• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.3.2000.tde-05092001-141334
Document
Author
Full name
João Carlos Holland de Barcellos
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2000
Supervisor
Committee
Ranzini, Edith (President)
Cipparrone, Flavio Almeida de Magalhaes
Maruyama, Newton
Title in Portuguese
Algoritmos genéticos adaptativos: um estudo comparativo.
Keywords in Portuguese
algoritmos
genéticos
IA
inteligência artificial
maximização
otimização
Abstract in Portuguese
Os Algoritmos Genéticos representam, atualmente, uma poderosa ferramenta para busca de soluções de problemas com alto nível de complexidade. Esta dissertação estuda os Meta Algoritmos Genéticos, que é uma classe de Algoritmos Genéticos, e compara-os com os Algoritmos Genéticos tradicionais. Para a realização deste estudo, foi desenvolvido um programa de computador que permite, de forma automática, a realização de testes de desempenho de várias modalidades de Algoritmos Genéticos, bem como a análise dos dados por eles gerados. Os resultados obtidos mostraram que os Meta Algoritmos Genéticos são mais estáveis, com relação ao seus parâmetros de controle, do que os Algoritmos Genéticos tradicionais.
Title in English
Genetic algorithm: a comparative study.
Keywords in English
algorithm
genetic
inteligence
minimization artificial
optimization
Abstract in English
The Genetic Algorithms nowadays are a strong tool to find solutions in problems with high level of complexity. This dissertation studies Meta Genetic Algorithms, a particular class of Genetic Algorithms, and compares them to the usual Genetic Algorithms. This was accomplished by a computer program that automatically tests the performance of some Genetic Algorithms models and analyze the data generated by them. The results show that Meta Genetic Algorithms are more stable than usual Genetic Algorithms with relation to their control parameters.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Tag.pdf (2.64 Mbytes)
Publishing Date
2001-09-27
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.