• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.3.2004.tde-27022005-164712
Document
Author
Full name
Vitor Hirayama
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2004
Supervisor
Committee
Salcedo, Walter Jaimes (President)
Carvalho, André Carlos Ponce de Leon Ferreira de
Ramirez, Miguel Arjona
Title in Portuguese
Classificador de qualidade de álcool combustível e poder calorífico de gás GLP.
Keywords in Portuguese
combustíveis gasosos (classificação)
componentes principais (análise)
Fuzzy
reconhecimento de padrões
redes neurais
Abstract in Portuguese
Este trabalho apresenta os resultados obtidos com o desenvolvimento de um sistema robusto como uma alternativa de reconhecimento da qualidade de vapor de álcool combustível e do poder calorífico do gás combustível GLP em um nariz eletrônico. Foram implementadas duas metodologias experimentais para a extração de atributos dos padrões de vapor de álcool combustível e de gás GLP. Na primeira abordagem de tratamento dos dados, foram usados um Sistema de Inferência Fuzzy (FIS), e dois algoritmos de treinamento de Redes Neurais Artificiais (RNA) para reconhecer padrões de vapor de álcool combustível: a Backpropagation e Learning Vector Quantization. A segunda abordagem para o tratamento dos dados foi desenvolver um sistema reconhecedor do poder calorífico do gás GLP robusto à perda aleatória de um dos sensores. Foram usados três sistemas. No primeiro foi implementada uma RNA para reconhecer todos os dados que simulavam a falha de um sensor aleatório. O resultado desse sistema foi de 97% de acertos. O segundo implementou sete RNA’s treinadas com subconjuntos dos dados de entrada, tais que seis RNA’s foram treinadas com um sensor diferente com falha; e a sétima RNA foi treinada com dados dos sensores sem falhas. O resultado desse sistema foi de 99% de acertos. O terceiro implementou uma Máquina de Comitê Estática Ensemble constituída de dez RNA’s em paralelo para resolver o problema. O resultado foi de 97% de acertos. As RNA’s tiveram melhores respostas que os FIS. Foram sugeridas algumas formas de implementação em hardware do sistema reconhecedor em sistemas pré-fabricados com DSP’s e micro-controladores.
Title in English
Alcohol combustible quality and LPG gas calorific power classifier.
Keywords in English
artificial neural networks
Fuzzy
gas combustible (classification)
pattern recognition
principal component (analysis)
Abstract in English
This work shows the results of a robust system development as an alternative to recognize the quality of an alcohol fuel vapor sample and Liquid Petrol Gas (LPG) heat power in an electric nose. Two experimental methodologies were implemented to extract the features of alcohol fuel vapor and LPG gas patterns. The first approach to process the data used an Fuzzy Inference System (FIS) and two training algorithms of Artificial Neural Networks (ANN) to recognize alcohol fuel vapor patterns: Backpropagation and Learning Vector Quantization. The second approach consists of process data to develop an LPG heat power recognizing system robust to one-random-sensor-loss. Three systems were used. The first implemented an ANN to recognize all data that simulated the failure of a random sensor. This system had 97% of right responses. The second implemented seven ANN’s trained with input data subsets, such that six ANN’s were trained with a different failure sensor, and the seventh ANN was trained with data of all sensors without failure. This system had 99% of right responses. The third implemented an Ensemble Static Learning Machine containing ten parallel RNA’s to solve the problem. The result were 97% of right responses. RNA’s had better results than FIS. Some ways of hardware implementation of the recognizing system were suggested in DSP and micro-controllers pre-built systems.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
VITORHIRAYAMA.pdf (1.14 Mbytes)
Publishing Date
2005-04-04
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2019. All rights reserved.