• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.3.2016.tde-04072016-103658
Document
Auteur
Nom complet
Humberto Fioravante Ferro
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2016
Directeur
Jury
Lopes, Cassio Guimarães (Président)
Burt, Phillip Mark Seymour
Costa, Márcio Holsbach
Panazio, Aline de Oliveira Neves
Silva, Magno Teófilo Madeira da
Titre en anglais
Hybrid convex combinations for IIR system identification.
Mots-clés en anglais
Adaptive filters
Energy conservation relation
Filters combinations
Mean square analysis
Systems identification
Resumé en anglais
The low complexity of IIR adaptive filters (AFs) is specially appealing to realtime applications but some drawbacks have been preventing their widespread use so far. For gradient based IIR AFs, adverse operational conditions cause convergence problems in system identification scenarios: underdamped and clustered poles, undermodelling or non-white input signals lead to error surfaces where the adaptation nearly stops on large plateaus or get stuck at sub-optimal local minima that can not be identified as such a priori. Furthermore, the non-stationarity in the input regressor brought by the filter recursivity and the approximations made by the update rules of the stochastic gradient algorithms constrain the learning step size to small values, causing slow convergence. In this work, we propose IIR performance enhancement strategies based on hybrid combinations of AFs that achieve higher convergence rates than ordinary IIR AFs while keeping the stability.
Titre en portugais
Combinações convexas híbridas para identificação de sistemas IIR.
Mots-clés en portugais
Análise média quadrática
Combinações de filtros
Conversão de energia elétrica
Filtros elétricos adaptativos
Filtros elétricos digitais
Identificação de sistemas
Resumé en portugais
A baixa complexidade dos filtros adaptativos (FAs) IIR é atrativa para aplicações em tempo real, mas certos inconvenientes têm impedido sua ampla utilização até agora. Para os FAs baseados no gradiente descendente, condições operacionais adversas suscitam problemas de convergência em cenários de identificação de sistemas: pólos subamortecidos ou agrupados, submodelagem ou sinais correlacionados originam superfícies de erro onde a adaptação desacelera em grandes planícies ou para em mínimos locais sub-ótimos que não podem ser identificados como tais a priori. Além disso, a não-estacionaridade do regressor de entrada causada pela recursividade do filtro e as aproximações feitas pelas regras de atualização dos algoritmos de gradiente estocástico restringem o passo de aprendizado a valores pequenos, retardando a convergência. Neste trabalho, propomos estratégias de aprimoramento de desempenho baseadas em combinações híbridas e estáveis de FAs que alcançam taxas de convergências mais altas do que FAs IIR comuns.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2016-07-06
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2020. Tous droits réservés.