• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
Documento
Autor
Nombre completo
Rodrigo Cesar Bonini
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2018
Director
Tribunal
Costa, Anna Helena Reali (Presidente)
Bianchi, Reinaldo Augusto da Costa
Homem, Thiago Pedro Donadon
Título en portugués
Descoberta e reuso de polí­ticas parciais probabilísticas no aprendizado por reforço.
Palabras clave en portugués
Aprendizado de máquina
Aprendizado por reforço
Inteligência artificial
Políticas parciais
Processos de decisão de Markov
Transferência de Conhecimento
Resumen en portugués
O aprendizado por reforço é uma técnica bem sucedida, porém lenta, para treinar agentes autônomos. Algumas soluções baseadas em políticas parciais podem ser usadas para acelerar o aprendizado e para transferir comportamentos aprendidos entre tarefas encapsulando uma política parcial. No entanto, geralmente essas políticas parciais são específicas para uma única tarefa, não levam em consideração recursos semelhantes entre tarefas e podem não corresponder exatamente a um comportamento ideal quando transferidas para outra tarefa diferente. A transferência descuidada pode fornecer más soluções para o agente, dificultando o processo de aprendizagem. Sendo assim, este trabalho propõe uma maneira de descobrir e reutilizar de modo probabilístico políticas parciais orientadas a objetos aprendidas, a fim de permitir melhores escolhas de atuação para o agente em múltiplas tarefas diferentes. A avaliação experimental mostra que a proposta é capaz de aprender e reutilizar com sucesso políticas parciais em diferentes tarefas.
Título en inglés
Discovery and reuse of probabilistic partial policies in reinforcement learning.
Palabras clave en inglés
Artificial intelligence
Machine learning
Markov decision process
Partial policies
Reinforcement learning
Transfer learning
Resumen en inglés
Reinforcement Learning is a successful yet slow technique to train autonomous agents. Option-based solutions can be used to accelerate learning and to transfer learned behaviors across tasks by encapsulating a partial policy. However, commonly these options are specific for a single task, do not take in account similar features between tasks and may not correspond exactly to an optimal behavior when transferred to another task. Therefore, careless transfer might provide bad options to the agent, hampering the learning process. This work proposes a way to discover and reuse learned objectoriented options in a probabilistic way in order to enable better actuation choices to the agent in multiple different tasks. The experimental evaluation show that the proposal is able to learn and successfully reuse options across different tasks.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2019-07-24
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.