• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
Document
Auteur
Nom complet
Ruben Glatt
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2019
Directeur
Jury
Costa, Anna Helena Reali (Président)
Colombini, Esther Luna
Gomi, Edson Satoshi
Homem, Thiago Pedro Donadon
Rocha, Vladimir Emiliano Moreira
Titre en anglais
Knowledge reuse for deep reinforcement learning.
Mots-clés en anglais
Artificial intelligence
Case-based reasoning
Deep reinforcement learning
Machine learning
Transfer learning
Resumé en anglais
With the rise of Deep Learning the field of Artificial Intelligence (AI) Research has entered a new era. Together with an increasing amount of data and vastly improved computing capabilities, Machine Learning builds the backbone of AI, providing many of the tools and algorithms that drive development and applications. While we have already achieved many successes in the fields of image recognition, language processing, recommendation engines, robotics, or autonomous systems, most progress was achieved when the algorithms were focused on learning only a single task with little regard to effort and reusability. Since learning a new task from scratch often involves an expensive learning process, in this work, we are considering the use of previously acquired knowledge to speed up the learning of a new task. For that, we investigated the application of Transfer Learning methods for Deep Reinforcement Learning (DRL) agents and propose a novel framework for knowledge preservation and reuse. We show, that the knowledge transfer can make a big difference if the source knowledge is chosen carefully in a systematic approach. To get to this point, we provide an overview of existing literature of methods that realize knowledge transfer for DRL, a field which has been starting to appear frequently in the relevant literature only in the last two years. We then formulate the Case-based Reasoning methodology, which describes a framework for knowledge reuse in general terms, in Reinforcement Learning terminology to facilitate the adaption and communication between the respective communities. Building on this framework, we propose Deep Case-based Policy Inference (DECAF) and demonstrate in an experimental evaluation the usefulness of our approach for sequential task learning with knowledge preservation and reuse. Our results highlight the benefits of knowledge transfer while also making aware of the challenges that come with it. We consider the work in this area as an important step towards more stable general learning agents that are capable of dealing with the most complex tasks, which would be a key achievement towards Artificial General Intelligence.
Titre en portugais
Reutilização do conhecimento para aprendizado por reforço profundo.
Mots-clés en portugais
Aprendizado computacional
Aprendizado por reforço profundo
Inteligência artificial
Raciocínio baseado em casos
Transferência de aprendizado
Resumé en portugais
Com a evolução da Aprendizagem Profunda (Deep Learning), o campo da Inteligência Artificial (IA) entrou em uma nova era. Juntamente com uma quantidade crescente de dados e recursos computacionais cada vez mais aprimorados, o Aprendizado de Máquina estabelece a base para a IA moderna, fornecendo muitas das ferramentas e algoritmos que impulsionam seu desenvolvimento e aplicações. Apesar dos muitos sucessos nas áreas de reconhecimento de imagem, processamento de linguagem natural, sistemas de recomendação, robótica e sistemas autônomos, a maioria dos avanços foram feitos focando no aprendizado de apenas uma única tarefa, sem muita atenção aos esforços dispendidos e reusabilidade da solução. Como o aprendizado de uma nova tarefa geralmente envolve um processo de aprendizado despendioso, neste trabalho, estamos considerando o reúso de conhecimento para acelerar o aprendizado de uma nova tarefa. Para tanto, investigamos a aplicação dos métodos de Transferência de Aprendizado (Transfer Learning) para agentes de Aprendizado por Reforço profundo (Deep Reinforcement Learning - DRL) e propomos um novo arcabouço para preservação e reutilização de conhecimento. Mostramos que a transferência de conhecimento pode fazer uma grande diferença no aprendizado se a origem do conhecimento for escolhida cuidadosa e sistematicamente. Para chegar a este ponto, nós fornecemos uma visão geral da literatura existente de métodos que realizam a transferência de conhecimento para DRL, um campo que tem despontado com frequência na literatura relevante apenas nos últimos dois anos. Em seguida, formulamos a metodologia Raciocínio baseado em Casos (Case-based Reasoning), que descreve uma estrutura para reutilização do conhecimento em termos gerais, na terminologia de Aprendizado por Reforço, para facilitar a adaptação e a comunicação entre as respectivas comunidades. Com base nessa metodologia, propomos Deep Casebased Policy Inference (DECAF) e demonstramos, em uma avaliação experimental, a utilidade de nossa proposta para a aprendizagem sequencial de tarefas, com preservação e reutilização do conhecimento. Nossos resultados destacam os benefícios da transferência de conhecimento e, ao mesmo tempo, conscientizam os desafios que a acompanham. Consideramos o trabalho nesta área como um passo importante para agentes de aprendizagem mais estáveis, capazes de lidar com as tarefas mais complexas, o que seria um passo fundamental para a Inteligência Geral Artificial.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
RubenGlattCorr19.pdf (2.47 Mbytes)
Date de Publication
2019-09-18
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2020. Tous droits réservés.