both of the case 

studies, the Model Parameter Adaptation method (MPA) is also applied to the 

processes in order to compare the RTO methods.  

A future work that can be recommended is the use of Model Predictive Control 

(MPC) implementation in both the case studies. Considering that the steady-state 

optimization layer is followed by the MPC layer, the optimal setpoints found in the 

RTO cycle are sent to the controller which implements the decision variables in the 

plant. The complete system considering the RTO and MPC layers for ROPA and 

MPA methods is represented by Figure 4. 
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