• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.3.2017.tde-18012017-084639
Documento
Autor
Nombre completo
Alan Rafael Fachini
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2016
Director
Tribunal
Martins Junior, David Corrêa (Presidente)
Hashimoto, Ronaldo Fumio
Sato, João Ricardo
Título en portugués
Avaliação de métodos de inferência de redes de regulação gênica.
Palabras clave en portugués
Bioinformática
Comitês de Especialistas
Inferência de Redes, Aprendizado de Máquina
Redes de Regulação Gênica
Resumen en portugués
A representação do Sistema de Regulação Gênica por meio de uma Rede de Regulação Gênica (GRN) pode facilitar a compreensão dos processos biológicos no nível molecular, auxiliando no entendimento do comportamento dos genes, a descoberta da causa de doenças e o desenvolvimento de novas drogas. Através das GRNs pode-se avaliar quais genes estão ativos e quais são suas influências no sistema. Nos últimos anos, vários métodos computacionais foram desenvolvidos para realizar a inferência de redes a partir de dados de expressão gênica. Esta pesquisa apresenta uma análise comparativa de métodos de inferência de GRNs, realizando uma revisão do modelo experimental descrito na literatura atual aplicados a conjuntos de dados contendo poucas amostras. Apresenta também o uso comitês de especialistas (ensemble) para agregar o resultado dos métodos a fim de melhorar a qualidade da inferência. Como resultado obteve-se que o uso de poucas amostras de dados (abaixo de 50) não fornecem resultados interessantes para a inferência de redes. Demonstrou-se também que o uso de comitês de especialistas melhoram os resultados de inferência. Os resultados desta pesquisa podem auxiliar em pesquisas futuras baseadas em GRNs.
Título en inglés
Evaluation of gene regulatory networks inference methods.
Palabras clave en inglés
Bioinformatics
Ensemble
Gene Regulatory Networks
Machine learning
Network Inference
Resumen en inglés
The representation of the gene regulation system by means of a Gene Regulatory Network (GRN) can help the understanding of biological processes at the molecular level, elucidating the behavior of genes and leading to the discovery of disease causes and the development of new drugs. GRNs allow to evaluate which genes are active and how they influence the system. In recent years, many computational methods have been developed for networks inference from gene expression data. This study presents a comparative analysis of GRN inference methods, reviewing the experimental modeling present in the state-of-art scientific publications applied to datasets with small data samples. The use of ensembles was proposed to improve the quality of the network inference. As results, we show that the use of small data samples (less than 50 samples) do not show a good result in the network inference problem. We also show that the use of ensemble improve the network inference.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2017-01-27
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.