• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.3.2015.tde-19102015-145442
Document
Author
Full name
Felipe Leno da Silva
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2015
Supervisor
Committee
Costa, Anna Helena Reali (President)
Kim, Hae Yong
Martins Junior, David Corrêa
Title in Portuguese
Identificação automatizada de espécies de abelhas através de imagens de asas.
Keywords in Portuguese
Aprendizado supervisionado
Aprendizagem de máquina
Classificação de abelhas
Extração de características
Inteligência articial
Reconhecimento de padrões
Seleção de características
Visão computacional
Abstract in Portuguese
Diversas pesquisas focam no estudo e conservação das abelhas, em grande parte por sua importância para a agricultura. Entretanto, a identicação de espécies de abelhas vem sendo um impedimento para a condução de novas pesquisas, já que demanda tempo e um conhecimento muito especializado. Apesar de existirem diversos métodos para realizar esta tarefa, muitos deles são excessivamente custosos, restringindo sua aplicabilidade. Por serem facilmente acessíveis, as asas das abelhas vêm sendo amplamente utilizadas para a extração de características, já que é possível aplicar técnicas morfométricas utilizando apenas uma foto da asa. Como a medição manual de diversas características é tediosa e propensa a erros, sistemas foram desenvolvidos com este propósito. Entretanto, os sistemas ainda possuem limitações e não há um estudo voltado às técnicas de classificação que podem ser utilizadas para este m. Esta pesquisa visa avaliar as técnicas de extração de características e classificação de modo a determinar o conjunto de técnicas mais apropriado para a discriminação de espécies de abelhas. Nesta pesquisa foi demonstrado que o uso de uma conjunção de características morfométricas e fotométricas obtêm melhores resultados que o uso de somente características morfométricas. Também foram analisados os melhores algoritmos de classificação tanto usando somente características morfométricas, quanto usando uma conjunção de características morfométricas e fotométricas, os quais são, respectivamente, o Naïve Bayes e o classificador Logístico. Os Resultados desta pesquisa podem guiar o desenvolvimento de novos sistemas para identificação de espécies de abelha, objetivando auxiliar pesquisas conduzidas por biólogos.
Title in English
Automated bee species identification through wing images.
Keywords in English
Articial intelligence
Bee species recognition
Computer vision
Feature extraction
Feature selection.
Machine learning
Pattern recognition
Supervised learning
Abstract in English
Several researches focus on the study and conservation of bees, largely because of its importance for agriculture. However, the identification of bee species has hampering new studies, since it demands a very specialized knowledge and is time demanding. Although there are several methods to accomplish this task, many of them are excessively costly, restricting its applicability. For being accessible, the bee wings have been widely used for the extraction of features, since it is possible to apply morphometric techniques using just one image of the wing. As the manual measurement of various features is tedious and error prone, some systems have been developed for this purpose. However, these systems also have limitations, and there is no study concerning classification techniques that can be used for this purpose. This research aims to evaluate the feature extraction and classification techniques in order to determine the combination of more appropriate techniques for discriminating species of bees. The results of our research indicate that the use of a conjunction of Morphometric and Pixel-based features is more effective than only using Morphometric features. OuranalysisalsoconcludedthatthebestclassicationalgorithmsusingbothonlyMorphometric features and a conjunction of Morphometric and Pixel-based features are, respectively, Naïve Bayes and Logistic classier. The results of this research can guide the development of new systems to identify bee species in order to assist in researches conducted by biologists.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2015-10-22
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.