• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.3.2016.tde-29082016-134043
Document
Author
Full name
Fernando Hattori
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2016
Supervisor
Committee
Gomi, Edson Satoshi (President)
Brandao, Leonidas de Oliveira
Rocha, Ricardo Luis de Azevedo da
Title in Portuguese
Feedback de relevância orientado a termos: um novo método para ordenação de resultados de motores de busca.
Keywords in Portuguese
Biblioteca digital
Motores de busca
Recuperação de informação
Abstract in Portuguese
O modelo de recuperação de informação mais amplamente utilizado no contexto de acervos digitais é o Vector Space Model. Algoritmos implementados para este modelo que aproveitam informações sobre relevância obtidas dos usuários (chamados feedbacks) na tentativa de melhorar os resultados da busca. Porém, estes algoritmos de feedback de relevância não possuem uma estratégia global e permanente, as informações obtidas desses feedbacks são descartadas para cada nova sessão de usuário (são perenes) ou não modificam os documentos como um todo (são alterações locais). Este trabalho apresenta um método de feedbacks de relevância denominado orientado a termos, permitindo que as modificações realizadas por influência dos feedbacks dos usuários sejam globais e permanentes. Foram realizados experimentos utilizando o dataset ClueWeb09 que dão evidências de que este método melhora a qualidade dos resultados da busca em relação ao modelo tradicional Vector Space Model.
Title in English
Term-oriented relevance feedback: a novel ranking method for search engines.
Keywords in English
Digital library
Information retrieval
Search engines
Abstract in English
The Vector Space Model is the most widely used information retrieval model within digital libraries' systems. Algorithms developed to be used with this model use relevance information obtained from users (called feedbacks) to improve the search results. However, the relevance feedback algorithms developed are not global nor permanent, the feedbacks are discarded in users new sessions and do not affect every document. This paper presents a method that uses of relevance feedback named terms oriented. In this method, users' feedbacks lead to modifications in the terms' vectors representations. These modifications are global and permanent, influencing further searches. An experiment was conducted using the ClueWeb09 dataset, giving evidence that this method improves the quality of search results when compared with Vector Space Model.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2016-08-30
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2019. All rights reserved.