• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.3.2019.tde-30012019-100044
Document
Author
Full name
Ligia Maria Moreira Zorello
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2018
Supervisor
Committee
Carvalho, Tereza Cristina Melo de Brito (President)
Okamoto Junior, Jun
Verdi, Fábio Luciano
Title in English
Dynamic CPU frequency scaling using machine learning for NFV applications.
Keywords in English
DVFS
Energy efficiency
Machine learning
NFV
Abstract in English
Growth in the Information and Communication Technology sector is increasing the need to improve the quality of service and energy efficiency, as this industry has already surpassed 12% of global energy consumption in 2017. Data centers correspond to a large part of this consumption, accounting for about 15% of energy expenditure on the Information and Communication Technology domain; moreover, the subsystem that generates the most costs for data center operators is that of servers and storage. Many solutions have been proposed to reduce server consumption, such as the use of dynamic voltage and frequency scaling, a technology that enables the adaptation of energy consumption to the workload by modifying the operating voltage and frequency, although they are not optimized for network traffic. In this thesis, a control method was developed using a prediction engine based on the analysis of the ongoing traffic. Machine learning algorithms based on Neural Networks and Support Vector Machines have been used, and it was verified that it is possible to reduce power consumption by up to 12% on servers with Intel Sandy Bridge processor and up to 21 % in servers with Intel Haswell processor when compared to the maximum frequency, which is currently the most used solution in the industry.
Title in Portuguese
Escalamento dinâmico de frequência da CPU usando aprendizado de máquina em aplicações NFV.
Keywords in Portuguese
Aprendizado computacional
Eficiência energética
Redes de computadores
Abstract in Portuguese
O crescimento do setor de Tecnologia da Informação e Comunicação está aumentando a necessidade de melhorar a qualidade de serviço e a eficiência energética, pois o setor já ultrapassou a marca de 12% do consumo energético global em 2017. Data centers correspondem a grande parte desse consumo, representando cerca de 15% dos gastos com energia do setor Tecnologia Informação e Comunicação; além disso, o subsistema que gera mais custos para operadores de data centers é o de servidores e armazenamento. Muitas soluções foram propostas a fim de reduzir o consumo de energia com servidores, como o uso de escalonamento dinâmico de tensão e frequência, uma tecnologia que permite adaptar o consumo de energia à carga de trabalho, embora atualmente não sejam otimizadas para o processamento do tráfego de rede. Nessa dissertação, foi desenvolvido um método de controle usando um mecanismo de previsão baseado na análise do tráfego que chega aos servidores. Os algoritmos de aprendizado de máquina baseados em Redes Neurais e em Máquinas de Vetores de Suporte foram utilizados, e foi verificado que é possível reduzir o consumo de energia em até 12% em servidores com processador Intel Sandy Bridge e em até 21% em servidores com processador Intel Haswell quando comparado com a frequência máxima, que é atualmente a solução mais utilizada na indústria.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2019-02-01
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.