• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
https://doi.org/10.11606/D.3.2024.tde-12072024-071217
Document
Auteur
Nom complet
Guilherme Goto Escudero
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2024
Directeur
Jury
Lopes, Roseli de Deus (Président)
Ayres, Fábio José
Silva, Flavio Soares Correa da
Titre en portugais
Pycausal-explorer: uma biblioteca de inferência causal para dados observacionais.
Mots-clés en portugais
Causalidade
Inteligência estatística
Software livre
Resumé en portugais
A crescente disseminação dos algoritmos de machine learning trouxe avanços notáveis em diversas áreas do conhecimento. Esses progressos foram impulsionados pela expansão da capacidade de coleta, armazenamento e processamento de dados. No entanto, à medida que os métodos de machine learning se desenvolvem e encontram novas aplicações, surge uma questão fundamental e frequentemente negligenciada: se existe apenas correlação entre as variáveis ou se elas têm uma relação causal. A necessidade de responder à pergunta E se? se torna cada vez mais urgente. Nesse contexto, as técnicas de inferência causal, como as usadas em experimentos controlados aleatórios, desempenham um papel fundamental na obtenção de insights confiáveis. No entanto, esses experimentos controlados aleatórios enfrentam desafios como altos custos e duração prolongada, enquanto os dados observacionais (coletados sem manipulação deliberada) são uma alternativa viável, mas que por sua vez apresentam complexidades próprias, como a falta de controle sobre o tratamento aplicado. A questão do contrafactual, que envolve considerar E se uma ação alternativa tivesse sido tomada em vez daquela observada?, torna-se central na inferência causal. Nesta pesquisa, foi realizada uma revisão dos conceitos de causalidade e inferência causal, seguida do detalhamento e comparação entre os frameworks de modelagem causal de Neyman-Rubin e de Pearl. Tomando como base o framework de Neyman-Rubin, foi revisada a teoria por trás dos principais modelos utilizados em inferência causal de dados observacionais. Outra contribuição desta pesquisa foi a elaboração da Pycausal-explorer, uma biblioteca em Python de código aberto, que, além de implementar os modelos descritos e analisados neste texto, permite a integracao com o scikit-learn que é uma das principais bibliotecas de machine learning em Python. Com isso, espera-se promover a compreensão e aplicação desses modelos em análises de dados observacionais nas mais diversas áreas, proporcionando insights valiosos e embasados em relações de causa e efeito mais robustas e sólidas.
Titre en anglais
Untitled in english
Mots-clés en anglais
Causal inference
Observational data
Open source
Resumé en anglais
The increasing prevalence of machine learning algorithms has brought remarkable advancements in various fields of knowledge. These progressions are driven by the expansion of data collection, storage, and processing capabilities. However, as machine learning methods continue to evolve and find new applications, a fundamental and often overlooked question arises: whether there is only a correlation between variables or if they have a causal relationship. The need to answer the what if?question becomes increasingly urgent. In this context, causal inference techniques, such as those used in randomized controlled experiments, play a fundamental role in obtaining reliable insights. However, these randomized controlled experiments face challenges such as high costs and extended duration, while observational data (collected without deliberate manipulation) are a viable alternative but come with their own complexities, such as the lack of control over the applied treatment. The issue of counterfactuals, involving considering What if an alternative action had been taken instead of the one observed?becomes central in causal inference. In this research, a review of causality and causal inference concepts was conducted, followed by a detailed comparison between the Neyman-Rubin and Pearl causal modeling frameworks. Building upon the Neyman-Rubin framework, the theory behind the main models used in causal inference from observational data was reviewed. Another contribution of this research was the development of Pycausal-explorer, an open-source Python library that not only implements the models described and analyzed in this text but also allows integration with scikit-learn, one of the leading machine learning libraries in Python. With this, it is expected to promote the understanding and application of these models in observational data analysis in various fields, providing valuable insights based on more robust and solid cause-and-effect relationships.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2024-07-15
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2024. Tous droits réservés.