• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.3.2017.tde-05092017-092437
Document
Author
Full name
Christiam Segundo Morales Alvarado
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2017
Supervisor
Committee
Garcia, Claudio (President)
Angelico, Bruno Augusto
Odloak, Darci
Potts, Alain Segundo
Zanin, Antônio Carlos
Title in Portuguese
Estudo e implementação de métodos de validação de modelos matemáticos aplicados no desenvolvimento de sistemas de controle de processos industriais.
Keywords in Portuguese
Identificação de sistemas
Lógica Fuzzy
Modelos matemáticos
Regressão linear
Abstract in Portuguese
A validação de modelos lineares é uma etapa importante em um projeto de Identificação de Sistemas, pois a escolha correta do modelo para representar a maior parte da dinâmica do processo, dentro de um número finito de técnicas de identificação e em torno de um ponto de operação, permite o sucesso no desenvolvimento de controladores preditivos e de controladores robustos. Por tal razão, o objetivo principal desta Tese é o desenvolvimento de um método de validação de modelos lineares, tendo como ferramentas de avaliação os métodos estatísticos, avaliações dinâmicas e análise da robustez do modelo. O componente principal do sistema de validação de modelos lineares proposto é o desenvolvimento de um sistema fuzzy para análise dos resultados obtidos pelas ferramentas utilizadas na etapa de validação. O projeto de Identificação de Sistemas é baseado em dados reais de operação de uma Planta-Piloto de Neutralização de pH, localizada no Laboratório de Controle de Processos Industriais da Escola Politécnica da USP. Para verificar o resultado da validação, todos os modelos são testados em um controlador preditivo do tipo QDMC (Quadratic Dynamic Matrix Control) para seguir uma trajetória de referência. Os critérios utilizados para avaliar o desempenho do controlador QDMC, para cada modelo utilizado, foram a velocidade de resposta do controlador e o índice da mínima variabilidade da variável de processo. Os resultados mostram que a confiabilidade do sistema de validação projetado para malhas com baixa e alta não-linearidade em um processo real, foram de 85,71% e 50%, respectivamente, com relação aos índices de desempenho obtidos pelo controlador QDMC.
Title in English
Research and implementation of mathematical model validation methods applied in the development of industrial process control systems.
Keywords in English
Fuzzy logic
Mathematical model validation
Multivariable predictive control
pH control
Robust control
System identification
Abstract in English
Linear model validation is the most important stage in System Identification Project because, the model correct selection to represent the most of process dynamic allows the success in the development of predictive and robust controllers, within identification technique finite number and around the operation point. For this reason, the development of linear model validation methods is the main objective in this Thesis, taking as a tools of assessing the statistical, dynamic and robustness methods. Fuzzy system is the main component of model linear validation system proposed to analyze the results obtained by the tools used in validation stage. System Identification project is performed through operation real data of a pH neutralization pilot plant, located at the Industrial Process Control Laboratory, IPCL, of the Escola Politécnica of the University of São Paulo, Brazil. In order to verify the validation results, all modes are used in QDMC type predictive controller, to follow a set point tracking. The criterions used to assess the QDMC controller performance were the speed response and the process variable minimum variance index, for each model used. The results show that the validation system reliability were 85.71% and 50% projected for low and high non-linearity in a real process, respectively, linking to the performance indexes obtained by the QDMC controller.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2017-09-06
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.