• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.3.2006.tde-01042009-095125
Documento
Autor
Nome completo
Humberto Rodrigo Sandmann
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2006
Orientador
Banca examinadora
Andrade, Marco Túlio Carvalho de (Presidente)
Kobayashi, Guiou
Spina, Edison
Título em português
Predição não-linear de séries temporais usando sistemas de arquitetura neuro-fuzzy.
Palavras-chave em português
Análise de séries temporais
Lógica fuzzy
Redes neurais
Sistemas híbridos
Resumo em português
Esta dissertação tem como objetivo a aplicação de sistemas com arquitetura neuro-fuzzy na predição de funções que geram séries temporais. A arquitetura pesquisada é a Adaptive Neuro-Fuzzy Inference System (ANFIS). Esta arquitetura se trata de um Fuzzy Inference Systems (FIS) im- plementado sob o paradigma das redes neurais artificiais. Ao fazer o uso da tecnologia de redes neurais artificiais, o ANFIS possui a capacidade de apren- dizagem dos dados do ambiente no qual está inserido. Da mesma forma, por implementar um FIS, o ANFIS agrega também a competência de processamento linguístico. Logo, o ANFIS pode ser categorizado como um sistema híbrido. Ao longo dos capítulos estão expostos alguns conceitos e fundamentos da Teoria Fuzzy, assim como das redes neurais artificiais e sistemas híbridos. Ao final do trabalho são realizadas algumas discussões, análises e conclusões, as quais permitem a possibilidade de futuras aplicações e extensão deste.
Título em inglês
Prediction of time series using architecture based on neuro-fuzzy systems.
Palavras-chave em inglês
Fuzzy
Hibrid systems
Neural networks
Time series analyse
Resumo em inglês
This master dissertation has as main objetive applies systems of neuro-fuzzy architecture for functions prediction in serie times. The architecture carried out is the Adaptive Neuro-Fuzzy Inference System (ANFIS). This architecture is a kind of Fuzzy Inference Systems (FIS) implemen- tation under a paradigm of arti¯cial neural networks. Making use of technology of arti¯cial neural networks, the ANFIS has the capacity of learning with environ- ment data that inserted on. As the same, the ANFIS had been implemented to be a FIS. Then it can process simbolic variables. So, an ANFIS can be described like a hibrid system. All over the chapters are showed some concepts and fundaments of Fuzzy theory, arti¯cial neural networks and hidrid systems. The purpose of the tests the ANFIS, it were been made from a logistic function and a Mackey-Glass function. This tests were against with an estimation function made by MLP net. At the end of the work are some discussions, analyses and conclusions that allows futures possibilites of applications and extensions of this work.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Humberto_Sandmann.pdf (4.91 Mbytes)
SANDMANN_H_R.doc (46.50 Kbytes)
Data de Publicação
2009-04-09
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2021. Todos os direitos reservados.