• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.3.2014.tde-14082015-151933
Document
Author
Full name
Mara Andréa Dota
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2014
Supervisor
Committee
Cugnasca, Carlos Eduardo (President)
Bonfante, Andreia Gentil
Delgado, Karina Valdivia
Gomi, Edson Satoshi
Hirakawa, Andre Riyuiti
Title in Portuguese
Modelo para a classificação da qualidade da água contaminada por solo usando indução por árvore de decisão.
Keywords in Portuguese
Controle ambiental. Enxurradas
Fusão de sensores
Inteligência artificial
Mineração de dados
Redes de sensores sem fio
Abstract in Portuguese
A possibilidade de avaliar remotamente e de forma instantânea alterações na qualidade das águas em função da entrada de solos permite o monitoramento de processos ecológicos como o assoreamento, perdas e solos, carreamento de pesticidas e degradação de habitats aquáticos. Com a utilização de um modelo automatizado, torna-se possível um monitoramento em tempo real remoto coletando dados por meio de Redes de Sensores Sem Fio. Esta pesquisa propõe um modelo de classificação da qualidade da água contaminada por solo usando técnicas de Árvore de Decisão. Com este modelo torna-se possível acompanhar alterações que venham a ocorrer em águas superficiais indicando o nível de contaminação por solo com maior rapidez do que a forma convencional que necessita de análise em laboratório e coleta de amostra manual. A classificação proposta considera sete classes de qualidade da água, conforme dados de um experimento conduzido em laboratório. Foram utilizadas técnicas de Inteligência Artificial com o intuito de realizar a Fusão de Sensores para avaliar, em tempo real, as leituras dos sensores, indicando a qual classe de qualidade a amostra se enquadra. Na verificação de quantas classes seria o ideal, utilizou-se o algoritmo k-means++. Para a construção do modelo de classificação foram usadas técnicas de Indução por Árvore de Decisão, tais como: Best-First Decision Tree Classifier BFTree, Functional Trees FT, Naïve Bayes Decision Tree NBTree, Grafted C4.5 Decision Tree J48graft, C4.5 Decision Tree J48, LADTree. Os testes realizados indicam que a classificação proposta é coerente, visto que os diferentes algoritmos comprovaram uma relação estatística forte entre as instâncias das classes, garantindo que o modelo proposto irá predizer saídas para entradas de dados desconhecidas com acurácia. Os algoritmos com melhores resultados foram FT, J48graft e J48.
Title in English
Classification model for soil-contaminated water quality using decision tree induction.
Keywords in English
Artificial intelligence
Data mining
Environmental control
Runoff
Sensor fusion
Wireless sensor network
Abstract in English
The possibility to remotely and instantaneously evaluate changes in water quality due to soil contamination allows monitoring ecological processes such as siltation, soil losses, loading of pesticides and degradation of aquatic habitats. Using an automated model to classify soil-contaminated water quality allows for a remote realtime monitoring by collecting data using Wireless Sensor Networks. This study proposes a model to classify soil-contaminated water quality by using Decision Tree techniques. With this model, it is possible to track changes that may occur in surface waters indicating the level of contamination by soil faster than the conventional way, which requires laboratory analysis and manual sampling. The classification proposed considers seven classes of water quality, according to data from an experiment carried out in laboratory. Artificial Intelligence techniques were used in order to implement Sensor Fusion to evaluate, in real time, sensor readings to which class the sample quality fits. By checking how many classes would be ideal, the k-means + + algorithm was used. To build the classification model, Decision Tree Induction techniques were used, such as: Best-First Decision Tree Classifier BFTree, Functional Trees FT, Naïve Bayes Decision Tree NBTree, Grafted C4.5 Decision Tree J48graft, C4.5 Decision Tree J48, LADTree. Tests indicated that the proposed classification is consistent because different algorithms results confirmed a strong statistical relationship between instances of classes, ensuring that this model will predict outputs to unknown inputs accurately. The algorithms with best results were FT, J48graft and J48.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Tese_MaraADota.pdf (1.92 Mbytes)
Publishing Date
2015-09-01
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.