• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.3.2013.tde-04112014-103827
Document
Author
Full name
Marcelo Li Koga
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2013
Supervisor
Committee
Reali Costa, Anna Helena (President)
Bianchi, Reinaldo Augusto da Costa
Delgado, Karina Valdivia
Title in English
Relational transfer across reinforcement learning tasks via abstract policies.
Keywords in English
Artificial intelligence
Computational relational learning
Knowledge representation
Markov processes
Abstract in English
When designing intelligent agents that must solve sequential decision problems, often we do not have enough knowledge to build a complete model for the problems at hand. Reinforcement learning enables an agent to learn behavior by acquiring experience through trial-and-error interactions with the environment. However, knowledge is usually built from scratch and learning the optimal policy may take a long time. In this work, we improve the learning performance by exploring transfer learning; that is, the knowledge acquired in previous source tasks is used to accelerate learning in new target tasks. If the tasks present similarities, then the transferred knowledge guides the agent towards faster learning. We explore the use of a relational representation that allows description of relationships among objects. This representation simplifies the use of abstraction and the extraction of the similarities among tasks, enabling the generalization of solutions that can be used across different, but related, tasks. This work presents two model-free algorithms for online learning of abstract policies: AbsSarsa(λ) and AbsProb-RL. The former builds a deterministic abstract policy from value functions, while the latter builds a stochastic abstract policy through direct search on the space of policies. We also propose the S2L-RL agent architecture, containing two levels of learning: an abstract level and a ground level. The agent simultaneously builds a ground policy and an abstract policy; not only the abstract policy can accelerate learning on the current task, but also it can guide the agent in a future task. Experiments in a robotic navigation environment show that these techniques are effective in improving the agents learning performance, especially during the early stages of the learning process, when the agent is completely unaware of the new task.
Title in Portuguese
Transferência relacional entre tarefas de aprendizado por reforço via políticas abstratas.
Keywords in Portuguese
Aprendizado computacional relacional
Inteligência artificial
Processos de Markov
Representação do conhecimento
Abstract in Portuguese
Na construção de agentes inteligentes para a solução de problemas de decisão sequenciais, o uso de aprendizado por reforço é necessário quando o agente não possui conhecimento suficiente para construir um modelo completo do problema. Entretanto, o aprendizado de uma política ótima é em geral muito lento pois deve ser atingido através de tentativa-e-erro e de repetidas interações do agente com o ambiente. Umas das técnicas para se acelerar esse processo é possibilitar a transferência de aprendizado, ou seja, utilizar o conhecimento adquirido para se resolver tarefas passadas no aprendizado de novas tarefas. Assim, se as tarefas tiverem similaridades, o conhecimento prévio guiará o agente para um aprendizado mais rápido. Neste trabalho é explorado o uso de uma representação relacional, que explicita relações entre objetos e suas propriedades. Essa representação possibilita que se explore abstração e semelhanças estruturais entre as tarefas, possibilitando a generalização de políticas de ação para o uso em tarefas diferentes, porém relacionadas. Este trabalho contribui com dois algoritmos livres de modelo para construção online de políticas abstratas: AbsSarsa(λ) e AbsProb-RL. O primeiro constrói uma política abstrata determinística através de funções-valor, enquanto o segundo constrói uma política abstrata estocástica através de busca direta no espaço de políticas. Também é proposta a arquitetura S2L-RL para o agente, que possui dois níveis de aprendizado: o nível abstrato e o nível concreto. Uma política concreta é construída simultaneamente a uma política abstrata, que pode ser utilizada tanto para guiar o agente no problema atual quanto para guiá-lo em um novo problema futuro. Experimentos com tarefas de navegação robótica mostram que essas técnicas são efetivas na melhoria do desempenho do agente, principalmente nas fases inicias do aprendizado, quando o agente desconhece completamente o novo problema.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
DISSERTACAO_Koga.pdf (1.70 Mbytes)
Publishing Date
2014-11-04
 
WARNING: The material described below relates to works resulting from this thesis or dissertation. The contents of these works are the author's responsibility.
  • BEIRIGO, Rafael Lemes, et al. Avaliação de Políticas Abstratas na Transferência de Conhecimento em Navegação Robótica. Revista de Sistemas e Computação [online], 2012, vol. 2, p. 17-25. Dispon?vel em: http://www.revistas.unifacs.br/index.php/rsc/article/view/2420.
  • SILVA, L.O.L.A., et al. Comparative assessment of feature selection and classification techniques for visual inspection of pot plant seedlings [doi:10.1016/j.compag.2013.07.001]. Computers and Electronics in Agriculture [online], 2013, vol. 97, p. 47-55.
  • KOGA, M. L., et al. Speeding-up reinforcement learning through abstraction and transfer learning. In International Conference on Autonomous Agents and Multi-Agent Systems, Saint Paul, MN, 2013. Proceedings of the 12th International Conference on Autonomous Agents and Multiagent Systems.New York, NY : ACM & IFAAMAS, 2013.
  • KOGA, M. L., SILVA, Valdinei Freire da, e COSTA, Anna Helena Reali. Online Learning of Abstract Stochastic Policies with Monte Carlo. In VII Workshop de Tecnologia Adaptativa (WTA 2013), São Paulo, SP, 2013. Anais do VII Workshop de Tecnologia Adaptativa., 2013.
  • SILVA, L. O. L. A., et al. Automated visual quality sorting of agricultural seedlings. In IX Workshop de Visão Computacional (WVC 2013), Rio de Janeiro, 2013. Anais do IX Workshop de Visão Computacional., 2013. Dispon?vel em: http://iris.sel.eesc.usp.br/wvc/Anais_WVC2013/Oral/3/3.pdf.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.