• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.3.2006.tde-22042007-205845
Document
Author
Full name
Claudio José Bordin Júnior
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2006
Supervisor
Committee
Baccalá, Luiz Antonio (President)
Bruno, Marcelo Gomes da Silva
Costa, Oswaldo Luiz do Valle
Nascimento, Vítor Heloiz
Wechsler, Sérgio
Title in Portuguese
Métodos estatísticos para equalização de canais de comunicação.
Keywords in Portuguese
Equalização cega
Estimação Bayesiana
Filtros de partículas
Abstract in Portuguese
Nesta tese analisamos e propomos métodos para a equalização não-treinada (cega) de canais de comunicação lineares FIR baseados em filtros de partículas, que são técnicas recursivas para a solução Bayesiana de problemas de filtragem estocástica. Iniciamos propondo novos métodos para equalização sob ruído gaussiano que prescindem do uso de codificação diferencial, ao contrário dos métodos existentes. Empregando técnicas de evolução artificial de parâmetros, estendemos estes resultados para o caso de ruído aditivo com distribuição não-gaussiana. Em seguida, desenvolvemos novos métodos baseados nos mesmos princípios para equalizar e decodificar conjuntamente sistemas de comunicação que empregam códigos convolucionais ou em bloco. Através de simulações numéricas, observamos que os algoritmos propostos apresentam desempenhos, medidos em termos de taxa média de erro de bit e velocidade de convergência, marcadamente superiores aos de métodos tradicionais, freqüentemente aproximando o desempenho dos algoritmos ótimos (MAP) treinados. Além disso, observamos que os métodos baseados em filtros de partículas determinísticos exibem desempenhos consistentemente superiores aos dos demais métodos, sendo portanto a melhor escolha caso o modelo de sinal empregado permita a marginalização analítica dos parâmetros desconhecidos do canal.
Title in English
Statistical methods for blind equalization of communication channels.
Keywords in English
Bayesian estimation
Blind equalization
Particles filters
Abstract in English
In this thesis, we propose and analyze blind equalization methods suitable for linear FIR communications channels, focusing on the development of algorithms based on particle filters - recursive methods for approximating Bayesian solutions to stochastic filtering problems. Initially, we propose new equalization methods for signal models with gaussian additive noise that dispense with the need for differentially encoding the transmitted signals, as opposed to the previously existing methods. Next, we extend these algorithms to deal with non-gaussian additive noise by deploying artificial parameter evolution techniques. We next develop new joint blind equalization and decoding algorithms, suitable for convolutionally or block-coded communications systems. Via numerical simulations we show that the proposed algorithms outperform traditional approaches both in terms of mean bit error rate and convergence speed, and closely approach the performance of the optimal (MAP) trained equalizer. Furthermore, we observed that the methods based on deterministic particle filters consistently outperform those based on stochastic approaches, making them preferable when the adopted signal model allows for the analytic marginalization of the unknown channel parameters.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
TeseClaudioBordin.pdf (967.45 Kbytes)
Publishing Date
2007-04-23
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.