• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.3.2016.tde-25072016-081620
Documento
Autor
Nome completo
William Alexandre Labecca de Castro
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2015
Orientador
Banca examinadora
Piqueira, José Roberto Castilho (Presidente)
Aranha, Jose Augusto Penteado
Balthazar, Jose Manoel
Macau, Elbert Einstein Nehrer
Ragazzo, Clodoaldo Grotta
Título em português
Matrizes operacionais e formalismo coadjunto em equações diferenciais fracionais.
Palavras-chave em português
Cálculo fracionário
Equações diferenciais
Matrizes operacionais
Séries de Fourier
Resumo em português
O método das matrizes operacionais é expandido para o corpo complexo a ordens arbitrárias pela abordagem de Riemann-Liouville e Caputo com ênfase nas séries de Fourier complexas. Elabora-se uma adaptação do formalismo bra-ket de Dirac à linguagem tensorial no espaço de Hilbert de funções com expansões finitas para uso específico na teoria de equações diferenciais e matrizes operacionais, denominado \Formalismo Coadjunto". Estende-se o tratamento aos operadores fracionais de Weyl para períodos genéricos a fim de determinar as matrizes operacionais de derivação e integração de ordem arbitrária na base complexa de Fourier. Introduz-se um novo método de resolução de equações diferenciais ordinárias lineares e fracionais não-homogêneas, denominado \Modelagem Operacional", que permite a obtenção de soluções de equações de alta ordem com grande precisão sem a necessidade de imposição de condições iniciais ou de contorno. O método apresentado é aperfeiçoado por meio de um novo tipo de expansão, que denominamos "Séries Associadas de Fourier", a qual apresenta convergência mais rápida que a série de Fourier original numa restrição de domínio, possibilitando soluções de EDOs e EDFs de alta ordem com maior precis~ao e ampliando a esfera de casos passíveis de resolução.
Título em inglês
Operational matrices and coadjoint formalism in fractional differential equations.
Palavras-chave em inglês
Dfferential equations
Fourier series
Fractional calculus
Operational matrices
Resumo em inglês
Operational matrices method is expanded to complex field and arbitrary orders by using the Riemann-Liouville and Caputo approach with emphasis on complex Fourier series. Dirac's bra-ket notation is associated to tensor procedures in Hilbert spaces for finite function expansions to be applied specifically to dfferential equations and operational matrices, being called \Coadjoint Formalism". This treatment is extended to Weyl fractional operators for generic periods in order to establish the integral and derivative operational matrices of fractional order to complex Fourier basis. A new method to solve linear non-homogeneous ODEs and FDEs, called \Operational Modelling"is introduced. It yields high precision solutions on high order dfferential equations without assumption of boundary or initial conditions. The presented method is improved by a new kind of function expansion, called \Fourier Associated Series", which yields a faster convergence than original Fourier in a restrict domain, enabling to obtain solutions of high order ODEs and FDEs with excellent precision and broadening the set of solvable equations.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2016-07-25
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.