• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.3.2006.tde-22042007-200433
Document
Auteur
Nom complet
Danilo Belpiede
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2006
Directeur
Jury
Kagan, Nelson (Président)
Oliveira, Carlos César Barioni de
Valente, André Luiz de Carvalho
Titre en portugais
Aplicação de algoritmos e evolutivos para a otimização do fluxo de potência em sistemas de subtransmissão de energia elétrica.
Mots-clés en portugais
Algoritmos evolutivos
Otimização de redes de distribuição de energia elétrica
Resumé en portugais
Esta dissertação apresenta uma metodologia de otimização do fluxo de potência em sistemas elétricos de subtransmissão utilizando duas técnicas da Computação Evolutiva, os Algoritmos Genéticos e as Estratégias Evolutivas. A metodologia decompõe o problema em duas partes e o trata seqüencialmente. A primeira parte procede com a otimização do fluxo de potência ativa e a segunda com a otimização do fluxo de potência reativa. São apresentadas as características e estruturas básicas dos Algoritmos Genéticos e das Estratégias Evolutivas. A técnica dos Algoritmos Genéticos é implementada no modelo de otimização do fluxo de potência ativa e a técnica das Estratégias Evolutivas no modelo de otimização do fluxo de potência reativa. As variáveis de controle dos modelos desenvolvidos são, respectivamente, os estados dos dispositivos de seccionamento e os níveis de tensão dos barramentos dos pontos de fronteira, associadas ao sistema analisado. Analisam-se os sistemas elétricos de subtransmissão que contêm múltiplos pontos de fronteira (conexão) com a Rede Básica e diversas possibilidades de configuração operativa. A metodologia proposta é aplicada a um sistema elétrico de subtransmissão real a fim de minimizar o custo dos encargos de uso dos sistemas de transmissão. Os resultados obtidos mostram a eficácia dos algoritmos desenvolvidos na busca das soluções desejadas.
Titre en anglais
Evolutionary algorithms applied for power flow optimization on subtransmission electric systems.
Mots-clés en anglais
Electric distribution network optimization
Evolutionary algorithms
Resumé en anglais
This dissertation presents a power flow optimization methodology on subtransmission electric systems using two techniques of Evolutionary Computation, namely the Genetic Algorithms and the Evolution Strategies. The methodology splits the problem into two parts and treats it separately. On the first step it proceeds to optimize the active power flow and on the second step to optimize the reactive power flow. Characteristics and basic structures of the Genetic Algorithms and the Evolution Strategies are shown. The Genetic Algorithms technique is implemented on the active power flow optimization model and the Evolution Strategies technique on the reactive power flow optimization model. The control variables of developed models are, respectively, the switch states and the border point bar voltage levels, associated to the analyzed system. The subtransmission electric systems that have multiple border (connection) points to the Basic Network and many operative configuration possibilities are analyzed. The proposed methodology is applied to a real subtransmission electric system in order to minimizes the transmission system use duty costs. The obtained results show the efficacy of the developed algorithms in the search of desired solutions.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2007-04-23
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2019. Tous droits réservés.