• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.3.2017.tde-18012017-084639
Documento
Autor
Nome completo
Alan Rafael Fachini
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2016
Orientador
Banca examinadora
Martins Junior, David Corrêa (Presidente)
Hashimoto, Ronaldo Fumio
Sato, João Ricardo
Título em português
Avaliação de métodos de inferência de redes de regulação gênica.
Palavras-chave em português
Bioinformática
Comitês de Especialistas
Inferência de Redes, Aprendizado de Máquina
Redes de Regulação Gênica
Resumo em português
A representação do Sistema de Regulação Gênica por meio de uma Rede de Regulação Gênica (GRN) pode facilitar a compreensão dos processos biológicos no nível molecular, auxiliando no entendimento do comportamento dos genes, a descoberta da causa de doenças e o desenvolvimento de novas drogas. Através das GRNs pode-se avaliar quais genes estão ativos e quais são suas influências no sistema. Nos últimos anos, vários métodos computacionais foram desenvolvidos para realizar a inferência de redes a partir de dados de expressão gênica. Esta pesquisa apresenta uma análise comparativa de métodos de inferência de GRNs, realizando uma revisão do modelo experimental descrito na literatura atual aplicados a conjuntos de dados contendo poucas amostras. Apresenta também o uso comitês de especialistas (ensemble) para agregar o resultado dos métodos a fim de melhorar a qualidade da inferência. Como resultado obteve-se que o uso de poucas amostras de dados (abaixo de 50) não fornecem resultados interessantes para a inferência de redes. Demonstrou-se também que o uso de comitês de especialistas melhoram os resultados de inferência. Os resultados desta pesquisa podem auxiliar em pesquisas futuras baseadas em GRNs.
Título em inglês
Evaluation of gene regulatory networks inference methods.
Palavras-chave em inglês
Bioinformatics
Ensemble
Gene Regulatory Networks
Machine learning
Network Inference
Resumo em inglês
The representation of the gene regulation system by means of a Gene Regulatory Network (GRN) can help the understanding of biological processes at the molecular level, elucidating the behavior of genes and leading to the discovery of disease causes and the development of new drugs. GRNs allow to evaluate which genes are active and how they influence the system. In recent years, many computational methods have been developed for networks inference from gene expression data. This study presents a comparative analysis of GRN inference methods, reviewing the experimental modeling present in the state-of-art scientific publications applied to datasets with small data samples. The use of ensembles was proposed to improve the quality of the network inference. As results, we show that the use of small data samples (less than 50 samples) do not show a good result in the network inference problem. We also show that the use of ensemble improve the network inference.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2017-01-27
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.