• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
Documento
Autor
Nombre completo
Ronaldo Mendes Evaristo
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2010
Director
Tribunal
Baccalá, Luiz Antonio (Presidente)
Arjona Ramírez, Miguel
Sato, João Ricardo
Título en portugués
Métodos de reamostragem de séries temporais baseados em wavelets.
Palabras clave en portugués
Análise de ondaletas
Análise de séries temporais
Análise espectral
Resumen en portugués
Neste texto são revisados métodos de reamostragem de séries temporais discretas baseados em wavelets, como alternativas as abordagens clássicas, feitas nos domínios do tempo e da frequência. Tais métodos, conhecidos na literatura como wavestrap e wavestrapping fazem uso, respectivamente, das transformadas wavelet discreta (DWT) e wavelet packet discreta (DWPT). Existem poucos resultados sobre a aplicação da DWPT, de forma que este texto pode ser considerado uma contribuição. Aqui mostra-se também, a superioridade do wavestrapping sobre o wavestrap quando aplicados na estimação da densidade espectral de potência de séries temporais sintéticas geradas a partir de modelos autoregressivos. Tais séries possuem uma particularidade interessante que são picos, geralmente acentuados, em sua reapresentação espectral, de tal forma que grande parte dos métodos clássicos de reamostragem apresentam resultados viesados quando aplicados a estes casos.
Título en inglés
Resampling methods for time series based on wavelets.
Palabras clave en inglés
Spectral analysis
Time series analysis
Wavelets analysis
Resumen en inglés
This paper reviews resampling methods based on wavelets as an alternative to the classic approaches which are, made in the time and frequency domains. These methods, known in the literature as wavestrap and wavestrapping, make use, respectively, of the discrete wavelet transform (DWT) and of the discrete wavelet packet transform (DWPT). Since only few results are avaliable when the DWPT is applied, this text can be considered a contribution to the subject. Here we, also show the superiority of wavestrapping over wavestrap when they are applied to the estimation of power spectral densities of the synthetic time series generated from autoregressive models. These series have an interesting feature that are sharp peaks in their spectral representation, so that most of the traditional methods of resampling lead to biased results.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2010-09-02
 
ADVERTENCIA: El material descrito abajo se refiere a los trabajos derivados de esta tesis o disertación. El contenido de estos documentos es responsabilidad del autor de la tesis o disertación.
  • EVARISTO, R. M., e BACCALÁ, L. A. Reamostragem de Séries Temporais Baseada em Transformada Wavelet Discreta e Transformada Wavelet Discreta por Pacotes. In VIII Encontro Regional de Matemática Aplicada e Computacional, 2008., Natal, RN, 2008. ERMAC - Encontro Regional de Matemática Aplicada e Computacional, 2008., 2008.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.