• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.3.2017.tde-17042017-095544
Document
Author
Full name
Guilherme Barros Castro
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2017
Supervisor
Committee
Hirakawa, Andre Riyuiti (President)
Digiampietri, Luciano Antonio
Peláez, Francisco Javier Ropero
Saraiva, Antonio Mauro
Silva, José Francisco Resende da
Title in Portuguese
Modelo de rede neural bioinspirada para o controle do trânsito urbano.
Keywords in Portuguese
Controle de tráfego
Inteligência artificial
Redes neurais
Sistemas dinâmicos
Abstract in Portuguese
Congestionamentos no trânsito urbano são uma preocupação principal em grandes cidades pelo mundo, devido a seus impactos negativos multifacetados na saúde humana, no meio ambiente e na economia. A urbanização crescente, e seu consequente aumento no volume do trânsito, causam ainda mais congestionamentos por causa do ritmo lento - e, em alguns casos, inexistente - das melhoras na infraestrutura urbana. Uma solução com bom custo-benefício para reduzir o tempo médio de viagem dos veículos e prevenir os congestionamentos é o controle do trânsito urbano. No entanto, a maior parte das abordagens de controle do trânsito urbano adota um ciclo de controle fixo, o qual limita o desempenho de controle devido à consequente inabilidade de agir quando necessário. Ao contrário dessas abordagens, esse trabalho propõe uma rede neural bioinspirada que monitora o estado do sistema de forma contínua e é capaz de agir em qualquer momento. A rede neural bioinspirada proposta adota plasticidade intrínseca e inibição lateral para gerar uma competição natural entre os neurônios, a qual determina quais semáforos devem ser ativados em cada momento. Além disso, interneurônios inibitórios são adotados para coordenar intersecções vizinhas e melhorar os fluxos de veículos. Devido à grande quantidade de possíveis combinações dos parâmetros, um método para determinar o comportamento do modelo de acordo com as características intrínsecas da rede neural bioinspirada também é proposto. A convergência e a estabilidade do modelo proposto são avaliadas por seus pontos-fixos e autovalores, respectivamente. Ademais, o tempo de processamento e a complexidade computacional da rede neural bioinspirada também são avaliados. Por fim, o desempenho do modelo para diferentes demandas de veículos e situações do trânsito é avaliado com um simulador de mobilidade urbana e comparado a um método de controle adaptativo.
Title in English
Biologically-inspired neural network model for urban traffic control.
Keywords in English
Artificial intelligence
Biologically-inspired neural network
Complex dinamic systems
Urban traffic control
Abstract in English
Traffic congestions are a major concern for big cities around the world due to its multifaceted negative impacts on human health, the environment and the economy. Growing urbanization, and the consequent increase in traffic volume, causes even more traffic congestions due to the slow-paced - and, in some cases, non-existing - improvements in the urban traffic infrastructure. A cost-effective solution to reduce vehicle travel times and prevent traffic congestions is traffic signal control. However, most approaches to traffic signal control adopt a fixed control cycle, which limits control performance due to the consequent inability to act when necessary. Contrary to these approaches, this work proposes a biologically-inspired neural network that monitors the system state continuously and can act upon it at any moment. The biologically-inspired neural network proposed adopts intrinsic plasticity and lateral inhibition to generate natural competition among neurons, determining which semaphores should be active at each moment. Furthermore, inhibitory interneurons are also adopted to coordinate neighboring intersections and to improve vehicle flows. Due to the large number of parameter combinations, a method to determine the model behavior according to the intrinsic characteristics of the biologically-inspired neural network is also proposed. Model convergence and stability are evaluated by its fixed-points and eigenvalues, respectively. Moreover, the computation time and computational complexity of the biologically-inspired neural network are also evaluated. Finally, the model performance for different vehicle demands and traffic situations is evaluated with a simulator of urban mobility and compared to an adaptive control method.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2017-04-17
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.