• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.3.2006.tde-22042007-205845
Document
Auteur
Nom complet
Claudio José Bordin Júnior
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2006
Directeur
Jury
Baccalá, Luiz Antonio (Président)
Bruno, Marcelo Gomes da Silva
Costa, Oswaldo Luiz do Valle
Nascimento, Vítor Heloiz
Wechsler, Sérgio
Titre en portugais
Métodos estatísticos para equalização de canais de comunicação.
Mots-clés en portugais
Equalização cega
Estimação Bayesiana
Filtros de partículas
Resumé en portugais
Nesta tese analisamos e propomos métodos para a equalização não-treinada (cega) de canais de comunicação lineares FIR baseados em filtros de partículas, que são técnicas recursivas para a solução Bayesiana de problemas de filtragem estocástica. Iniciamos propondo novos métodos para equalização sob ruído gaussiano que prescindem do uso de codificação diferencial, ao contrário dos métodos existentes. Empregando técnicas de evolução artificial de parâmetros, estendemos estes resultados para o caso de ruído aditivo com distribuição não-gaussiana. Em seguida, desenvolvemos novos métodos baseados nos mesmos princípios para equalizar e decodificar conjuntamente sistemas de comunicação que empregam códigos convolucionais ou em bloco. Através de simulações numéricas, observamos que os algoritmos propostos apresentam desempenhos, medidos em termos de taxa média de erro de bit e velocidade de convergência, marcadamente superiores aos de métodos tradicionais, freqüentemente aproximando o desempenho dos algoritmos ótimos (MAP) treinados. Além disso, observamos que os métodos baseados em filtros de partículas determinísticos exibem desempenhos consistentemente superiores aos dos demais métodos, sendo portanto a melhor escolha caso o modelo de sinal empregado permita a marginalização analítica dos parâmetros desconhecidos do canal.
Titre en anglais
Statistical methods for blind equalization of communication channels.
Mots-clés en anglais
Bayesian estimation
Blind equalization
Particles filters
Resumé en anglais
In this thesis, we propose and analyze blind equalization methods suitable for linear FIR communications channels, focusing on the development of algorithms based on particle filters - recursive methods for approximating Bayesian solutions to stochastic filtering problems. Initially, we propose new equalization methods for signal models with gaussian additive noise that dispense with the need for differentially encoding the transmitted signals, as opposed to the previously existing methods. Next, we extend these algorithms to deal with non-gaussian additive noise by deploying artificial parameter evolution techniques. We next develop new joint blind equalization and decoding algorithms, suitable for convolutionally or block-coded communications systems. Via numerical simulations we show that the proposed algorithms outperform traditional approaches both in terms of mean bit error rate and convergence speed, and closely approach the performance of the optimal (MAP) trained equalizer. Furthermore, we observed that the methods based on deterministic particle filters consistently outperform those based on stochastic approaches, making them preferable when the adopted signal model allows for the analytic marginalization of the unknown channel parameters.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
TeseClaudioBordin.pdf (967.45 Kbytes)
Date de Publication
2007-04-23
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2020. Tous droits réservés.