• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.3.2017.tde-23012017-141914
Documento
Autor
Nome completo
Rogério Guerra Borin
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2016
Orientador
Banca examinadora
Silva, Magno Teófilo Madeira da (Presidente)
Attux, Romis Ribeiro de Faissol
Suyama, Ricardo
Título em português
Detecção de atividade vocal empregando máquinas de Boltzmann restritas.
Palavras-chave em português
Inteligência artificial
Processamento de sinais
Processamento de som
Telefonia
Resumo em português
Neste trabalho, uma versão de RBM (Restricted Boltzmann Machine) tendo uma camada de classificação é adaptada a fim de permitir o seu uso com dados definidos num domínio contínuo. Essa adaptação dá origem a uma variante do modelo para o qual são desenvolvidas as regras de atualização de parâmetros dos treinamentos discriminativo, generativo e híbrido. A aplicação da variante como classificador no problema de VAD (Voice Activity Detection) é então investigada. Por meio de simulações envolvendo o corpus NOIZEUS e empregando como entradas do classificador tanto MFCCs (Mel-Frequency Cepstral Coefficients) quanto FBEs (Filter-Bank Energies), são obtidos resultados comparáveis aos de detectores considerados como estado da arte, com um menor custo computacional. A variante de RBM é comparada também com as SVMs (Support Vector Machines) lineares e com núcleo gaussiano. Com treinamento discriminativo, a RBM fornece desempenhos intermediários entre as duas versões de SVM, porém um custo computacional que é consideravelmente inferior aos de ambas. Adicionalmente, um conjunto de medidas do áudio que tiveram seu uso em VAD proposto recentemente são avaliadas com o emprego da RBM com treinamento discriminativo. Embora os resultados não sejam conclusivos, os desempenhos conseguidos indicam que essas medidas não são vantajosas quando comparadas com os tradicionais MFCCs.
Título em inglês
Voice activity detection employing restricted Boltzmann machines.
Palavras-chave em inglês
Artificial intelligence
Signal processing
Sound processing
Telephony
Resumo em inglês
In this work, a type of Restricted Boltzmann Machine (RBM) having a classification layer is adapted to allow its use with data defined in a continuous domain. Such adaptation gives rise to a variant of the model for which the parameter update rules are developed for the discriminative, generative and hybrid types of training. The application of the variant as a classifier to the Voice Activity Detection (VAD) problem is then investigated. By means of simulations involving the corpus NOIZEUS and employing Mel-Frequency Cepstral Coefficients (MFCCs) or Filter-Bank Energies (FBEs) as classifier inputs, results comparable to those of state-of-the-art detectors are achieved with a lower computational cost. The RBM variant is also compared to the linear and Gaussian kernel Support Vector Machines (SVMs). With the discriminative training, the RBM provides intermediate performances between the two SVM types, but a computational cost that is considerably lower than theirs. Additionally, a set of measures from the audio whose application in VAD has been recently proposed are evaluated by employing the RBM with discriminative training. Although the results are not conclusive, the performances obtained indicate that the measures are not advantageous when compared to the traditional MFCCs.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2017-01-26
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.