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SILVA, Cátia da Costa e. Modelo geometricamente exato rígido ao cisalhamento de cascas 
e barras. 2020. 114 f. Tese (Doutor em Ciência) – Escola Politécnica – Universidade de São 
Paulo, São Paulo, 2020. 

Resumo 

Este trabalho apresenta uma teoria rígida ao cisalhamento, geometricamente exata para 
formulação de elementos de barra e casca com deslocamentos e rotações finitas. Equações 
constitutivas elásticas lineares foram consideradas para as barras, e um material Neo-Hookeano 
foi considerado para as cascas. Tensões e deformações generalizadas energeticamente 
conjugadas são definidas. Uma configuração de referência reta é considerada para a barra, e 
plana para a casca. Consequentemente, o uso de sistemas de coordenadas convectivos não 
cartesianos não é necessário, e apenas componentes ortogonais são aplicados. A parametrização 
do campo de rotação é realizada pelo tensor de rotações, considerando a fórmula de Rodrigues, 
o que faz com que a atualização das variáveis rotacionais seja fácil. O método dos elementos 
finitos foi considerado, e uma continuidade C1 é alcançada no elemento. Tal método é utilizado 
para discretizar potenciais em um domínio computacional em termos de graus de liberdade. 
Partindo do princípio que o potencial é não linear, um esquema de iteração de Newton-Raphson 
é escolhido para resolver o problema. Um conjunto de exemplos de referência ilustra a utilidade 
da formulação e sua implementação numérica. Esses problemas foram computados e 
apresentaram resultados satisfatórios. Portanto, pode-se concluir que esta formulação mostra 
grandes promessas a serem amplamente utilizadas para problemas 3D gerais, em estruturas 
esbeltas. Teorias rígidas ao cisalhamento podem ser extensamente aplicadas em problemas de 
engenharia, como em hastes de perfuração de petróleo, braços de robô e para cascas reforçadas 
com nervuras, comuns na indústria aeroespacial e de automóveis. 
 

Palavras-chave: Casca. Rigidez ao cisalhamento. Barra. Geometricamente Exata. 
 



 
 

SILVA, Cátia da Costa e. Geometrically exact shear-rigid shell and rod models. 2020. 114 
f. Thesis (Doctor of Science) – Polytechnic School – University of São Paulo, São Paulo, 2020. 

Abstract 

This work presents geometrically exact shear-rigid rod and shell formulations. Displacements 
and rotations are finite. Linear elastic constitutive equations for small strains are considered in 
the numerical examples for the rods. A Neo-Hookean material is considered for the shell. 
Energetically conjugated cross-sectional stresses and strains are defined. A straight reference 
configuration is assumed for the rod, and a flat reference configuration the shell. Consequently, 
the use of convective non-Cartesian coordinate systems is not necessary, and only components 
on orthogonal frames are employed. The parameterization of the rotation field is done by the 
rotation tensor with the Rodrigues formula, which makes the updating of the rotational variables 
very simple.  The usual Finite Element Method was used and C1 continuity is achieved within 
the element. This method is used to discretize the potentials on a computational domain in terms 
of the nodal degrees of freedom. Bearing in mind that the potential is nonlinear a Newton-
Raphson iteration scheme is chosen to solve this problem. A set of numerical benchmark 
examples illustrates the usefulness of the formulation and its numerical implementation. These 
problems were performed and presented satisfying results. Hence, it can be concluded that this 
formulation shows great promises to be extensively used for general 3D problems for slender 
structures. Shear-rigid theories can be widely applied on engineering problems. They can be 
used in oil drilling rods, robot arms and for rib-reinforced shells that are common in aerospace 
and automobile industry.  
 
 
 
 
Keywords: Shell. Shear-Rigid. Rod. Geometrically Exact. 
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1. Introduction 

This work presents fully nonlinear shear-rigid rod and shell formulations. The geometrically 

exact rod formulation developed in Pimenta and Yojo (1993) [41] is now constrained to obey 

the Bernoulli-Euler assumption. And the geometrically exact shell formulation developed in 

Campello, Pimenta and Wriggers (2003) [11] is now constrained to obey the Kirchhoff-Love 

assumption as developed in Viebahn, Pimenta and Schröder (2016)  [65]. 

 As in Campello, Pimenta and Wriggers (2003) [11] and Pimenta and Yojo (1993) [41] our 

approach defines energetically conjugated generalized cross section stresses and strains. 

Besides their practical importance, cross section quantities make the derivation of equilibrium 

equations easier, as well as the achievement of the corresponding tangent bilinear form, which 

is always symmetric for hyper elastic materials and conservative loadings, even far from an 

equilibrium state.  

A straight reference configuration was assumed for the rod and a plane reference configuration 

is assumed for the shell mid-surface. Initially curved rods and shells can be regarded as a stress-

free deformation from this configuration. This approach was already employed in Pimenta 

(1996) [42], Pimenta and Campello (2009) [43] and is not addressed in  this work. The use of 

straight reference configuration simplifies the comprehension of tensor quantities, since only 

components on orthogonal systems are employed.  

Rods are elements in which one dimension is predominant over the others, which makes it 

possible to represent them by their axis. The term rod can be substituted by bars or other terms, 

here it is used to describe any reticulated structure, such as, beams, columns and trusses. Shells 

are elements were one dimension is much smaller than the others.  

There are some fundamental simplifying assumptions on solid mechanics for rods and shells. 

The continuity hypothesis, where the solids are idealized as continuous, which allows one to 

describe a solid by its material points, attributing a set of coordinates to it and disregarding the 

internal micro-structure, that is, all the volume is totally filled with the material. The 

homogeneity hypothesis, where the mechanical properties are the same at any point in the solid. 
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The isotropy hypothesis, where mechanical properties are equal in all directions around a point. 

The proportionality hypothesis, where in a continuous solid the deformations are related in all 

their points with the strains, in linear and homogeneous terms. The small deformation 

hypothesis, where the material undergoes small strains when compared with the dimensions of 

the structures. The first Bernoulli hypothesis, where a plane section remains plane after 

deformation. The Saint-Venant principle, that states that as the chosen point moves away from 

the application point of the force the stresses begin to be evenly distributed in the cross section 

of the element. 

The forces acting on a material are described through stress tensors. One of them is the Cauchy 

tensor, it is called a true tensor to distinguish itself from other tensors, because it is the measure 

of force per unit of area in the current deformed configuration. When the deformations are small 

there is no distinction between the deformed and the initial configuration and the Cauchy tensor 

is the way of describing these stresses, which is used in the linear theory. But, considering finite 

deformation, there must be a distinction between the deformed and reference configuration. In 

this case, a nonlinear theory must be used and, there are several possible ways of defining the 

action of forces, usually, stress tensors do not have a clear physical meaning like the Cauchy 

stress tensor. One possibility is to use Piola-Kirchhoff's first and second stress tensors. Piola-

Kirchhoff's first stress tensor is used in this work.  

As described Crisfield (1996) [16], structures are evaluated by their behaviors from structural 

models. These structural models’ simplifications are made to characterize the structural 

behavior of interest. With these simplifications and the detailing of the structure, numerical 

models can be created for structural analysis. 

Structures are evaluated using geometrically linear and nonlinear theories, linear ones restrict 

the magnitude of displacements, rotation and strains for simplification, but are widely used in 

engineering. 

In this work, the author intends to analyze structures with large displacements and rotations 

considering the Bernoulli-Euler assumption which states that the cross sections initially 

orthogonal to the rod axis, remain orthogonal to it after deformation. And, analogously, the 

Kirchhoff-Love’s assumption for shells. These assumptions are used to describe slim structures, 

in which bending are preeminent over shear.  
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According to Borst et al. (2012) [18] most of the initial work related to geometric nonlinearity 

was concerned about the problem of buckling. Initially, incremental processes were adopted. 

Unfortunately, the incremental approach can lead to an accumulation of unquantifiable error 

and, to overcome this problem, the Newton-Raphson iteration was used and is applied in this 

work. As the processing power of computers has increased the possibility of performing non-

linear analyses has shown advantages and increased as well. An advantage is to directly 

simulate the collapsing behavior of a structure; therefore, the costs of physical experiments are 

reduced. 

The objectives of this work are to present theories for extremely flexible rods and shells as well 

as their connection, based on geometrically exact formulations. The rod model is developed 

using the same mathematical framework presented in Pimenta and Yojo (1993) [41]. However, 

instead of using Timoshenko (shear deformable) beam theory, Bernoulli-Euler (shear rigid) 

hypotheses are addressed. The shell model is presented using the same mathematical framework 

presented used in Viebahn, Pimenta and Schröder (2016) [65]. Moreover, Rodrigues parameters 

are employed for the description of finite rotations. The connection between the two models are 

also presented. 

The geometrically exact Kirchhoff-Love shell formulation from Viebahn, Pimenta and 

Schröder (2016) [65] is reviewed and extended here. The connection between shell elements is 

done differently as it will be shown and is also a contribution of this work.  

Novel interpolations schemes for the rod model are presented for the rotation field representing 

the cross section orientation, which is based on Rodrigues parameters and obeys the Bernoulli-

Euler constraint. This formulation has continuous displacement degrees of freedom, however 

the derivatives of the displacements and the rotation can be discontinuous, to address cross 

sectional or material changes along the rod and also a change in the axial direction. The 

connection between elements is enforced by the Rodrigues parameter being equal on both 

connecting ends. The rod element is also connected to the Kirchhoff-Love shell element.  

Bernoulli-Euler and Kirchhoff-Love theories assume a priori the absence of transverse shear 

strains. Although it was the first available rod theory in the linear case, its generalization to the 

geometrically exact description of the kinematics was not accomplished until recent years like 

Meier, Popp and Wall (2014) [38] and Pimenta, Almeida Neto and Campello (2016) [44]. 
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Bernoulli-Euler rod theory is the asymptotic behavior of Timoshenko theory for slender rods, 

as well as, Kirchhoff-Love theory is the limit of the Mindlin-Reissner theory for thin shells. 

The development of finite elements for such theories is not straightforward because they require 

C1-continuity for the transversal displacements at current configuration.  

This work presents a simple finite element for the geometrically exact Bernoulli-Euler rod 

theory that accomplishes an adequate C1-continuity for the transversal displacements at current 

configuration, which is a desirable feature for contact problems when the element topology is 

employed directly on contact detection schemes. For the displacements, usual cubic and quintic 

Hermite polynomials are employed and linear, quadratic and cubic interpolation for the torsion 

rotation parameter are employed as explained later. Warping was not considered and is subject 

to be explored in future works. 

For the shell a consistent plane stress condition is incorporated at the constitutive level of the 

model and triangular finite element, with a quadratic interpolation for the displacements are 

applied. 

In practical problems, thin rods and shells are commonly employed. Shear rigid theories and 

the presented finite element implementation can be used in the very thin limit with no numerical 

problems. 

The finite problem approximation is free of shear-locking. Hence, no numerical trick like 

reduced integration is necessary. A numerical example shows that any order of numerical 

integration leads to the same results. 

The connection of elements is enforced by the assembly of the stiffness matrix as usual in finite 

elements methods. Other connection methods are possible and are explained forward, but the 

simplest one is chosen for the examples. 

1.1. Notation 

Throughout the text, italic Greek or Latin lowercase letters (𝑎, 𝑏, … , 𝛼, 𝛽, … ) denote scalars, 

bold italic Greek or Latin lowercase letters (𝒂, 𝒃, … , 𝜶, 𝜷, … ) denote vectors, bold italic Greek 

or Latin capital letters (𝑨, 𝑩, … ) represent second-order tensors. Summation convention over 
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repeated indices is adopted in the entire text, whereby Greek indices range from 1 to 2, while 

Latin indices range from 1 to 3.  

‖𝒗‖ = √𝒗 ⋅ 𝒗 is the is the norm of vector 𝒗 where ⋅ indicates the scalar product of two vectors. 

The operator ⊗ denotes the dyadic or tensor product of two vectors. For instance, 𝒂 ⊗ 𝒃 is a 

second-order tensor such that (𝒂 ⊗ 𝒃)𝒄 = (𝒃 ⋅ 𝒄)𝒂 and (𝒂 ⊗ 𝒃) = (𝒃 ⊗ 𝒂), where 

(⋅) denotes the transpose. The operator axial (⋅) is such that, if 𝒗 = axial(𝑽), with 𝑽 skew-

symmetric, then  𝑽𝒙 = 𝒗 × 𝒙, ∀𝒙, where × denotes the cross or vector product of two vectors. 

If 𝒗 = axial(𝑽), then  𝑽 = Skew(𝒗), with 𝑽 skew-symmetric. From now on the following 

notation for partial derivatives has been defined (⋅) =
(⋅)

ζ
 , (⋅), =

(⋅)

ξ
  and (⋅), =

(⋅)

ξ
 . 
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2. Literature Review 

This section intends to draw a brief history about rods and shells. Timoshenko (1953) [64] drew 

a history in the strength of materials starting in the 16th century. Galileo became interested in 

the works of Euclid and Archimedes and became acquainted with Leonardo da Vinci’s 

discoveries in mechanics. In 1586 Galileo made a hydrostatic balance for measuring the density 

of various substances and he carried out investigations of centers of gravity and solid bodies. 

In 1590 the treatise “De Motu Gravium” was prepared and was the beginning of dynamics as 

known today. In 1594 Galileo produced a treatise that treated problems of static using the notion 

of the principle of virtual displacements. In 1638 Galileo published a book “Two new Sciences” 

that part of it dealt with the mechanical properties of structural materials and with the strength 

of beams, this book constitutes the first publication in the field of strength of materials. The 

first consistent formulations.  

Still in the 17th century, Hobert Hooke established the relation between the magnitude of forces 

and the deformations that they produce. Hooke’s Law, was used as the foundation for further 

development of the mechanics of elastic bodies. Then, Jacob Bernoulli addressed the shape of 

the deflection curve of an elastic bar and started an important chapter in the mechanics of elastic 

bodies. Bernoulli did not contribute to the physical properties of materials, he made calculations 

of the deflections of the beams. After Mariotte’s assumption of the position of a neutral axis, 

he took the tangent of the boundary of the cross section on the concave side orthogonal to the 

plane of action of external loads. Jacob Bernoulli assumed a wrong calculation regarding the 

axis rotation, but in general he was right about the starting curvature of the deflection at each 

point being proportional to the bending moment at that point, this was used later by other 

mathematicians. Later John Bernoulli formulated the principle of virtual displacements, which 

the notion was applied in earlier works. Then much more important contributions to strength of 

material were made by his son Daniel Bernoulli and his pupil Leonard Euler. Daniel Bernoulli 

contributed to the theory of elastic curves, he suggested that Euler should apply the variational 

calculus in deriving the equations of elastic curves, he indicated that he should solve a problem 

that had ∫ 𝑑𝑠/𝑟  as a minimum, this integral is known now as the strain energy of a bent bar 

aside from a constant factor. In 1744 Euler wrote a book that was the first on variational calculus 

and it also contained the first systematic treatment of elastic curves. Euler does not limit his 

discussion to small deflections, so upon solving the problem indicated by Bernoulli he found a 
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complicated term in the expression which made the equation a complicated one. In these early 

works some mistakes were made, but it was the breaking ground for geometrically non-linear 

theory for rods with linear elastic material. Euler and Lagrange studied problems regarding the 

buckling of columns. Lagrange also made important work in variational calculus and introduced 

the notions of “generalized coordinates” and “generalized forces” and changed the theory of 

mechanics to have general formulas from which the necessary equations in any particular 

problem could be derived. 

In 1775, Euler expressed the base transformation for a rigid body motion (known today as the 

rotation tensor) in terms of the direction cosines of the rotation angles. In 1840 the rotation 

formula was improved by Rodrigues and in 1844 Hamilton introduced the concept of 

quaternion as the reader can see in Cheng and Gupta (1989) [17]. These improvements were 

made especially by Rodrigues. The use of a rotation tensor and vector made it possible to work 

with large rotations in three dimensional bars. 

Ericksen and Truesdell (1957) [22] developed further the purely kinematical description of 

Cosserat continua emphasizing the one- and two-dimensional cases of rods and shells. Ericksen 

and Truesdell (1957) [22] remarked that the developed model, in one and two dimensions, 

serves admirably to represent the twisting of rods and shells in addition to their bending.  

Reissner (1972) [49] wrote about a one-dimensional finite-strains beam theory on plane 

problems where the strain-displacement is a system of non-linear relations which is consistent 

with exact one-dimensional equilibrium equations for forces and moments regarding the 

principle of virtual work. 

Reissner (1973) [50] also wrote about a large-deformation theory of space-curved lines, with 

the cross sections of the lines acted upon by forces and moments form of the principle of virtual 

work to obtain a system of strain displacement relations, involving force strains and moment 

strains in association with the assumed cross-sectional forces and moments. Reissner (1973) 

[50] suggests experiments for the three-dimensional. 

As for the non-linear theory of rods one of the first to describe it geometrically exact way was 

Antman (1974) [1], he developed this theory by generalizing the theory presented by Kirchhoff 

in 1859 and it was also a generalization of Whitman and Desilva (1974) [68] who addressed 

the problem only for a special set of linear constitutive equations of hyper elastic type, but 
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Antman (1974)  [1] did not present consistency in terms of mechanics of deformable solid in a 

clear and concise way.  

Reissner (1981) [48] expanded on the manner of derivation and showed an application of large-

displacement finite-strain theory of space-curved beams.  

Argyris (1982) [3] developed an exploration of the matrix formulation of finite rotations in 

three-dimensional space using a consistent parametrization for large rotations. He pointed out 

that, for finite rotations, the vector identity cannot be assigned as it is for infinitesimal rotations, 

because of its commutative properties which is not true for two or more finite rotations. Another 

point Argyris (1982) [3] made was that the components of the matrix for finite rotations cannot 

be interpreted as component rotations about the Cartesian axis as they can in infinitesimal 

rotations.  

Then Simo (1985)  [53] evolved on geometrically exact rod theories, which means that he made 

no geometrical approximations, by considering in his work a continuum basis relevant to the 

numerical formulation of the rod theory with finite strains. He discussed an approach 

generalized to the fully dynamic three-dimensional case with the formulation originally 

developed by Reissner for the static plane problem, he did it consistently with the motion 

equations of equilibrium. He treats his approach as a convenient parameterization of a three-

dimensional extension of what he considers the classic Kirchhoff-Love rod model. The process 

used was to limit the three-dimensional theory with the introduction of the kinematics 

assumption. The cross section doesn’t stay normal to the axis due to shear, but he introduces 

the kinematics assumption in terms of a three-dimensional orthogonal moving cross section 

defined so that one of its vectors remains perpendicular to a typical cross section in any 

configuration. A rotation tensor was introduced as a measure of the finite three-dimensional 

rotation of the cross section, the resulting geometric stiffness matrix was non-symmetric away 

from equilibrium and it was symmetric in an equilibrium configuration. 

Simo and Vu-Quoc (1986) [60] continued the work of Simo (1985) [53]. They present the 

variational and computational aspects of a three-dimensional finite-strain rod model. The 

nonlinear equations of static equilibrium, for three-dimensional Timoshenko rod model, were 

deduced and further detailing the derivation of the tangent operator. Rotations are orthogonal, 

generally non-commutative, transformations. A parameterization is employed that circumvents 

the singularity typically associated with the use of Euler angles. As in the classic Kirchhoff-
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Love model for shells, rotations have the standard interpretation of orthogonal transformations, 

usually non-commutative. Emphasis was placed on the geometric approach, which proves 

essential in the formulation of algorithms. The update procedure of the configuration becomes 

the algorithmic counterpart of the exponential map.  The computational implementation is 

based on the formula for the exponential of a skew-symmetric matrix, where the incremental, 

infinitesimal, rotation is defined by a skew-symmetric matrix and the orthogonal matrix, finite 

rotation, is found by exponentiation of this skew-symmetric matrix. Consistent linearization 

procedures are employed to obtain linearized weak forms of the equilibrium equations. The 

update is done by multiplying this matrix by the existing rotation. Even for a conservative 

loading, the resulting geometric stiffness is still non-symmetric away from equilibrium 

configurations and symmetric at the equilibrium configuration provided that the loading is 

conservative.  

Cardona and Geradin (1988) [15] studied a beam finite element with non-linearity and finite 

rotations. They used an approach that consists in deriving directly the beam equations from a 

three-dimensional non-linear theory, with a full account of finite rotations, and afterwards 

introducing the appropriate beam kinematical assumption and used a rotational vector to 

parameterize rotations, this procedure does not allow an easy manipulation of rotations 

exceeding π, so they used the updated Lagrangian formulation: rotations are described as 

increments with respect to a previous configuration. 

One of the first to address the term geometrically exact was Simo and Fox (1989) [56] for shells, 

they define it by, when accepting the kinematics assumption, the class of admissible motions, 

the geometry of the shell, as well as the balance equations are treated exactly. The geometrically 

exact formulations attracted a lot of researchers since their beginning. Lots of research was 

done in geometrically exact theories, Simo and Vu-Quoc (1986) [60], Simo and Vu-Quoc 

(1991) [57],  Simo  (1992) [54], Pimenta and Yojo (1993) [41], Pimenta (1996) [42], 

Gruttmann, Sauer and Wagner (1997, 1999, 2000) [29, 30, 31] , Pimenta and Campello (2003) 

[46], Sokolov, Krylov and Harari (2015) [62] to name just a few. 

Simo and Vu-Quoc (1991) [57] extended their earlier formulation by incorporating shear 

warping deformation and torsion. They presented a model of a finitely deformable beam 

accommodating transverse shear and torsion warping of the cross section and the coupling 

torsion-bending -warping. The model was fully non-linear and geometrically exact within the 

assumed kinematics. 
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Simo (1992) [54], Simo and Fox (1992) [55] analyzed some aspects related to the symmetry of 

the tangent operator for conservatives loading, this non-symmetry is attributed to the fact that 

the tangent operator is not given by the directional derivative formula of the weak form of the 

equations. Simo (1992)  [54] points out that if the directional derivative is replaced by 

the covariant derivative an intrinsic definition of the Hessian is obtained which is always 

symmetric even away from equilibrium 

According to Bufler (1993) [10] the tangent stiffness of any conservative mechanical system 

must be symmetric as far as the position (or displacement) vector acts as the configuration 

variable which is usually the case. Certain problem formulations, however, require considering 

the rotation tensor as an independent configuration variable. In this case, as a rule, investigators 

end up with a non-symmetric tangent stiffness, like Simo (1985) [53], Simo and Vu-Quoc 

(1986) [60]. As shown by Simo (1992) [54], symmetry is attained formally by replacing the 

Gâteaux derivative by the covariant one or by symmetrizing the conventionally evaluated 

stiffness. Simo (1992) [54] shows that correct tangent stiffness of a conservative system is 

always symmetric, as in a conservative system no work can be lost if a particle is in a closed 

loop and the work is path-independent.  

Pimenta and Yojo (1993) [41] was one of the first to present geometrically exact rod theory in 

three-dimensional space with the Fréchet derivative of the weak form of the equilibrium being 

exact and the rotations in three-dimensional space treated in a consistent and convenient way 

through the Euler-Rodrigues formula. The theory derives a geometrically exact rod model from 

the kinematic assumption that cross sections, which are initially orthogonal to the axis, remain 

plane and undistorted during the deformation. The theory accommodates finite strains, large 

displacements and rotations, and accounts for shear distortion in bending, like the Timoshenko 

model for plane problems. The tangent operator is always symmetric for conservative loadings, 

even far from an equilibrium state. 

Researchers widely developed and discussed shear deformable shell elements in the last 

decades for example Başar and Ding (1992) Simo, Fox and Rifai (1990) [58],  Eberlein and 

Wriggers (1999) [21], Gruttmann et al. (1993) [28], Hughes and Liu (1981) [32], Campello, 

Pimenta and Wriggers (2003) [11], Pimenta, Campello and Wriggers (2004) [45],to name just 

a few.  
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Jelenic and Saje (1995) [35] studied a kinematically exact three-dimensional finite strain beam 

model with finite element formulation by generalized virtual work principle and using the 

classical Euler-Rodrigues parametrization on rotation matrix expressed by the exponentiation 

of the skew-symmetric matrix associated with the rotational vector and using the Bernoulli 

Euler assumption and as Simo and Vu-Quoc (1991) [57] the tangent stiffness matrix is non-

symmetric. 

As Campello (2000) [14] points out, it is evident that these early theories did not have rigor and 

precision in their conceptualizations, mainly because they are derived from simplifications 

imposed in the theories of three-dimensional solids.  And when working in the three-

dimensional space in nonlinear theories, many misconceptions were committed until the non-

vectorial character of the Rotation Tensor was addressed. He also says that only the theories of 

geometrically nonlinear character are fully consistent with the Principles of Mechanics of 

Deformable Solids, and do not need to impose any kinematic constraint on the magnitude of 

the deformations. 

Pimenta and Campello (2001) [40] advanced on Pimenta and Yojo (1993) [41] including non-

uniform torsion-warping deformation and using a different parametrization than the classic 

Euler-Rodrigues rod model.  

Then Pimenta and Campello (2003) [46] incorporated general cross-sectional in-plane 

distortions and out-of-plane warping in an extension on their earlier works. The restrictions to 

a rigid cross section and to a Saint-Venant-like elastic warping were removed from the theory 

and they used the classical parametrization of Euler-Rodrigues for the rotation.  

Dasambiagio, Campello and Pimenta (2009) [20] presented numerical examples for the theory 

formulated Pimenta and Campello (2003) [46]. 

Dasambiagio (2008) [19] also presented numerical examples referring to rectangular cross 

sections, where the results obtained lead to believe in the success of this model and indicates 

that more expressive results will be obtained when the theory is applied in thin walled cross 

sections, mainly with opened cross-sectional shapes, where the effects of distortion and warping 

are important in situations with large displacements and he indicated that it can be developed 

in future works. 
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Auricchio, Carotenuto and Reali (2008) [5] derived the equations of the model for the general 

case finite deformation, as well as for the case of the finite deformation with small deformations 

using Simo (1985)  [53]’s beam model. They did an extended polar decomposition of the beam 

deformation gradient, based on the composition of a rotation tensor. 

Gonçalves, Ritto-corrêa and Camotim (2010) [23] presents a new formulation for thin-walled 

rods that includes cross-sectional deformation.  

Sokolov, Krylov and Harari (2015) [62] extend the work of Dasambiagio, Campello and 

Pimenta [20] to allow distortion of the cross section.  

Wackerfuss and Gruttmann, (2011) [67] introduces a mixed finite element formulation 

restricted to rectangular cross sections. In Wackerfuss and Gruttmann, (2009) [66] the authors 

introduce a nonlinear three-dimensional finite beam element based on a Hu–Washizu 

variational formulation. They used a 3D material law, subject to be discussed in a future work. 

All those geometrically exact shell and rod models are not shear rigid as it is done herein. 

Similar works in Bernoulli-Euler theory has drawn some attention in the last few years, which, 

however, are different in key aspects. 

In the last decade there were some development about rod theories with Bernoulli-Euler’s 

assumption like Armero and Valverde (2012) [4], Bauer et al. (2016) [7] , Boyer and Primault 

(2004) [9], Boyer et al. (2011) [8], Greco and Cuomo  (2013) [25], Greco and Cuomo  (2016)   

[26], Meier, Popp and Wall  (2014) [38], Meier et al. (2018) [37], Meier, Popp and Wall  (2017)  

[39],  to name just a few.  

Meier et al. (2018) [37] developed a geometrically exact beam theory considering Bernoulli’s 

hypothesis of undeformable cross sections. Consequently, the configuration of the beam is 

uniquely defined by the beam centerline curve. They focus on the development of finite element 

formulations that are capable of accurately modeling the dynamics of slender components and 

their contact interaction. The parametrization he used is different from the one proposed in the 

present work, and he analyzed only one kind of interpolation function, whereas 4 different 

schemes are addressed in this work.  

Few researchers discussed shear-rigid shell, like Viebahn, Pimenta and Schröder (2016)  [65], 

Pimenta, Neto and Campelo (2010) [44],  Kiendl (2015) [36]. Greco et al.  (2019) [27] 

developed triangular elements only for the analysis of Kirchhoff plates.  
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Armero and Valverde (2012) [4] develops finite elements for the simulation of thin Kirchhoff 

rods, that is, rods where the influence of transverse shear strain can be neglected leading to 

governing equations that require C1-continuous finite element interpolations, but for the linear 

plane case. Boyer and Primault (2004) [9] presents a geometrically exact non-linear Euler–

Bernoulli model for beams with constant circular cross sections and a straight initial 

configuration, in Boyer et al. (2011) [8] the same theory is applied to cable dynamics, in these 

mentioned references the kinematical considerations are similar to this paper`s approach. The 

basic difference, besides the circular cross section, is that they parameterize the rotation 

differently. In the present approach one can have arbitrary cross sections, and the initial 

configuration is also straight, although initially curved rods could be accomplished in the same 

it way as in Pimenta (1996) [42], Pimenta and Campello (2009)  [43], if one regards the initial 

configuration as a stress-free deformed state from the plane position, this will not be subject of 

this work.  

Bauer et al. (2016) [7] extends Boyer and Primault (2004) [9] into a non-linear isogeometric 

spatial Bernoulli-Euler rod theory that is treated spatially curved and a rotation around the 

center line of the rod is adopted as a degree of freedom, that also differs from this work, as it 

can be seen later. Greco and Cuomo (2013, 2016) [25, 26] made some advances in non-linear 

Bernoulli-Euler rod theory, they use an isogeometric approach.  Meier, Popp and Wall  (2014, 

2017) [38, 39] have similar approach for the geometrically exact Bernoulli-Euler rod theory, in 

terms of initial kinematics configuration, but presents different parameterization for the 

rotation. They also indicate two portions of motion on the beam axes, and 4 degrees of freedom, 

but they connect the elements in a usual manner in the finite element method, what imposes a 

continuous rotational degree of freedom. This cannot be true in many examples and is not 

consistent with the theory. Meier et al. (2018) [37] extends Meier, Popp and Wall  (2014)  [38], 

a geometrically exact beam theory was developed considering discrete Bernoulli hypothesis of 

rigid cross sections that remain orthogonal to the chosen axis during deformation. Focuses on 

the development of finite element formulations that are capable of accurately modeling the 

dynamics of slender components and their contact interaction with circular cross sections. 

All the papers referred to above describes the rotation in a different way as is done in our work.  

This literature review does not intend to be complete. The major contributions to rod and shell 

formulations are mentioned. 



21 
 

To the authors knowledge little is written about the connection of beam and shell elements. 

There is some information about how to do it on a commercial program, lacks theoretical 

foundation. For this theory the connection is not trivial like in the linear case.  
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3. Nonlinear Bernoulli-Euler rod theory  

3.1. Kinematics 

For the kinematics assumption of this work it is assumed that the rod is initially straight, and 

this is the reference configuration. 

An orthogonal system {𝒆 , 𝒆 , 𝒆 }  is placed at the reference configuration of the rod. Every 

time (⋅)  is used, it refers to the material counterpart of (⋅), it is not affected by superimposed 

rigid body motions. Back-rotated means that the vector is calculated in the reference 

configuration, that is (⋅) = 𝑸(⋅) ⇔ (⋅) = 𝑸 (⋅) where 𝑸 is the cross section rotation tensor 

described in section 5. 

The vectors 𝒆  with 𝛼 = 1,2 describe the basis on the cross section plane. Thus, 𝒆  is 

orthogonal to this plane and coincides with the axis of the rod. The position of the rod material 

points in the reference configuration can be described by 

ξ = ζ + 𝒓  , (1) 

where the vector ζ defines the position along the axis rod on the reference configuration, 

therefore,    

ζ = ζ𝒆 + ζ  (2) 

𝒓  is the director given by 

𝒓 = ξ 𝒆   (3) 

that describes the relative position of the points on the cross section at the reference 

configuration. 

The coordinate ζ = ζ ⋅ 𝒆𝒓 is introduced, ζ ∈ Ω = (0, ℓ), where ℓ is the rod length at reference 

configuration. The boundary of the domain Ω is denoted by Γ. So, Γ contains the two ends of 

the rod, that is Γ = {0, ℓ}.  The cross section domain at the reference configuration is 𝐴 ⊂ ℝ . 

The boundary of 𝐴 is denoted by 𝐶. Coordinates ξ = 𝒓 ⋅ 𝒆  are such that ξ , ξ   ∈ 𝐴. Thus, 

ξ , ξ  and ζ build a Cartesian coordinate system. 
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In the current configuration, as it can be seen in Figure 1, the position of the material points is 

given by 

𝒙 = 𝒛 + 𝒓  , (4) 

where 𝒛 = 𝒛(𝜁) describes the position of the rod axis at the current configuration and r is the 

current director given by 

𝒓 = 𝑸𝒓   , (5) 

This assumption embeds our basic kinematical hypothesis, i.e. the director remains rigid during 

the motion (no cross-sectional deformations or thickness changes occur) and may only rotate 

as a rigid body. 

Figure 1: Rod description and basic kinematical quantities. 

 
Source: Author 

3.2. Strains 

The set of vectors {𝒆 , 𝒆 , 𝒆 } are the base local orthogonal system in the current configuration, 

with 

𝒆 = ‖𝒛′‖ 𝒛 . (6) 
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It is remarked that 𝒆  is tangent to the rod axis in the current configuration and orthogonal to 

the cross section, that is defined by the Bernoulli constraint. The displacements of the points on 

the rod axis are defined by 

𝒖 = 𝒛 − ζ  . (7) 

Note also that 

𝒛′ = 𝒆 + 𝒖′    and    𝒛′′ = 𝒖′′  . (8) 

The Bernoulli-Euler assumption states that the director 𝒓 remains orthogonal to the axis of the 

rod. The cross-sectional rotation tensor, with the Rodrigues parameter, can be expressed by 

𝑸 = 𝑸(𝒆 , 𝜑) = 𝑸(𝒖′, 𝜑)  . (9) 

where 𝜑 = 𝜑(ζ) is a scalar which is a torsion parameter explained section 5.  

Note that 

𝒆 = 𝑸𝒆     and    𝑸 = 𝒆 ⊗ 𝒆   . (10) 

If the displacements field is derived in relation to the position vector ξ, one gets the deformation 

gradient 

𝑭 =
𝜕𝒙

𝜕ξ
=

𝜕𝒙

𝜕ξ
⊗ 𝒆 +

𝜕𝒙

𝜕ζ
⊗ 𝒆  (11) 

Considering  (⋅), =
(⋅)

ξ
  and (⋅) =

(⋅)

ζ
 one gets, 

𝑭 = 𝒙, ⊗ 𝒆 + 𝒙′ ⊗ 𝒆  (12) 

Deriving (4) one has  

𝒙, = 𝒛, + 𝒓, = 𝒓, = 𝑸𝒓 , = 𝑸 ξ 𝒆
,

= 𝑸𝒆  (13) 

and 

𝒙′ = 𝒛′ + 𝒓′ =  ζ′ + 𝒖′ + (𝑸𝒓 ) = ( ζ𝒆 ) + 𝒖′ + 𝑸′𝒓 = 𝒆 + 𝒖′ + 𝑸′𝑸 𝒓 (14) 

The curvature tensor and its correspondent axial curvature vector are defined as 

𝜥 = 𝑸′𝑸 = Skew(𝜿)  and  𝜿 = axial(𝜥) (15) 
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this skew-symmetric tensor relates the director to its derivative. 

An important result from Pimenta and Campello (2001) [40] is 

𝜿 = 𝜩𝜶′    and    𝜿 = 𝜩 𝜶′   (16) 

where 𝜶 is the Rodrigues vector and, 

𝜩 =
4

4 + 𝜶 ⋅ 𝜶
𝑰 +

1

2
𝜜  (17) 

with 𝜜 = Skew(𝜶). 

For further knowledge of how to reach (17) see attachment C. 

In (16)2 the property 𝑸 𝜩 = 𝜩  was employed, then 

𝜩 = 𝑰 − 𝜜 . (18) 

There are the following valuable properties 

𝜩𝜶 =
4

4 + 𝛼
𝜶, det𝜩 =

4

4 + 𝛼
    and    

4

4 + 𝛼
𝜩 =  

1

2
(𝑰 + 𝑸). (19) 

In Bernoulli theory  𝜿  is the real curvature of the beam axis. If the work conjugated to the 

bending strain is derived, the actual curvature of the beam axis is achieved and given by (16)1. 

Thus,  

𝒓′ = 𝑸′𝑸 𝒓 = 𝜥𝒓 = 𝜿 × 𝒓 = 𝑸(𝜿 × 𝒓 ) (20) 

with (13), (14) and (20) in (12) one has  

𝑭 = 𝑸𝒆𝒓 ⊗ 𝒆 + (𝒆 + 𝒖′ + 𝜿 × 𝒓) ⊗ 𝒆 . (21) 

In  (21) the following generalized strain vector is noted 

𝜼 = 𝒛′ − 𝒆   = 𝒖′ + 𝒆 − 𝒆  (22) 

then, 

𝑭 = 𝑸𝒆𝒓 ⊗ 𝒆 + (𝒆 + 𝜼 + 𝜿 × 𝒓) ⊗ 𝒆 . (23) 

In (23) the following generalized strains are noted  
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𝜸 = 𝜼 + 𝜿 × 𝒓 (24) 

and their back-rotated counterparts are 

𝜸 = 𝜼 + 𝜿 × 𝒓  (25) 

Thus 

𝑭 = 𝑸𝒆𝒓 ⊗ 𝒆 + 𝑸(𝒆 + 𝜸 ) ⊗ 𝒆 = 𝑸(𝒆𝒓 ⊗ 𝒆 + 𝜸 ⊗ 𝒆 ) = 𝑸(𝑰 + 𝜸 ⊗ 𝒆 ) (26) 

The deformation gradient can be expressed by 

𝑭 = 𝑸𝑭   , (27) 

One can see by (26) and (27) that 

𝑭 = 𝑰 + 𝜸 ⊗ 𝒆  (28) 

is the back-rotated deformation gradient. 

Note that 

𝜼 = 𝑸 𝜼 = 𝑸 (𝒛′ − 𝒆 )   = 𝑸 (‖𝒛′‖𝒆 − 𝒆 ) = (‖𝒛′‖ − 1)𝑸 𝒆   

= (‖𝒛′‖ − 1)𝒆  .  
(29) 

With 𝜀 = (‖𝒛′‖ − 1), that will be considered as a degree of freedom. 

𝜼 = 𝜀𝒆  . (30) 

It is observed that the projection of 𝜼 in 𝒆  is zero, because there is no shear strain then, 

𝜼 ⋅ 𝒆 = 𝜼 × 𝒆 = 0  . (31) 

due to the Bernoulli-Euler assumption.  

3.3. Strain rates 

The velocity gradient is given by time differentiation of (27). 

�̇� = �̇�𝑭 + 𝑸�̇� = �̇�𝑸 𝑭 + 𝑸�̇�  (32) 

where the superposed dot denotes the differentiation with respect to time. 
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Analogous to 𝜥 there is the skew-symmetric tensor 𝜴 that relates the director to its time 

derivative the way shown in the following 

�̇� = �̇�𝑸 𝒓 = 𝜴𝒓 = 𝝎 × 𝒓 (33) 

Thus, the following skew-symmetric spin tensor and its corresponding axial spin vector are 

considered. The spin tensor (𝜴 = Skew(𝝎) and 𝝎 = axial(𝜴)) is 

𝜴 = �̇�𝑸  . (34) 

Introducing (10)2  in (34), one gets 

𝜴 = �̇� ⊗ 𝒆   . (35) 

Analogous to (16) the spin vector is  

𝝎 = 𝜩�̇� (36) 

with (33) and (28) in (32) one has  

�̇� = 𝜴𝑭 + 𝑸(�̇� ⊗ 𝒆 )  , (37) 

where 

�̇� = �̇� + �̇� × 𝒓   . (38) 

Time derivative of (6) leads to 

�̇� = 𝒛′̇‖𝒛′‖ − ‖𝒛′‖ 𝒛′ 𝒛′ ⋅ 𝒛′̇ = 𝒖′̇ ‖𝒛′‖ − ‖𝒛′‖ 𝒆 𝒆 ⋅ 𝒖′̇ =

= ‖𝒛′‖ (𝑰 − 𝒆 ⊗ 𝒆 )𝒖′̇
 (39) 

where 𝑰 is the identity tensor.  

Hence, one may write 

𝒛′ × 𝝎 = −𝜴𝒛′ = −‖𝒛′‖( �̇� ⊗ 𝒆 )𝒆 = −‖𝒛′‖�̇� = −(𝑰 − 𝒆 ⊗ 𝒆 )𝒖′̇  (40) 

Consequently, one has  

𝒖′̇ + 𝒛′ × 𝝎 = (𝒆 ⊗ 𝒆 )𝒖′̇  (41) 

Time differentiation of (29) considering  �̇� = �̇�𝑸 𝑸 = (𝜴𝑸) = 𝑸 𝜴 = −𝑸 𝜴 yields 

�̇� = 𝑸 𝒖′̇ + �̇� 𝒛′ = 𝑸 𝒖′̇ + 𝒛′ × 𝝎   . (42) 
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Introducing (44) in (45) one gets 

�̇� = 𝑸 (𝒆 ⊗ 𝒆 )𝒖′̇ . (43) 

Time differentiation of 𝑸′ = 𝜥𝑸 leads to  

𝑸′̇ = �̇�𝑸 + 𝜥�̇� = �̇� + 𝜥�̇�𝑸 𝑸 = �̇� + 𝜥𝜴 𝑸. (44) 

Differentiation of �̇� = 𝜴𝑸. leads to  

𝑸′̇ = 𝜴 𝑸 + 𝜴𝑸 = 𝜴 + 𝜴𝑸 𝑸 𝑸 = (𝜴 + 𝜴𝜥)𝑸. (45) 

Thus, one gets 

𝜴′ + 𝜴𝜥 = �̇� + 𝜥𝜴. (46) 

Since �̇� = (𝑸′)⋅, considering (46) and the property shown in (239) one reaches the 

conclusion  

𝝎′ = �̇� − 𝝎 × 𝜿 (47) 

and 

�̇� = 𝝎′ + 𝝎 × 𝜿 (48) 

which leads to �̇� = 𝑸 (�̇� − 𝝎 × 𝜿). Hence, from (47), the important relation displayed below 

is settled  

�̇� = 𝑸 𝝎 . (49) 

Considering (36) in (49) one gets, 

�̇� = 𝑸 (𝜩�̇�) . (50) 

 

3.4. Stresses 

Let the 1st Piola-Kirchhoff stress tensor be expressed by 
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𝑷 = 𝝉 ⊗ 𝒆 = 𝑸(𝝉 ⊗ 𝒆 )   = 𝑸(𝝉 ⊗ 𝒆 + 𝝉 ⊗ 𝒆 )  . (51) 

Now the back-rotated 1st Piola-Kirchhoff stress tensor is introduced by 

𝑷 = 𝑸 𝑷 = 𝝉 ⊗ 𝒆 + 𝝉 ⊗ 𝒆 , (52) 

Where 

𝝉 = 𝑸 𝝉   ,    𝑖 = 1,2,3  , (53) 

are the back-rotated stress vectors.  

The following generalized cross-sectional forces are obtained by integration of the stresses 𝝉 =

𝝉    on the cross section 

𝒏 = 𝝉𝑑𝐴     and    𝒎 = (𝒓 × 𝝉)𝑑𝐴 (54) 

𝒏 represents the true forces and 𝒎 the true moments, acting on a cross section. Their back-

rotated counterparts are 

𝒏 = 𝑸 𝒏    and    𝒎 = 𝑸 𝒎  . (55) 

Hence, it may also be written as 

𝒏 = 𝝉 𝑑𝐴     and    𝒎 = (𝒓 × 𝝉 )𝑑𝐴   (56) 

𝒏  represents the back-rotated cross section forces and 𝒎  the back-rotated cross section 

moments.  

The axial (membrane) and transversal (shear due to bending) parts of the force 𝒏 are defined 

by 

𝒏 = (𝒆 ⊗ 𝒆 )𝒏 = 𝑁𝒆     and    𝒏 = (𝑰 − 𝒆 ⊗ 𝒆 )𝒏 = 𝑉 𝒆   , (57) 

respectively, where 

𝑁 = 𝒏 ⋅ 𝒆     and    𝑉 = 𝒏 ⋅ 𝒆  (58) 

are the normal and shear forces acting on the cross section, respectively. The back-rotated 

counterparts of (57) are 
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𝒏 = 𝑁𝒆     and    𝒏 = 𝑉 𝒆   (59) 

The bending moments are defined as 

𝑀 = 𝒎 ⋅ 𝒆   . (60) 

For the torsion moment, one has 

𝑇 = 𝒎 ⋅ 𝒆 = 𝒎 ⋅ 𝒆 . (61) 

Hence, one may write 

𝒏 = 𝑉 𝒆 + 𝑁𝒆   , 𝒏 = 𝑉 𝒆 + 𝑁𝒆   ,

𝒎 = 𝑀 𝒆 + 𝑇𝒆       and    𝒎 = 𝑀 𝒆 + 𝑇𝒆   .
 (62) 

Remark 1: Local moment balance 

The local moment balance is formulated as 

Skew(𝑷𝑭 ) = 𝑶, (63) 

where 𝑶 is the null tensor. Equation (63) enforces 

𝑷𝑭 : 𝜴 = 0 (64) 

3.5. Power 

From (51), (37) and,  (64) one gets 

𝑷: �̇� = 𝑷: 𝜴𝑭 + 𝑸�̇� =   𝑷: 𝑸�̇� = 𝑷: 𝑸(�̇� ⊗ 𝒆 )   =

= 𝑸 𝑷: (�̇� ⊗ 𝒆 ) = 𝑸 𝑸(𝝉 ⊗ 𝒆 ): (�̇� ⊗ 𝒆 ) = 𝝉 ⋅ �̇�
 (65) 

that is the stress power per unit reference volume. Introducing (38) in (65) and after some 

manipulation, one gets 

𝑷: �̇� = 𝝉 ⋅ �̇� = 𝝉 ⋅ �̇� + (𝒓 × 𝝉 ) ⋅ �̇�   (66) 

Note that 𝝉  are powerless in this model, because there is no distortion. With the aid of the 

definitions (56), the integration of (66) over the cross section furnishes 
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𝑷: �̇� 𝑑𝐴 = 𝒏 ⋅ �̇� + 𝒎 ⋅ �̇�   (67) 

that is the stress power per unit length of the reference axis. It is important to remark that 𝒏 ,

𝒎 , 𝜼   and  𝜿  are not affected by superimposed rigid body motions. Regarding (43) and 

(59)1, one has 

𝒏 ⋅ �̇� + 𝒎 ⋅ �̇� = 𝒏 ⋅ �̇� + 𝒎 ⋅ �̇� . (68) 

The cross-sectional resultants that do work and their back-rotated counterparts are collected in 

two vectors, respectively, as shown in 

𝝈 =
𝒏

𝒎
    and    𝝈 =

𝒏

𝒎
  . (69) 

 

The differentiation with respect to time of the cross section back-rotated generalized strains are 

�̇� =
�̇�

�̇�
. (70) 

With the aid of (69) and (70), (67) can be written as follows 

∫ 𝑷: �̇� 𝑑𝐴 = 𝝈 ⋅ �̇�   .  (71) 

The internal power on the domain Ω is then given by 

𝑃 = 𝝈 ⋅ �̇� 𝑑Ω  . (72) 

On the other hand, the external power on the same domain can be expressed by 

𝑃 = (�̅� ⋅ �̇�)𝑑𝐶 + 𝒃 ⋅ �̇� 𝑑𝐴 𝑑Ω  , (73) 

where �̅� is the surface traction per unit reference area prescribed on the lateral surface of the rod 

and 𝒃 is the body force per unit reference volume. The time differentiation of (4) yields  

�̇� = �̇� + 𝝎 × 𝒓  . (74) 

Introducing the following generalized external forces 
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𝒏 = �̅�𝑑𝐶 + 𝒃𝑑𝐴     and    𝒎 = (𝒓 × �̅�)𝑑𝐶 + 𝒓 × 𝒃 𝑑𝐴 (75) 

and (74), there is 

𝑃 = 𝒏 ⋅ �̇� + 𝒎 ⋅ 𝝎𝑑Ω   = 𝒏 ⋅ �̇� + 𝒎 ⋅ 𝜩�̇�𝑑Ω (76) 

where 𝒏  is the applied external force per unit length and 𝒎  is the applied external moment 

per unit length. 

Since 𝜶 = 𝜶(𝒖′, 𝜑)   the time derivative of 𝜶 furnishes 

�̇� =
𝜕𝜶

𝜕𝒛′
𝒖′̇ +

𝜕𝜶

𝜕𝜑
�̇� (77) 

with (36), one arrives at 

𝝎 = 𝑾𝒖′̇ + 𝒘�̇� (78) 

where 

𝑾 = 𝜩
𝜕𝜶

𝜕𝒛′
   and   𝒘 = 𝜩

𝜕𝜶

𝜕𝜑
. (79) 

The pseudo moment 𝜩 𝒎  can then be divided into  

𝝁 = 𝑾 𝒎    and    �̅� = 𝒘 ⋅ 𝒎  (80) 

that are the bending pseudo-moment and the torsion pseudo-moment applied along the rod, 

respectively. 

Similarly applied forces on the ends of the rod can be expressed by 𝒏  and, 

𝝁 = 𝑾 𝒎     and    �̅� = 𝒘 ⋅ 𝒎  (81) 

are the force, the bending pseudo-moment and the torsion pseudo-moment applied on the rod 

ends, respectively, while 𝒎  is the true moment applied on the rod ends. 
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3.6. Weak form of the local equilibrium equation 

The internal virtual work on a domain Ω ⊂ ℝ is given by 

𝛿𝑊 = 𝝈 ⋅ 𝛿𝜺 𝑑Ω  , (82) 

where 𝛿  defines virtual quantities with, 

𝝈 =
𝒏
𝒎

  (83) 

 

and 

𝛿𝜺 =
𝛿𝜼
𝛿𝜿

 (84) 

Introducing (43) and (50) in (82) one gets, 

𝛿𝑊 = (𝒏 ∙ 𝑸 (𝒆 ⊗ 𝒆 )𝛿𝒖 + 𝒎 ∙ 𝑸 (𝜩𝛿𝜶)′)𝑑Ω  , (85) 

and 

𝛿𝑊 = (𝑸 𝒏 ∙ 𝑸 (𝒆 ⊗ 𝒆 )𝛿𝒖 + 𝑸 𝒎 ∙ 𝑸 (𝜩𝛿𝜶)′)𝑑Ω  , (86) 

concluding 

𝛿𝑊 = (𝒏 ∙ 𝛿𝒖 + 𝒎 ∙ (𝜩𝛿𝜶)′)𝑑Ω  , (87) 

The external virtual work on a domain Ω ⊂ ℝ is similarly given by 

𝛿𝑊 = 𝒏 ⋅ 𝛿𝒖 + 𝒎 ⋅ 𝝎𝑑Ω   = 𝒏 ⋅ 𝛿𝒖 + 𝒎 ⋅ 𝜩 𝛿𝜶𝑑Ω (88) 

The local equilibrium equations of the rod are obtained by applying the Virtual Work Theorem 

valid for statics as follows 

𝛿𝑊 − 𝛿𝑊 = 𝛿𝑊   ,    ∀𝛿𝒅    in  Ω  . (89) 
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where 𝛿𝑊  is the external virtual work on the boundary Γ and 𝒅 are the displacements and 

rotation. Introducing (86) and (88) in (89), one gets 

(𝒏 ⋅ 𝛿𝒖 − 𝒏 ⋅ 𝛿𝒖 + 𝒎 ∙ (𝜩𝛿𝜶)′ − 𝒎 ⋅ 𝜩 𝛿𝜶)𝑑Ω = 𝛿𝑊

                      .

 (90) 

Performing integration by parts on (90), one obtains 

(𝒏 ⋅ 𝛿𝒖 − 𝒏 ⋅ 𝛿𝒖 − 𝒎′ ∙ 𝜩𝛿𝜶 − 𝒎 ⋅ 𝜩 𝛿𝜶)𝑑Ω +

                            +(𝒎 ⋅ 𝜩𝛿𝜶) = 𝛿𝑊   .

 (91) 

Applying integration by parts on (91), one obtains 

− 𝒏 + 𝒏 ⋅ 𝛿𝒖 + (𝒎′ + 𝒎 ) ⋅ 𝜩𝛿𝜶 𝑑Ω +

+(𝒏 ⋅ 𝛿𝒖 + 𝜩𝑻𝒎 ⋅ 𝛿𝜶) = 𝛿𝑊   ,

 (92) 

By fundamental Lemma of Variational Calculus, (92) delivers the following local equilibrium 

equations in Ω 

𝒏 + 𝒏 = 𝒐    and    (𝒎′ + 𝒎 ) ⋅ 𝒆 = 0. (93) 

It remains the following boundary term on Γ 

(𝒏 ⋅ 𝛿𝒖 + 𝜩𝑻𝒎 ⋅ 𝛿𝜶) = 𝛿𝑊   . (94) 

With (94) it is concluded that the natural (Neumann) boundary conditions are 

𝒏 = 𝒏   ,    𝒎 = 𝒎 , (95) 

on both ends. 

3.7. Rod local equilibrium equations 

The rod local equilibrium equations can be directly derived by Statics (see for example Pimenta 

and Yojo (1993) [41]). They are displayed below 
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𝒏′ + 𝒏 = 𝒐    and    𝒎′ + 𝒛′ × 𝒏 + 𝒎 = 𝒐  . (96) 

From (96)2, one gets 𝒛′ × 𝒏 = −(𝒎′ + 𝒎 ), which, with the aid of 𝒏 = 𝒏 + 𝒏  and 

𝒛′ × 𝒏 = 𝒐, leads to the result below 

𝒛′ × 𝒏 = −(𝒎′ + 𝒎 ) (97) 

From (97), with 𝒏 = 𝑉 𝒆 , one can derive 

𝒆 ⋅ (𝒛′ × 𝒏 ) = ‖𝒛′‖𝑉 𝒆 ⋅ 𝒆 × 𝒆 = 𝜀 ‖𝒛′‖𝑉 = −𝒆 ⋅ (𝒎′ + 𝒎 ) (98) 

where  

𝜀 = 𝒆 ⋅ 𝒆 × 𝒆  (99) 

is a permutation symbol. From (98) one arrives at 

𝑉 = −‖𝒛′‖ 𝜀 𝒆 ⋅ (𝒎′ + 𝒎 ) (100) 

An alternative to (100) is 

𝒏 = 𝑉 𝒆 = −‖𝒛′‖ 𝜀 𝒆 ⋅ (𝒎′ + 𝒎 ) 𝒆

    = −‖𝒛′‖ (𝒆 ⊗ 𝒆 − 𝒆 ⊗ 𝒆 )(𝒎′ + 𝒎 )  .

 (101) 

From (101), with the aid of  

𝒆 ⊗ 𝒆 − 𝒆 ⊗ 𝒆 = Skew(𝒆 ) (102) 

one arrives at 

𝒏 = ‖𝒛′‖ 𝒆 × (𝒎′ + 𝒎 ) = ‖𝒛′‖ 𝒛′ × (𝒎′ + 𝒎 )  . (103) 

Hence, the transversal shear forces can be directly recovered from the bending moments, as in 

the linear theory.  
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4. Nonlinear Kirchhoff-Love shell theory  

4.1. Kinematics 

For the kinematics assumption that the shell is flat with straight edges at reference 

configuration. 

An orthogonal system {𝒆 , 𝒆 , 𝒆 }  is placed at the reference configuration of the shell.  

The vectors 𝒆   with  𝛼 = 1,2 describe the shell plane and 𝒆  is orthogonal to this plane. The 

position of the shell material points in the reference configuration along the height of the shell 

can be described by 

ξ = ζ + 𝒓  (104) 

where the vector ζ defines the middle plane and 𝒓  is the director, normal to the middle plane,  

The thickness coordinate ξ  ∈  𝐻 =  − ,  with (h being the shell reference thickness) the 

director is given by 

𝒓 = ξ 𝒆  , (105) 

that describes the relative position of the points on the cross section at the reference 

configuration. Coordinates ξ , ξ  ∈  𝛺 are such that , where 𝛺 ⊂ ℝ   is the shell domain. The 

boundary of the domain 𝛺 is denoted by 𝛤, as usual. Thus, ξ , ξ  𝑎𝑛𝑑 ξ  build a Cartesian 

coordinate system. 

Then,    

ζ = ξ 𝒆 . (106) 

 

In the current configuration, as it can be seen in  Figure 2, the position of the material points is  

given by 
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𝒙 = 𝒛 + 𝒓 (107) 

Where 𝒓 is the current director and 𝒛 = 𝒛 ξ  describes the position on the middle surface of 

the shell at the current configuration 

𝒛 = ζ + u (108) 

the current director given by 

𝒓 = 𝑸𝒓   , (109) 

where 𝑸 is the rotation tensor. Relation 𝒆 = 𝑸𝒆𝒓  holds for the local systems. 

Figure 2: Shell description and basic kinematical quantities. 

 
Source: Author 

 

The set of vectors {𝒆 , 𝒆 , 𝒆 } is the local orthogonal system in the current configuration. 𝒆  is 

tangential to the middle surface of the shell, with 𝒆  always being orthogonal to this plane of 

the shell and 𝒆  parallel to one of the sides of the shell. 𝒆  and 𝒆  are material vectors because 

they are always tangent the same material fiber of the shell. The derivatives of the material 

points of the shell mid-plane are 

𝒛, = 𝒆 + 𝒖,     and    𝒛, = 𝒖,  .  (110) 

With the derivatives (110) one can define the base for the shell on the current deformed state. 
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𝒆 = 𝒛, 𝒛,   ,

𝒆 = 𝒛, × 𝒛, (𝒛, × 𝒛, ),

𝒆 = 𝒆 × 𝒆 .

 (111) 

4.2. Strains 

The Kirchhoff-Love assumption states that the director 𝒓 remains orthogonal to the middle 

surface of the shell. The rotation tensor is expressed by 

𝑸 = 𝒆 ⊗ 𝒆       and    𝒆 = 𝑸𝒆 . (112) 

If the displacements field are derived in relation to the position vector ξ, one gets the 

transformation gradient 

𝑭 =
𝜕𝒙

𝜕ξ
=

𝜕𝒙

𝜕ξ
⊗ 𝒆 +

𝜕𝒙

𝜕ξ
⊗ 𝒆  (113) 

Considering  (⋅), =
(⋅)

ξ
 , (⋅), =

(⋅)

ξ
,  𝒙 = 𝒛 + 𝑸𝒓  and 𝒓 = 𝜉 𝒆 ,  one gets, 

𝒙, = 𝒛, + 𝒓, = 𝒛, + (𝑸𝒓 ), = 𝒛, + 𝑸, 𝒓  (114) 

and 

𝒙, = 𝒛, + 𝒓, = (𝑸𝜉 𝒆 ), = 𝑸𝒆  (115) 

then, 

𝑭 = 𝒛, + 𝑸, 𝒓 ⊗ 𝒆 + 𝑸𝒆 ⊗ 𝒆 . (116) 

In (116) the following membrane strain vector is noted 

𝜼 = 𝒛, − 𝒆 . (117) 

Then the deformation gradient can be written as, 

𝑭 = 𝜼 + 𝒆 + 𝑸, 𝒓 ⊗ 𝒆 + 𝒆 ⊗ 𝒆 = 𝜼 + 𝑸, 𝒓 ⊗ 𝒆 + 𝒆 ⊗ 𝒆  (118) 

The deformation gradient can be expressed by 
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𝑭 = 𝑸𝑭 , (119) 

and back-rotated transformation gradient is 

𝑭 = 𝑸 𝑭 = 𝑸 𝜼 + 𝑸, 𝒓 ⊗ 𝒆 + 𝑸 𝑸. (120) 

Which can be established as 

𝑭 = 𝜸 ⊗ 𝒆 + 𝑰 (121) 

with 𝜸 = 𝜼 + 𝜿 × 𝒓   being the back-rotated generalized strains and 𝜼  the back-rotated 

membrane strains. 

The following generalized back-rotated strain has been introduced 

𝜼𝜶
𝒓 = 𝑸 𝒛,𝜶− 𝒆 . (122) 

The curvature tensor and its correspondent axial curvature vector are defined as 

𝜥 = 𝑸, 𝑸 = Skew(𝜿 )  and  𝜿 = axial(𝜥 ). (123) 

The back-rotated curvature of the shell is given by 

𝜿 = axial 𝑸 𝑸, . (124) 

A result from Viebahn, Pimenta and Schröder 2016 [65] is 

𝜿 = 𝜞 𝒖,  (125) 

where 𝜞  are 

𝜞 = 𝒆 ⋅ 𝒛  ,
 Skew(𝒆 ) − 𝒆 ⋅ 𝒛  ,

 𝒆 ⋅ 𝒛  ,
 (𝒆 ⊗ 𝒆 ) ,

𝜞 = 𝒆 ⋅ 𝒛  ,
 (𝒆 ⊗ 𝒆 ).

 (126) 

It is observed that 

𝜸 ⋅ 𝒆 = 𝜼 ⋅ 𝒆 = 0 (127) 

due to the Kirchhoff–Love assumption.  

The back-rotated counterpart of (125) is 

𝜿 = 𝑸𝑻𝜞 𝒖 . (128) 
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A generalized strain vector can be written as, 

𝜺 =
𝜼

𝜿
. (129) 

4.3. Strain rates 

The velocity gradient is given by time differentiation of (119) 

�̇� = �̇�𝑭 + 𝑸�̇� = �̇�𝑸 𝑭 + 𝑸�̇� . (130) 

The skew-symmetric tensor 𝜴 that relates the director to its time derivative like in the following 

�̇� = �̇�𝑸 𝒓 = 𝜴𝒓 = 𝝎 × 𝒓 (131) 

and it is considered the following skew-symmetric spin tensor and its corresponding axial spin 

vector. 

𝜴 = �̇�𝑸   = Skew(𝝎)  and  𝝎 = axial(𝜴). (132) 

Considering (112)1  and (132), one gets  

𝜴 = (�̇� ⊗ 𝒆 )(𝒆 ⊗ 𝒆 ) =  (�̇� ⊗ 𝒆 ) . (133) 

The spin vector is  

𝝎 = 𝜩�̇�. (134) 

Considering time differentiation of (121), (130) can be rewritten as, 

�̇� = 𝜴𝑭 + 𝑸(�̇� ⊗ 𝒆 )  , (135) 

where 

�̇� = �̇� + �̇� × 𝒓   . (136) 

with 

�̇� = 𝑸 𝝎,𝜶. (137) 

On the other hand, time differentiation of  (122) yields 
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�̇� = 𝑸 �̇�, + �̇� 𝒛, = 𝑸 �̇�, + 𝒛, × 𝝎 . (138) 

Time differentiation of the curvatures 𝜿  gives  

�̇� = �̇� 𝒖, + 𝜞 �̇�,    (139) 

and 

�̇� = 𝑸 �̇� 𝒖, + 𝑸 𝜞 �̇�, .   (140) 

 

4.4. Stresses 

The 1st Piola-Kirchhoff stress tensor is used because it relates the deformed stressed 

configuration to undeformed geometry and can be stated by its columns as shown 

𝑷 = 𝝉 ⊗ 𝒆 = 𝑸(𝝉 ⊗ 𝒆 )  . (141) 

Then, the back-rotated counterpart of (141) can be introduced by 

𝑷 = 𝑸 𝑷 = 𝝉 ⊗ 𝒆  , (142) 

where the back-rotated stress vectors are 

𝝉 = 𝑸 𝝉   ,    𝑖 = 1,2,3  , (143) 

𝝉  are the nominal stress vectors acting on points of the shell at the current configuration whose 

unitary normal vectors at the reference configuration are 𝒆 . 

Notice that, 𝒆  are the vectors that describe the plane of the shell. Integration of 𝝉  over the 

shell reference thickness domain H furnishes the stress resultants as below 

𝒏𝜶 = ∫ 𝝉𝜶𝑑𝐻     and    𝒎𝜶 = ∫ (𝒓 × 𝝉𝜶)𝑑𝐻. (144) 

The vectors 𝒏𝜶 are the true internal forces and 𝒎𝜶 are the true internal moments that are acting 

on the shell plane, these quantities are both per unit length of the reference configuration. 

Considering (143), the back-rotated counterparts of (144) may be written  
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𝒏 = 𝑸 𝒏 = ∫ 𝝉 𝑑𝐻     and    𝒎 = 𝑸 𝒎 = ∫ (𝒓 × 𝝉 )𝑑𝐻. (145) 

4.5. Power 

From (141),  (135) and the angular momentum balance 𝑷𝑭 : 𝜴 = 0, one gets the following 

result 

𝑷: �̇� = 𝑷: 𝜴𝑭 + 𝑸�̇� =   𝑷: 𝑸�̇� = 𝑷: 𝑸(�̇� ⊗ 𝒆 )   =

= 𝑸 𝑷: (�̇� ⊗ 𝒆 ) = 𝑸 𝑸(𝝉 ⊗ 𝒆 ): (�̇� ⊗ 𝒆 ) = 𝝉 ⋅ �̇�
 (146) 

that is the stress power per unit reference volume. With the aid of (136) one gets, 

𝑷: �̇� = 𝝉 ⋅ �̇� + (𝒓 × 𝝉 ) ⋅ �̇� . (147) 

With the aid of the definitions on (145) , the integration of (147) over the height furnishes 

𝑷: �̇� 𝑑𝐻 = 𝒏 ⋅ �̇� + 𝒎 ⋅ �̇� . (148) 

that is the stress power per unit length of the reference. It is important to remark that 𝒏 , 𝒎 ,

𝜼   and  𝜿  are not affected by superimposed rigid body motions. 

The internal power on the domain Ω is then given by 

𝑃 = (𝒏 ⋅ �̇� + 𝒎 ⋅ �̇� )𝑑Ω. (149) 

On the other hand, the external power on the same domain can be expressed by 

𝑃 = (�̅� ⋅ �̇� + �̅� ⋅ �̇� ) + 𝒃 ⋅ �̇� 𝑑𝐻 𝑑Ω, (150) 

�̅� is the normal surface stresses and 𝒃 is the body force per unit reference volume. �̅�  is the top 

surface traction and �̅�  is bottom surface traction. 

The time differentiation of (107) yields  

�̇� = �̇� + 𝝎 × 𝒓  (151) 
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The following definitions are stated 

𝒏Ω = �̅� + �̅� + 𝒃 𝑑𝐻     and    𝒎Ω = 𝒓 × �̅� + 𝒓𝒃 × �̅� + 𝒓 × 𝒃 𝑑𝐻 (152) 

With (150), (151), (152) and knowing that 𝝎 = 𝜞 �̇�,   one may write 

𝑃 = 𝒏 ⋅ �̇� + 𝝁Ω ⋅ �̇�, 𝑑Ω (153) 

where 

𝝁Ω = 𝜞 𝒎  (154) 

are the pseudo-moments applied on the shell. And 𝒏  is the applied external force per unit 

length at reference configuration and 𝒎  is the applied external moment per unit length at 

reference configuration. 𝝁Ω are the pseudo-moments  

4.6. Weak form of the local equilibrium equation 

The internal virtual work on the domain Ω is given by 

𝛿𝑊 = (𝒏 ⋅ 𝛿𝜼 + 𝒎 ⋅ 𝛿𝜿 )𝑑Ω . (155) 

Considering (153) for the shell the external virtual work is 

𝛿𝑊 = 𝒏 ⋅ 𝛿𝒖 + 𝝁Ω ⋅ 𝛿𝒖, 𝑑Ω (156) 

The local equilibrium equations are obtained by applying the Virtual Work Theorem, valid for 

statics, as follows 

𝛿𝑊int − 𝛿𝑊ext = 𝛿𝑊ext , ∀𝛿d  in 𝛺. (157) 

With d being the displacements degrees of freedom 
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5. Rotation 

5.1. Total description 

The rotation is described by employing the Rodrigues rotation parameters, for more information 

on how to get these parameters see Pimenta and Campello (2001) [40] or attachment B. Let 𝜶 

denote the vector of Rodrigues parameters. The Rodrigues parameterization furnishes 

𝑸(𝜶) = 𝜤 +
4

4 + 𝛼
𝜜 +

1

2
𝜜  (158) 

Where 𝜜 = Skew(𝜶) and 𝛼 = 𝜶 ⋅ 𝜶 . 

Another way to display Rodrigues formula shown in Appendix B is 

𝑸(𝜶) = 𝜤 −
1

2
𝜜 𝜤 +

1

2
𝜜  (159) 

Vector 𝜶 can be obtained from 𝑸 with the aid of 

𝜶 =
4

1 + tr𝑸
axial(Skew𝑸) (160) 

From (159) and 𝒆 = 𝑸𝒆  with 𝒆 and 𝒆  being a considered axis, like 𝒆  and 𝒆  for the rod, one 

has 

𝜤 −
1

2
𝜜 𝒆 = 𝜤 +

1

2
𝜜   𝒆  (161) 

And 

𝒆 −
1

2
𝜜𝒆 = 𝒆 +

1

2
𝜜𝒆  (162) 

Arriving at the important result 

𝒆 − 𝒆 =
1

2
(𝜜𝒆 + 𝜜𝒆) = 𝜜𝒆 = 𝜶 × 𝒆  (163) 
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Figure 3: vectors 𝒆  and 𝒆. 

 
Source: Author 

 

Looking at  Figure 3, one gets 

𝒆 =
1

2
(𝒆 + 𝒆 ). (164) 

It is remarked that 𝒆  is not a unit vector. And one can get the relation  

𝒆 − 𝒆 =
(𝒆 × 𝒆) × 𝒆

‖(𝒆 × 𝒆) × 𝒆 ‖
‖𝒆 − 𝒆 ‖. (165) 

Considering (165) and some mathematical manipulation applied, one gets 

(𝒆 × 𝒆) × 𝒆 =
1 + 𝒆 ∙ 𝒆

2
(𝒆 − 𝒆 ). (166) 

Let 𝛽  denote the angle from 𝒆  to 𝒆. Then, one has 

𝒆 × 𝒆 = sin𝛽‖𝒆 × 𝒆‖ (𝒆 × 𝒆) = 2tan
𝛽

2
cos

𝛽

2
‖𝒆 × 𝒆‖ (𝒆 × 𝒆). (167) 

Note that 

‖𝒆 ‖ = cos
𝛽

2
=

1 + cos𝛽

2
=

1 + 𝒆 ⋅ 𝒆

2
,

𝒆 ⋅ 𝒆 =
1 + 𝒆 ⋅ 𝒆

2
= cos

𝛽

2
= ‖𝒆 ‖  .

 (168) 

Considering (166) and(168)2 one reaches the following result 

‖𝒆 ‖ (𝒆 × 𝒆) × 𝒆 = 𝒆 − 𝒆 . (169) 

𝒆 × 𝒆 

𝒆 

𝒆  

𝒆  

𝒆 − 𝒆  

𝛽 
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Comparing (163) and (169) one gets part of  𝜶, because 𝜶 = 𝜶(𝒖 , 𝜑) and (163) only has the 

part concerning 𝒖 , then one more scalar parameter 𝜑 is needed. For (169) to be true this scalar 

has to be in the direction of 𝒆  

Now, to comply with the previous relations 𝒆 − 𝒆 = 𝜶 × 𝒆  a new formula is achieved 

𝜶 = ‖𝒆 ‖ (𝒆 × 𝒆) + 𝜑‖𝒆 ‖ 𝒆  (170) 

which is a relevant contribution in this work. 

Definition (170) preserves relation (163). According to (170), 𝜶 has the following components 

𝜶 ⋅ ‖𝒆 ‖ 𝒆 = 𝜑 and

𝜶 ⋅ ‖𝒆 × 𝒆‖ (𝒆 × 𝒆) = ‖𝒆 ‖ ‖𝒆 × 𝒆‖ = ‖𝒆 ‖ ‖𝒆 − 𝒆 ‖ = 2tan
𝛽

2

 (171) 

There are the following results, as well 

𝜶 ⋅ 𝒆 = 𝜑‖𝒆 ‖ 𝒆 ⋅ 𝒆 = 𝜑‖𝒆 ‖

𝜶 × 𝒆 = +
1

2
‖𝒆 ‖𝜶 − 𝜑𝒆 − ‖𝒆 ‖ (𝑰 − 𝒆 ⊗ 𝒆)𝒆 and

𝛼 = 𝜶 ⋅ 𝜶 = ‖𝒆 ‖ ‖𝒆 × 𝒆‖ + 𝜑 = ‖𝒆 ‖ ‖𝒆 − 𝒆 ‖ = 4tan
𝛽

2
+ 𝜑 .

 (172) 

5.2. Incremental description 

Let (⋅)  and (⋅)  denote a quantity (⋅) at instants 𝑡   and 𝑡  , respectively. And let (⋅)  be an 

incremental quantity. Thus, one gets for the rotation tensor the following relations 

𝑸 = 𝑸 𝑸   ,    where    

𝑸 = 𝑸(𝜶 )  ,    𝑸 = 𝑸(𝜶 )    and    𝑸 = 𝑸(𝜶 ).
 (173) 

The following result by Rodrigues is recalled, which is probably his the most relevant result, 

𝜶 =
4

4 − 𝜶 ⋅ 𝜶
𝜶 + 𝜶 −

1

2
𝜶 × 𝜶  (174) 

The curvature vector at instant 𝑡  is given by 𝜿 = axial(𝑸′ 𝑸 ) or 𝜿 =

axial((𝑸 𝑸 ) 𝑸 𝑸 ) . This delivers 
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𝜿 = 𝑸 𝜿 + 𝜩 𝜶′  (175) 

where 

𝜩 =
4

4 + 𝛼
𝑰 +

1

2
𝜜  (176) 

In (176), both 𝜜 = Skew(𝜶 ) and 𝛼 = 𝜶 ⋅ 𝜶  appear.On the other hand, the back-rotated 

curvature vector at instant 𝑡  is given by 𝜿 = axial(𝑸 𝑸′ ) = axial(𝑸 𝑸 (𝑸 𝑸 ) )  

or 

𝜿 = 𝜿 + 𝑸 𝜩 𝜶′ = 𝜿 + 𝑸 𝜩 𝜶′  (177) 

where 

𝜩 =
4

4 + 𝛼
𝑰 −

1

2
𝜜 . (178) 

Time derivative of (175) leads to 

�̇� = 𝑸 �̇� 𝜶′ + 𝜩 𝜶′̇ = 𝑸 𝑸 �̇� 𝜶′ + 𝜩 𝜶′̇ . (179) 

The spin vector at instant 𝑡  is given by 

𝝎 = axial �̇� 𝑸 = axial �̇� 𝑸 𝑸 𝑸 = axial �̇� 𝑸 = 𝜩 �̇� . (180) 

An interesting result, which is an alternative to (179), is 

�̇� = 𝑸 𝝎′ = 𝑸 𝜩′ �̇� + 𝜩 𝜶′̇ = 𝑸 𝑸 𝜩′ �̇� + 𝜩 𝜶′̇  (181) 

where 

𝜩′ =
2

4 + 𝛼
[𝜜′ − (𝜶 ⋅ 𝜶′ )𝜩 ] (182) 

Now, considering the incremental counterpart of (170) one gets, 

𝜶 = ‖𝒆 ‖ 𝒆 × 𝒆 + 𝜑 ‖𝒆 ‖  𝒆  (183) 

The incremental parameter 𝜶  has the same properties as 𝜶, 

𝜶 ⋅ ‖𝒆 ‖  𝒆 = 𝜑   ,

𝜶 ⋅ 𝜶 = 𝛼   .
 (184) 
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Bearing in mind (183), one gets 

𝜶 ⋅ 𝒆 = 𝜶 ⋅ 𝒆 = 𝜑 ‖𝒆 ‖
1 +  𝒆 ⋅ 𝒆

2
= 𝜑 ‖𝒆 ‖ (185) 

with aid of (160) and knowing that tr 𝒆 ⊗ 𝒆 = 𝒆 ⋅ 𝒆 , 𝑸 = 𝒆 ⊗ 𝒆  and 

axial Skew 𝒆 ⊗ 𝒆 = − 𝒆 × 𝒆   the important formula for the Rodrigues vector can 

be reached 

 𝜶 =
𝒆 ⋅𝒆

𝒆 × 𝒆 , (186) 

𝒆 ,  𝒆 , 𝒆  is the basis in the current configuration and {𝒆 , 𝒆 , 𝒆 } the basis in the 

reference configuration. This formula is also an important contribution on this work. 
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6. Constitutive equations 

6.1. Rods 

If the rod axis is placed along with the cross section shear centers, the following linear elastic 

constitutive equation for small strain isotropic elasticity can be adopted.  

𝝈 = 𝑫𝜺  (187) 

Where 

𝑫 =
𝑫 𝑫

𝑫 𝑫
 (188) 

The strain energy per unit reference length is then given by 

𝜓(𝜺 ) =
1

2
𝜺 ⋅ 𝑫𝜺  (189) 

In (188), one has 

𝑫 = 𝐸𝐴𝒆 ⊗ 𝒆

𝑫 = 𝐸𝑆 𝒆 ⊗ 𝒆 = 𝑫 and

𝑫 = 𝐸𝐽 𝒆 ⊗ 𝒆 + 𝐺𝐽 𝒆 ⊗ 𝒆 ,

 (190) 

 

where 𝐸 is the elasticity modulus, 𝐺 is the shear modulus, 𝐴 is the cross-sectional area, 𝐽  is the 

cross-sectional torsion constant, 𝑆 = 𝜀 ∫ ξ 𝑑𝐴 are the cross-sectional static moments and 

𝐽 = 𝜀 𝜀 ∫ ξ ξ 𝑑𝐴 are the cross-sectional inertia moments. It is recalled that 𝐽  is given 

by 

𝐽 = 𝐽 − 𝜀 ξ 𝜙, 𝑑𝐴, (191) 

where 𝜙 = 𝜙 ξ   is the St.-Venant warping function and 
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𝐽 = ξ ξ 𝑑𝐴 = 𝐽 + 𝐽  (192) 

is the cross-sectional polar moment of inertia. For circular or annular sections, with the origin 

at the barycenter 𝑆 = 0,  𝐽 = 𝐽 = 0, 𝜙 = 0 .and 𝐽 = 𝐽   For bisymmetrical cross sections 

with the origin at the barycenter and 𝒆   along the principal axes of the cross section, one has 

𝑆 = 0,   𝐽 = 𝐽 = 0, and  𝐽  given by (191). 

6.2. Shells 

For the shell the material is assumed to be isotropic, then the strain energy of a neo-Hookean 

hyperelastic material shown in Simo and Hughes (1998) [59] is described by 

𝜓(𝜺 ) = 𝜓(𝐼 , J) =
1

2
𝜆

1

2
J − 1 − ln J +

1

2
𝜇(𝐼 − 3 − 2ln J) (193) 

Where the function 𝜓(𝜺 ) is written in terms of strain invariants 𝐼 = 𝑭: 𝑭, J= detF  and 𝜆, 𝜇 

are the Lamé constants. More general, fully three-dimensional hyperelastic materials for shells 

(i.e. without the plane-stress enforcement) can be considered as Pimenta, Campello and 

Wriggers (2004) [45]. 

6.2.1. Plane stress condition 

 In order to enforce plane stress condition, the expression for the back-rotated 

deformation gradient (121)  can be rewritten as 

𝑭 = 𝑰 + 𝜸 ⊗ 𝒆 + 𝜸 ⊗ 𝒆  (194) 

Which 𝜸  are the shell strain vectors and 𝜸 = 𝛾 𝒆  is the vector of the thickness strain 

corresponding to the plane stress state and the scalar 𝛾  is introduced to allow thickness 

deformation (transversal strains). It can be considered as an additional degree of freedom and 

should be eliminated at constitutive level by a shell plane stress condition. 

The following plane stress condition is stated 
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𝜏 = 𝝉 ∙ 𝒆 = 0 (195) 

and 

(𝑷𝒆 ) ⋅ 𝒆 = 0 . (196) 

which means that the projection of the traction 𝑷𝒆  on the director 𝒓 = ξ 𝒆  is zero. So, 𝜏  is 

powerless.  

For specific cases one can define this scalar by analytical enforcement as done in Viebahn, 

Pimenta and Schröder (2016) [65]. This is considered in all shell examples. 

𝛾 =
𝜆 + 2𝜇

𝜆J + 2𝜇
− 1 (197) 
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7. Finite element 

Bearing in mind that the potential is nonlinear, a Newton-Raphson iteration scheme is chosen 

to solve this problem. The simulations presented are performed within the AceFEM finite 

element software. Both AceGen and AceFEM programs are developed and maintained by Joze 

Korelc (University of Ljubljana). The interested reader is referred to Korelc and Wriggers 

(2016) [34].  

The presented model allows the formulation of an internal and an external potential, which can 

be given by 

Π = (Π + Π ) (198) 

where (⋅)  is the contribution of each element 𝑒 = 1,2, … 𝑁  . The strain energy of an 

element is 

Π = 𝜓𝑑Ω (199) 

with 𝜓 given by (189) for rods or (193) for shells.  

The finite element method is used to discretize these potentials on a computational domain in 

terms of the nodal degrees of freedom. The minimization of the potential energy leads to the 

equilibrium state, this minimization in the context as a Theorem of Potential Energy, which 

states that the solution of a static problem is a stationary (in some cases minimum) of the total 

potential energy. The residual vector, also known as unbalanced forces, and the tangent stiffness 

matrix are respectively given by 

𝑹(𝒅) =
𝜕𝛱(𝒅)

𝜕𝒅
= 0   and

𝜥(𝒅) =
𝜕 𝛱(𝒅)

𝜕𝒅

 (200) 

 

where 𝒅 is the vector of the nodal degrees-of-freedom. A Newton iteration is then given by 
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𝜕𝛱(𝒅 )

𝜕𝒅
≅ 𝑹(𝒅 ) + 𝜥(𝒅 )∆𝒅 = 𝟎 (201) 

 

The application of this procedure leads to the standard form of the local linear equation system, 

given in equation (201). Here R and K are known as the global residual and global stiffness 

matrix. Solution of this linear system leads to the incremental update Δ𝒅 of the vector of 

unknowns within the iterative solution procedure.  

7.1.  Rods 

7.1.1. First connection strategy - Finite elements with 𝒖, 𝒖′ and 𝝋 as DOFs 

For a smooth axis at reference configuration, a finite element must be continuous for 𝒖, 

(𝑰 − 𝒆 ⊗ 𝒆 )𝒖′ and 𝜑 (or𝜑 ). If there is no cross section or material change from an element 

to the other, a 𝐶  interpolation for the displacements 𝒖 and a 𝐶  interpolation for the incremental 

rotation 𝜑  is sufficient.  For non-smooth connection or for the case of cross section or material 

change from an element to the other, the connection of elements must be carefully performed. 

A connection can be generally formulated by enforcing the equality of 𝒖 and 𝜶  at connecting 

ends.  

Figure 4: Connection strategy - Finite elements with u, u' and φ as basic degrees of freedom. 

 
Source: Author 

Then, the continuity of the degrees of freedom are given by 

𝒖

𝒖

𝜑

 

𝒖

𝒖

𝜑

 

𝒖

𝒖

𝜑

 

𝒖

𝒖

𝜑

 
𝜑  

𝜑  
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𝒖 = 𝒖

𝒖 ≠ 𝒖

𝜑 ≠ 𝜑

 (202) 

The displacements constraint is standard, but for the second and third continuity a penalty or 

Lagrangian term must be added to the potential energy, as follows 

 

1

2
𝑘(𝜶 − 𝜶 ) ⋅ (𝜶 − 𝜶 )    or    𝝀 ⋅ (𝜶 − 𝜶 ) (203) 

 

where 𝐴 and 𝐵 designate the connecting element ends, 𝑘 is a penalty parameter and 𝝀 is the 

associated vector of Lagrange multipliers. 𝜑  is illustrated in the Figure 4 being an option for 

the interpolation polynomials, but that is a degree of freedom only when the polynomial used 

requires it. 

7.1.2. Second connection strategy -  𝒖 and 𝜶 as DOFs 

There is another element option that needs no special treatment where the degrees of freedom 

are the 𝒖, 𝜶 and 𝜀, leaving 𝜀 discontinuous. Evaluating both options this was the chosen method 

for the example illustrations, as no difference in results were found between both strategies. 

𝜀 = ‖𝒛′ ‖ − 1

𝜑 = ‖𝒆 ‖ (𝜶 ⋅ 𝒆 ),

𝒖′ = 1 + 𝜀 𝒆 − 𝒆 .

 (204) 

where I=1,2 designate the element nodes. 𝒖, 𝒖′ and 𝜑 are still the one interpolated, but the 

nodal values are achieved through 𝒖, 𝜶 and 𝜀. 𝜑  is the rotation around e 𝒆  which is a moving 

axis and 𝜀 is the elongation of the axis. 

At nodes 𝐼 = 1,2, with the nodal values 𝜶  , 𝜶 , 𝜀   and 𝜀 , one gets 
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𝒆 = 𝑸(𝜶 )𝒆 ,

𝒆 = 𝑸(𝜶 )𝒆   ,

𝒆 =
1

2
𝒆 + 𝒆 ,

𝜑 = ‖𝒆 ‖ (𝜶 ⋅ 𝒆 ),

𝒖′ = 1 + 𝜀 𝒆 − 𝒆     and

𝒖′ = 1 + 𝜀 𝒆 − 𝒆 .

 (205) 

Along the rod, with the interpolations 𝒖 , 𝒖′ , 𝒖′′ , 𝒖 , 𝒖′ , 𝒖′′ , 𝜑  and 𝜑′  are 

computed. Afterwards, 𝜶  and 𝜶′  are obtained with the aid of  

𝒆 = 𝒆 + 𝒖′ 𝒆 + 𝒖′   ,

𝒆 = 𝒆 + 𝒖′ 𝒆 + 𝒖′   ,

𝒆 =
1

2
𝒆 + 𝒆   ,

𝜶 = ‖𝒆 ‖ 𝒆 × 𝒆 + 𝜑 ‖𝒆 ‖ 𝒆

 (206) 

Finally, at the domain, one can compute 

𝜶 =
4

4 − 𝜶 ⋅ 𝜶
𝜶 + 𝜶 −

1

2
𝜶 × 𝜶   ,

𝜩 =
4

4 + 𝜶 ⋅ 𝜶
𝑰 +

1

2
Skew(𝜶 )   ,

𝜀 = 𝒆 + 𝒖′ − 1  ,

𝜼 = 𝜀  𝒆     and

𝜿 = 𝜿 + 𝑸 𝜩 𝜶′   .

 (207) 

At every integration point, 𝜶  and 𝜿  must be stored. In general, only 𝒖 and 𝜶  can be connected 

by neighboring elements. 𝜀 can be shared only in the case of smooth connection of 2 elements, 

with no change of cross-sectional properties and no nodal external forces. 

Figure 5: Connection strategy - Finite elements with 𝒖, 𝜶 and 𝜀 as basic degrees of freedom. 

 
Source: Author 
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Then, the continuity of the degrees of freedom are 

𝒖 = 𝒖

𝜶 = 𝜶

𝜀 ≠ 𝜀

 (208) 

The constraints are enforced by the assembly of the of the global stiffness matrix as usual in the 

finite element method.  

7.1.3. Interpolation polynomials 

In any of the connection strategies the interpolation polynomials are applied in 𝑢, 𝑢′, 𝑢′′, 𝜑 and 

𝜑′ as demonstrated in the following. 𝑢′′ and 𝜑′ are added to the end nodes as degrees of freedom 

for the interpolation, but they are discontinuous between elements. 

7.1.3.1. Cubic interpolation for the displacements 

The FE interpolation can be written as 

𝒖 = 𝑁 𝒖 + 𝑁 𝒖 + 𝑁 𝒖 + 𝑁 𝒖   (209) 

where,  

𝑁 = 1 −
3ζ

𝑙
+

2ζ

𝑙
,   𝑁 = ζ −

2ζ

𝑙
+

ζ

𝑙
,   𝑁 =

3ζ

𝑙
−

2ζ

𝑙
,   𝑁 =

ζ

𝑙
−

ζ

𝑙
, (210) 

7.1.3.2. Quintic interpolation for the displacements 

The FE interpolation can be written as 
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𝒖 = 𝑁 𝒖 + 𝑁 𝒖 + 𝑁 𝒖 + 𝑁 𝒖 + 𝑁 𝒖 + 𝑁 𝒖   and

𝜑 = 𝑁 𝜑 + 𝑁 𝜑 + 𝑁 𝜑 + 𝑁 𝜑 + 𝑁 𝜑 ,
 (211) 

where,  

𝑁 = 1 −
10ζ

𝑙
+

15ζ

𝑙
−

6ζ

𝑙
,    𝑁 = ζ −

6ζ

𝑙
+

8ζ

𝑙
−

3ζ

𝑙
,

𝑁 =
ζ

2
−

3ζ

2𝑙
+

3ζ

2𝑙
−

ζ

2𝑙
,    𝑁 =

10ζ

𝑙
−

15ζ

𝑙
+

6ζ

𝑙
,

𝑁 = −
4ζ

𝑙
+

7ζ

𝑙
−

3ζ

𝑙
,    𝑁 =

ζ

2𝑙
−

ζ

𝑙
+

ζ

2𝑙
,

 (212) 

7.1.3.3. Linear interpolation for the torsion  

The FE interpolation can be written as 

𝜑 = 𝑁 𝜑 + 𝑁 𝜑  (213) 

where,  

𝑁 = 1 −
ζ

𝑙
  and  𝑁 =

ζ

𝑙
. (214) 

7.1.3.4. Quadratic interpolation for the torsion  

The FE interpolation can be written as 

𝜑 = 𝑁 𝜑 + 𝑁 𝜑 + 𝑁 𝜑  (215) 

where,  

𝑁 = 1 −
3ζ

𝑙
+

2ζ

𝑙
, 𝑁 = −

ζ

𝑙
+

2ζ

𝑙
   and  𝑁 =

4ζ

𝑙
−

4ζ

𝑙
 (216) 
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7.1.3.5. Cubic interpolation for the torsion  

The FE interpolation can be written as 

𝜑 = 𝑁 𝜑 + 𝑁 𝜑 + 𝑁 𝜑 + 𝑁 𝜑  (217) 

where,  

𝑁 = 1 −
3ζ

𝑙
+

2𝜁

𝑙
,

𝑁 =
3ζ

𝑙
−

2ζ

𝑙
,

𝑁 = ζ −
2ζ

𝑙
+

ζ

𝑙
    and    𝑁 = −

ζ

𝑙
+

ζ

𝑙

 (218) 

7.1.3.6. Quartic interpolation for the torsion  

The FE interpolation can be written as 

𝜑 = 𝑁 𝜑 + 𝑁 𝜑 + 𝑁 𝜑 + 𝑁 𝜑 + 𝑁 𝜑 , (219) 

where,  

𝑁 = 1 −
11ζ

𝑙
+

18ζ

𝑙
−

8ζ

𝑙
,     𝑁 = −

5ζ

𝑙
+

14ζ

𝑙
−

8ζ

𝑙
,

𝑁 = ζ −
4ζ

𝑙
+

5ζ

𝑙
−

2ζ

𝑙
,      𝑁 =

ζ

𝑙
−

3ζ

𝑙
+

2ζ

𝑙

and      𝑁 =
16ζ

𝑙
−

32ζ

𝑙
+

16ζ

𝑙
.

 (220) 

 



59 
 

7.1.3.7. Interpolation polynomials schemes 

The simplest element is cubic Hermitian on 𝒖 (2 nodes) and linear Lagrangian on 𝜑  (2 nodes). 

This element has 14 DOF’s. At each node, it has 7 DOF’s, which are 𝒖, 𝜶 and 𝜀. 𝒖′ and 𝜑  as 

internal degrees of freedom that are computed through 𝜶 and 𝜀. 

The next element is cubic Hermitian on 𝒖 (2 nodes) and quadratic Lagrangian on 𝜑  (3 nodes). 

This element can be used together with T6-KL element. At each node, it has 7 DOF’s, which 

are 𝒖, 𝜶 and 𝜀 like the first element, and one more degree of freedom in the middle node 𝜑 . 

𝒖′ and 𝜑  as internal degrees of freedom that are computed through 𝜶 and 𝜀. 

Another element presented is a cubic Hermitian on 𝒖 and 𝜑  (2 nodes). At each node, it has 8 

DOF’s, which are 𝒖, 𝜶, 𝜑′  and 𝜀. 𝒖′ and 𝜑  as internal degrees of freedom that are computed 

through 𝜶 and 𝜀. 

Another element presented is a quintic Hermitian on 𝒖 (2 nodes) and a linear Lagrangian on 𝜑  

(2 nodes). At each node, it has 10 DOF’s, which are 𝒖, 𝒖′′, 𝜶 and 𝜀. 𝒖′ and 𝜑  as internal 

degrees of freedom that are computed through 𝜶 and 𝜀. 

One more element presented is a quintic Hermitian on 𝒖 (2 nodes) and a quadratic Lagrangian 

on 𝜑  (3 nodes). At each node, it has 10 DOF’s, which are 𝒖, 𝒖′′, 𝜶 and 𝜀, and one more degree 

of freedom in the middle node 𝜑 .  𝒖′ and 𝜑  as internal degrees of freedom that are computed 

through 𝜶 and 𝜀. 

There is also an element with quintic Hermitian on 𝒖 (2 nodes) and a cubic Hermitian 

polynomial interpolation on 𝜑  (2 nodes), can be used together with reduced-quintic TUBA3 

element. At each node, it has 11 DOF’s, which are 𝒖, 𝒖′′, 𝜶, 𝜑′  and 𝜀.  𝒖′ and 𝜑  as internal 

degrees of freedom that are computed through 𝜶 and 𝜀. 

The last one presented is an element with quintic Hermitian on 𝒖 (2 nodes) and a quartic 

polynomial interpolation on 𝜑  (3 nodes), can be used together with quintic TUBA6 or TUBA7 

shell element. At each node, it has 11 DOF’s, which are 𝒖, 𝒖′′, 𝜶, 𝜑′  and 𝜀, and one more 

degree of freedom in the middle node 𝜑 .  𝒖′ and 𝜑  as internal degrees of freedom that are 

computed through 𝜶 and 𝜀. 



60 
 

7.2. Shells 

A triangular shell element T6-KL is considered. The element is a 6-node displacement-based 

one, with a plane reference configuration as displayed in Figure 2. In general, the Kirchhoff–

Love shell theory requires C1-continuous approximations. The approach adopted herein is to 

enforce C1-continuity at the element boundaries. Therefore, it is sufficient to employ a C0 

interpolation. For the approximation of the triangular shaped finite elements, shape functions 

based on barycentric parent coordinates are applied. The position vector of the middle surface 

in the current configuration is interpolated with their corresponding nodal values and shape 

functions as 

𝒖 = 𝑁 𝒖  (221) 

where the superscript h indicates the finite element discretization, and the number of element 

nodes, 𝑁  a suitable matrix including the shape functions.  𝒖   are the nodal degrees of freedom 

for the displacements, as in Viebahn, Pimenta and Schröder (2016) [65]. 

Figure 6: Node on a shell element. 
 

 
Source: Author 

To find the shape functions for the shell element in Figure 6 the area of the element must be 
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𝐴 =
1

2
Det

𝑥 𝑦 1
𝑥 𝑦 1
𝑥 𝑦 1

= ∆ (222) 

also the area opposite to node I 𝐴  

𝐴 =
1

2
Det

𝑥 𝑦 1
𝑥 𝑦 1
𝑥 𝑦 1

 (223) 

𝐴 =
1

2
Det

𝑥 𝑦 1
𝑥 𝑦 1
𝑥 𝑦 1

 (224) 

𝐴 =
1

2
Det

𝑥 𝑦 1
𝑥 𝑦 1
𝑥 𝑦 1

. (225) 

After that, the side opposite to nodes I, 𝐿  

𝐿 =
𝐴

∆
 (226) 

 

are 

𝐿 =
1

∆
(𝑥 𝑦 + 𝑥  𝑦 + 𝑦 𝑥 − 𝑦 𝑥 − 𝑥 𝑦 − 𝑦  𝑥 )

𝐿 =
1

∆
(𝑥  𝑦 + 𝑥 𝑦 + 𝑦  𝑥 − 𝑦  𝑥 − 𝑥  𝑦 − 𝑦 𝑥 )

𝐿 =
1

∆
(𝑥  𝑦 + 𝑥  𝑦 + 𝑦  𝑥 − 𝑦  𝑥 − 𝑥  𝑦 − 𝑦  𝑥)

 (227) 

There is also a need for the derivatives of 𝐿  in relation to the coordinates are 



62 
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 (228) 

The following shape functions are based on Figure 6 and equation (226),  

𝑁 = 2 𝐿 𝐿 −
1

2

𝑁 = 2 𝐿 𝐿 −
1

2

𝑁 = 2 𝐿 𝐿 −
1

2
𝑁 = 4 𝐿 𝐿
𝑁 = 4 𝐿 𝐿
𝑁 = 4 𝐿 𝐿

 (229) 

7.2.1. Shell connection strategy  

Because of the Kirchhoff–Love`s assumption the deformation gradient of the shell is written in 

terms of first- and second-order derivatives of the displacements. Consequently, a C1-

continuity between the finite elements has to be assured. In this work, this condition is imposed 

by a penalty approach and by a Lagrange multiplier, which enforces the equality at the kinking 

of the edge of two neighboring elements. There are two approaches to impose this continuity. 

One addressed in Viebahn, Pimenta and Schröder (2016) [65] which an angle between the 

normal vectors 𝒆  from neighboring elements has to remain the same between 𝒆 of each 

element. And a new approach that is presented in this work, where a rotation parameter 𝜑  

around the medium tangent of the middle node that neighbors the elements being connected is 

calculated and this parameter has to be the same on both elements. The approach that is 

presented in this work is easier to calculate (for the author’s point of view) but no numerical 
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advantage was presented. Figure 7 shows the degrees of freedom and this internal rotation 

parameter along with the base in the middle node.  

Figure 7: Degrees of freedom in a shell element. 

  
Source: Author 

For the shells 𝜶 =
𝒆 ⋅𝒆

𝒆 × 𝒆   is used to calculate 𝜶   as 𝒆  can be achieved only 

with the displacements and 𝒆  are known from the previous step. Then, 𝜑  can be attained by 

𝜑 = 𝜶 ∙ ‖𝒆 ‖  𝒆  (230) 

Figure 8: Degrees of freedom in two neighboring elements. 

 
Source: Author 

The continuity of the degrees of freedom are 

𝒖 = 𝒖
𝜑 = 𝜑

 (231) 

The continuity of 𝜑  is enforced by adding an artificial energy to the potential (198) 

Π = 𝜆(𝜑 − 𝜑 ) (232) 

where 𝜆 is the Lagrange multiplier.  
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The continuity of 𝜑  can also be enforced by adding an artificial energy to the potential (198) 

Π =
1

2
𝜅 (𝜑 − 𝜑 )  (233) 

where 𝜅 is the penalty parameter. In this work only Lagrange multipliers were considered in 

the examples. 

𝒖 are the displacements degrees of freedom from the elements and 𝜑  is an internal degree of 

freedom that is only needed to connect neighboring elements. 
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8. Continuity constrains between shells and rods 

The connection between shells and rods are done in a similar manner as between shells, 𝜑  is 

calculated as in (230) for the shell and in the rod 𝜑  is already a degree of freedom, there is no 

need to calculate a new parameter. For the connection a Lagrange multiplier was used. Figure 

9 shows the degrees of freedom in the rod and shell elements. 

Figure 9: General case for the finite elements’ threshold. 

  
Source: Author 

As for the rotation continuity of the shell, the constrain is done internally so that the degree of 

freedom 𝜑  becomes external and can be connected to the rod element by the assembly of the 

global stiffness matrix.  

𝜑  is attained by (186) and (230) and depends on the element’s displacements and  𝜑  is an 

external degree of freedom and is obtained by adding the following artificial energy function to 

the potential. 

Π = 𝜆 𝜑 − 𝜑  (234) 

The procedure to execute this constraint imposes that the rotation field appears as continuous. 

Here the Lagrange multiplier approach is introduced that ensures the constrain in an exact 

manner. 

Then, the continuity constraint is 

𝜑 = 𝜑  (235) 
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The displacements continuity is enforced by the assembly of the global stiffness matrix as usual 

in the finite element method as they are external degrees of freedom. 
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9. Numerical examples 

In this section various numerical examples are presented to verify the model’s capabilities. 

Standard benchmark structural problems were investigated. The first examples aim to verify 

the general reliability of the derived model especially in terms of correct kinematics and energy 

formulations as well as application of boundary conditions. First an example is computed to 

compare Timoshenko rod theory with the one presented in this work. The next example serves 

to compare the different shape functions schemes. Then a simple two-dimensional cantilever is 

considered, exposed to conservative and non-conservative loads. Furthermore, the domain of a 

cantilever is investigated in three dimensions. The considered problem shows a well-known 

buckling behavior. To show the theory’s comprehensiveness the same buckling problem is 

illustrated with different cross sections. Then for the I cross section different discretizations are 

applied one as the first example were only rod elements are employed, one where only shell 

elements are employed then one with rod elements in the flange and shell elements in the web 

to show the connection between the two theories presented. 

An additional buckling analysis is presented on an L-shaped frame section also with the 

different discretization as it was done for the cantilever. Two more complex boundary value 

problems are evaluated to show the general capability of the model regarding finite 

displacement and rotation. Therefore, a snap-through problem on a non-straight reference 

configuration is presented. Then, the elastic ring, a complex three-dimensional problem is 

presented, showing all the capabilities of the presented rod formulation. A coil spring under 

compression is also shown and is another type of buckling problem. Furthermore, a benchmark 

problem for shells (pinched cylinder) is shown, this is also a complex problem and gives large 

displacements. And the last example shows a reinforced shell, which is a very usual problem. 

All the problems showed satisfying results. 

9.1. Comparison between Timoshenko and Bernoulli-Euler (BE) - Rods 

With this example the intention is to show that Timoshenko and BE rod theory converge to the 

same results when the structure is sufficiently slender and that BE theory, applied to slender 
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rods, converges with very few elements while Timoshenko needs more DOFs to converge. A 

cantilever with its length L=2m clamped at L = 0 is loaded by concentrated force F, starting 

with F = 1kN. The height of the cross section is h, while the elasticity constants are adopted as 

E = 210000 MPa and ν = 0.3125, considering a constant area for the cross section. The intensity 

of the load is properly chosen for different values of the height, according with F~h2. Thus, 

simple bending for both theories with varying slenderness is investigated. Figure 10  shows the 

tip deflection w (normalized by Bernoulli’s analytical solution) versus the degrees of freedom 

for the cantilever, with different ratios h/L, only the first Newton iteration was considered for 

the displayed deflections to get the linear solution, and it can be seen that BE solution converges 

with 2 elements for any slenderness. Timoshenko solution has a much softer response with 

h/L=10-1 due to shear deformation and needs more elements to converge with increasing 

slenderness, as shown in Figure 10 for this curve the shear is more important and that is why it 

gives a softer response. In Figure 10 all the Bernoulli-Euler results were the same and are 

represented by only one curve. Timoshenko’s solution the curve differed for h/L=10-1, all the 

other curves were the same and are represented by one curve. 

Figure 10: Normalized tip displacements with respect to DOFs. 

 
Source: Author 

9.2. Convergence study for different interpolating polynomials (rods) 

The structure presented in Figure 11 is a right-angle frame that has a force at one end and is 

clamped in the other end.  Material and geometrical properties are also shown in Figure 11, this 
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example was chosen because it is a simple example where both bending and torsion play a 

significant role. 

A variety of shape functions were presented and compared in Figure 12, Figure 13, Figure 14 

the subtitles indicate the polynomial degree, for example, 3/1 is cubic polynomials for the 

displacements and linear polynomial for the torsion scalar. 

Figure 11: Right angle frame. 

 
Source: Author 

Analyzing Figure 12, clearly, any of the polynomials converge as for Figure 13 and Figure 14 

one can see thar cubic/quadratic is the lowest polynomial that converges faster, but any of the 

polynomials gives satisfying results, and can be chosen as it is suitable. The response is grouped 

by the displacements interpolations and torsion gives small differences. 

Figure 12: Displacements module. 

 
Source: Author 
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Figure 13: log x log - error for the displacements. 

 
Source: Author 

Figure 14: log x log - error for the rotation. 

 
Source: Author 

9.3. 2D Cantilever investigations 

For general verification of the presented model, the computational problem of a cantilever 

exposed to two different load cases is considered. The problems are of two-dimensional nature, 

which is realized by restricting the displacements in the thickness direction, bending around the 

height direction as well as the torsional degree of freedom. Hence all deformation lies in the X-

Y plane. A straight reference configuration and constant geometry and material is considered. 
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The fully clamped support is fulfilled by restricting the displacements and 𝜶∆ at the left-end of 

the cantilever. 

The first load case (a) is given by an external bending moment on the right-end of the cantilever 

Its length is L = 1 m clamped at L = 0. The material properties of the beam are EA = 5 kN, EI 

= 2 kN.m2.  The problem is known from the literature as, for example, investigated in 

Gruttmann, Sauer and Wagner (2000) [31], Simo and Vu-Quoc (1986) [60]. The pure bending 

of the beam results in a full circle for the considered material parameters. The cantilever was 

modelled with 16 finite elements after a convergence study with respect to the reference 

solution, but even with as little as 3 elements the result has a 0.3% difference from the reference 

solution. Some deformation states of the problem are shown in Figure 15, including the final 

state which is indeed the full circle. The shapes are annotated with the current state of the 

rotation vector 𝜶∆ at the cantilever tip respectively. 

The local beam base system undergoes large rotations within this problem. As discussed in 

section 2 the rotation vector inherits a singularity at a rotation of 𝜋, which is the reason for the 

introduced incremental rotation scheme. In this example a two-dimensional problem is given 

and thus only rotation around the z-axis is observed. Hence the rotation vector only contains 

one nonzero entry. In Figure 15,  the mentioned singularities can easily be recognized at 𝑚 =

2𝜋 𝑘𝑁. 𝑚 when 𝜃 = 𝜋 because the total 𝛼 is recovered, since an incremental formulation was 

used, there are no singularities during the calculations because the increment is always < 𝜋. 

Figure 15: Deformed states at different load levels with local basis at the beam tip - case a. 

 
Source: Author 
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On the next load case (b), the cantilever is exposed to a follower load. The initially straight 

beam has a length L = 100 cm. Its material properties are EA = 4.20×105 kN, EI = 3.5×104 

kN.cm2. The follower end load takes successively the values F = 5, 20, 50, 70, 90, 110 and 130 

kN. The problem was first investigated by Argyris and Symeonidis (1981) [2] while Simo and 

Vu-Quoc (1991) [57] covers the results as well. A comparison of Bernoulli-Euler versus 

Timoshenko beam models on this problem can be found in Boyer and Primault (2004) [9]. 

Throughout the simulation the nodal force stays perpendicular to the beam axis tangent at the 

right-hand side of the beam. The beam exhibits large displacements and rotation as it deforms. 

A convergence study was performed with respect to the vertical tip displacement at the final 

state. A reasonable number of 16 finite elements was determined to model the cantilever. 

Different deformation states of the problem are shown in Figure 16  while the load displacement 

curves are presented in Figure 17. The horizontal displacement is plotted in its negative form, 

as done in the reference, for a better comparison. For both presented two dimensional examples 

a good agreement with the results from the literature can be observed.  
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Figure 16: Deformed states at different load levels – follower load. 

 
Source: Author 

Figure 17: Load displacement curves at beam tip – case b. 

 
Source: Author 
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9.4. Lateral buckling analysis of a cantilever 

The cantilever problem in Figure 18 is considered in the next numerical examples with cubic 

interpolations for the displacements and linear interpolation for rotation (the simplest 

interpolation scheme). This time the problem is no longer restricted to be two dimensional, 

which leads to a classical buckling problem. Determining the critical point appears to be a 

standard benchmark problem in this context and is thus considered in many publications as 

example Pimenta and Yojo (1993) [41], and Smolenski (1999)  [61] and Campello and Lago 

(2014) [13]. The geometrical and material parameters within this paper were adapted from 

Pimenta and Yojo (1993) [41] shown in Figure 18. To enter the post buckling equilibrium path, 

a perturbation load is applied. In all the presented forms of this problem, the perturbation load 

is active during the whole simulation but with a rather small magnitude of 10-4 times the primal 

load. The lateral buckling (displacement in Z-direction) is shown in Figure 19. The critical load 

can be determined at approximately 2.2kN. Hence a good agreement with the literature can be 

observed. Figure 19 shows the problem considering the implementation varying the integration 

points over the rod domain and some deformation states in a 3D picture. For Bernoulli-Euler a 

3, 4, 5, 6 Lobatto and 2, 3 ,4 ,5 ,6 ,7 ,8 ,9 ,10 Gauss integration points were implemented. For 

the shown Timoshenko solution, the formulation from Pimenta and Yojo (1993) [41], with 

linear interpolation of the degrees of freedom 𝒖 and 𝜶 , was implemented and used as reference, 

only 1 Gauss integration point showed satisfying results, with 2 Gauss points there is locking 

and the structure does not buckle. With the Bernoulli-Euler solution presented here, the results 

are the same for any of these integration schemes.  
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Figure 18: 3D rectangular cantilever problem. 

 
Source: Author 

Figure 19: Lateral Buckling of a cantilever with multiple integration points and rectangular cross 
section. 

 
Source: Author 

A convergence study with respect to the lateral displacement structure at the final state of the 

solution was done. As it can be seen in Figure 20, a reasonable discretization of the problem 

with 16 elements for the structural element was chosen, as it is converged.  
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Figure 20: Lateral Buckling of a Cantilever with different discretization elements. 

 
Source: Author 

 

Two different elements were implemented, both geometrically exact, one with the Timoshenko 

hypothesis from Pimenta, Campello and Wriggers (2008) [45] and the other with the Bernoulli-

Euler theory presented. To analyze the convergency the cantilever was divided in 2, 4, 8, 16, 

32, 64, 128 and 256 elements so that the finer discretization contains the coarser ones. The 

smallest eigenvalue was analyzed, one can see that both theories give similar critical force, the 

difference between them is approximately 1%, which is not relevant because even with different 

perturbation loads there is already a ~1% difference. Figure 21 shows the critical force vs DOFs. 

Bernoulli`s theory with 3 elements (22 DOFs) has only a 1% difference from the converged 

force with 8 elements (57 DOFs), the Timoshenko`s theory with 4 elements (24 DOFs) has 

6.5% difference from the converged force with 58 elements (348 DOFs), for a ~1% difference 

it needs 36 elements (216 DOFs). The BE model needs fewer degrees of freedom to converge. 
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Figure 21: Convergency behavior regarding the stability point for the rod element. 

 
Source: Author 

In Figure 19 one can see that the result with geometrically exact 3D Timoshenko beam elements 

is very similar to geometrically exact 3D Bernoulli beam elements.   

The lateral buckling problem was also analyzed to compare 6 different cross sections shown in 

Figure 23, the first one is the rectangular one that was already introduced in Figure 18. The 

material properties for the other cross sections are the same and all of them have the same area. 

As in Pimenta and Yojo (1993) [41] the cross sections are represented by the letters, R, T, I, C, 

L and V. The load is applied at the shear center as this theory requires. The results are very 

similar to Pimenta and Yojo (1993) [41]. The T cross section presented the highest critical load 

as seen in Figure 23 and agrees with the literature. 
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Figure 22: Cross section geometries for the lateral buckling of a cantilever. 

 
Source: Author 

Figure 23: Lateral buckling comparison between different cross sections. 

 
Source: Author 

 

To compare the capabilities of the rod and shell theory, the cantilever problem in Figure 24 is 

considered. This example is the same as the I cross section from before, so it is also a classical 

buckling problem. This is example was considered in many publications as Campello and Lago 

(2014) [13], Pimenta and Yojo (1993) [41] and Smolenski (1999)  [61]. The critical point is 
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determined and compared to the cantilever with the rod element developed in this work and the 

shell element from Viebahn, Pimenta and Schröder (2016) [65] using the Rodrigues rotation 

parameter for the continuity of the shell. The geometrical and material parameters within this 

paper were adapted from Pimenta and Yojo (1993) [41] and is shown in Figure 24. After a 

convergency study three kinds of discretization are considered for the problem:  

case a - the cantilever is discretized with 10 rod elements;  

case b – the cantilever is discretized with 2x2x40 shell elements in the web and 2x2x40 shell 

elements in each flange; and  

case c – the cantilever is discretized with 2x2x40 shell elements in the web and 40 rod elements 

in each flange.  

To enter the post buckling equilibrium path, a perturbation load is applied in case a and case c. 

Case b is not symmetric because of the mesh and doesn’t need a perturbation load to enter the 

post buckling equilibrium path. The perturbation load, in the cases that it is needed, is active 

during the whole simulation but with a rather small magnitude of 10-4 times the original load. 

The lateral buckling (displacement in Z-direction) is shown in Figure 26. The critical load can 

be determined at approximately 4.35kN.  

A good agreement with the literature can be observed. The cantilever with shell element in the 

web and rod element in the flange also has good results as the critical load is almost the same 

as the others. It and can be perceived in Figure 26 the agreement between cases, the small 

difference for the load can be explained because of the boundary applied to the rod and shell. 

The essential boundary for the rod is enforced at the axis constraining all the motion possible, 

as for the shell it is not possible to constrain only at the axis and it makes the results differ. For 

case b and c the essential boundary conditions are shown in Figure 25. The results also differ 

after the buckling load because of cross section deformations, the rod element has the constrain 

that the cross section stays undeformed after motion, which doesn’t happen to the shells. 

Another explanation for the differences can be observed because of the constitutive equations 

used, since for rod/shell the constitutive equations are distinct, distinct behaviors for large strain 

regimes may be expected.  To show the effect of the different boundary conditions one more 

curve is added to Figure 26, that is of a cantilever rod with only shell elements and all 

displacements restricted at L=0 no warping is considered, it is a subject of future works. 
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Figure 24: Cantilever with I cross section. 

 
Source: Author 

Figure 25: Boundary value problem for the cantilever with I cross section with shell elements in the 
web. 

   
Source: Author 

Figure 26: Lateral displacement of the cantilever buckling problem. 

 
Source: Author 
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9.5. Lateral buckling analysis an L shaped frame 

Investigation of another geometrically discontinuous configuration is the subject to the next 

example. The cantilever considered before is now extended by a vertical beam at its tip. The 

resulting structure is known as L-shaped frame and was considered also in Pimenta and Yojo 

(1993) [41] as well as in Simo and Vu-Quoc (1986)  [60]. A loading on the lower structure of 

the frame is applied such that a buckling problem is constructed again. The material parameters 

and geometry were adopted from the first mentioned literature and is recovered in Figure 27. A 

perturbation load in lateral direction is used to drive into the buckling path of the problem again. 

The connection of the vertical and the horizontal structure represents a non-smooth geometrical 

discontinuity in the reference configuration of the problem. A convergence study with respect 

to the lateral displacement at the tip of the vertical structure at the final state of the solution was 

done and a reasonable discretization of the problem with ten elements for each structural 

element was chosen. The obtained load displacement curves are given in Figure 28 with an 

illustration of some deformed configurations. It is first notable that the strategy leads to 

reasonable results and is able to determine the critical load that is reported form the literature 

at approximately 0.75 kN.  

Figure 27: L-shaped frame buckling problem. 

 
Source: Author 
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used as sort criteria within the numerical investigation, while the norm of the global residual 

(𝑅) is given here for completeness. 

Figure 28: Lateral buckling and deformed shapes of a L-shaped frame. 

 
Source: Author 

Table 1: Convergence of the Newton-Raphson procedure towards equilibrium at load level 3.5 kN. 
iteration ‖𝜟𝒅‖ ‖𝑹‖  

2 301.236 285.601 

3 48.8237 3.11517 

4 0.227885 0.0801331 

5 0.0000675315 4.8235 x 10-6 

6 2.55856 x 10-9 5.34248 x 10-6 

Source: Author 

Like shown in the I the cantilever example, the problem is now defined to an I cross section, 

showing in Figure 29. The discretization of the elements are:  

 case a – 40 rod elements, in each part of the L; 

 case b – the cantilever is discretized with shell elements in the web and flange seen in 

Figure 30;  
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 case c – the cantilever is discretized with shell elements in the web and rod elements in 

each flange shown in Figure 31.  

A perturbation load in lateral direction is also used to drive the frame into the buckling path of 

the problem. The connection between the vertical and the horizontal structure represents a non-

smooth geometrical discontinuity in the reference configuration of the problem. The obtained 

load displacement curves are given in Figure 32. It is first notable that the strategy leads to 

reasonable results and is able to determine the critical load that is reported from the literature 

at approximately 1.77 kN.  Just as for the cantilever there are some differences for the results 

due to the different conditions that each kind of element represent, the boundary conditions 

were chosen to get the closest result to the cantilever with rod elements, the boundary conditions 

for the case only with shells and the mesh is shown in Figure 30, as for the case with shell and 

rod combined it is shown in Figure 31. 

Figure 29: L-shaped frame buckling problem. 

 
Source: Author  
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Figure 30: Boundary conditions and mesh for only shell case. 

 
Source: Author 

Figure 31: Boundary conditions and mesh for rod + shell case. 

 
Source: Author 
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Figure 32: Lateral displacement of the buckling of an L-shaped frame problem. 

 
Source: Author 

9.6. Snap-through behavior of a clamped/hinged arc  

In the next example a non-straight geometry is considered.  The arc of the example is 

approximated by straight finite elements, so it is a curve formed by straight line segments. The 

presented arc's geometrical and elastic properties are displayed in Figure 33. A full support is 

given on the right-hand side of it, while on the left-hand side only the displacements are 

restricted. The problem’s displacements are restricted to be two dimensional. The arc is loaded 

on the top with a single load. The finite element mesh is of such kind that a node is always 

located on the top center of it. Hence the load is introduced by a classical nodal force. A 

convergence study with respect to the final displacements of the problem was performed an 

indicated a reasonable discretization with 20 finite elements, which was chosen for the 

following investigations. 
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Figure 33: Clamped/Hinged arc problem. 

 
Source: Author 

 

The problem was investigated several times in the literature. It shows a snap through behavior 

as at a certain point the system loses its stiffness. An arc-length method is used in this case to 

follow the equilibrium path. In case of this paper the arc-length method implemented in 

AceFEM was used, as in Stanić, Brank and Korelc (2016) [63]. The results are presented in 

Figure 34 and some typical states of the deformation are shown in Figure 35. The solution is 

able to cover the snap through behavior reported from the literature. 

 Figure 34: Clamped/Hinged arc problem, load displacement curve. 

 
Source: Author 
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Figure 35: Clamped/Hinged arc problem, deformed states. 

 
Source: Author 

9.7. Deployment of an elastic ring 

This numerical example represents a rather complex problem, computed to show the full 

capabilities of the theory at hand. It is completely three dimensional and presents large 

deformations and rotations. Therefore, it was investigated before as a benchmark for beam and 

rod models as, for example, in Romero 2004 [51] and Yoshiaki et al. (1992) [24]. A ring of 

elastic material is twisted by a moment and supported in a way such that is ends up with a full 

circle of one third the size of the initial one. A detailed visualization of the boundary value 

problem is given in Figure 36. The ring also shows snap through behavior and hence again the 

AceFEM arc-length procedure is applied in the simulation. To handle the non-straight reference 

configuration of the considered ring the same approach from the clamped/hinged arc was used. 

Some key states during the simulation are visualized in Figure 37. 

It can be concluded that the final state of a full circle can be recovered. The displacement curves 

for point B and the rotation of the loaded point C is visualized in Figure 38 for comparison with 
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the results reported by the literature. The results show good comparison with those from the 

literature.  

Figure 36: Elastic ring boundary value problem. 

 
Source: Author 

Figure 37: ring shapes. 

 
Source: Author 
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Figure 38: displacements and rotation curves. 

 
Source: Author 

9.8. Buckling of a coil spring under compression load 

One more application of the theory is shown in this example. A helicoidal spring is set under 

compression and after a critical load is reached the spring buckles. Coil springs are made up of 

a wire coiled in the form of a helix. On such springs the wire is subjected only to torsion. The 

major stresses are shear stresses due to twisting. The load applied is parallel to the axis of the 

spring. In Figure 39 one can see the scheme of the spring considered.  The pitch angle is 

arctan = 17.657 where D = 100 mm is the mean diameter of the cylinder and p = 48 mm 

is the pitch at free length. The spring wire diameter is 25 mm, and its free length (height) is 720 

mm. The Young’s modulus and Poisson’s ratio are E = 210 GPa and 𝜈 = 0.3, respectively. The 

number of turns on the coil is 15. 
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Figure 39: Coil parameters 

 
Source: Author 

The only degree of freedom on the point of the application of the force that is free is the 

displacement in the direction of the applied force. At the opposite side of the force, the spring 

is clamped. Figure 41 shows the deformed state of the spring after it buckles. And Figure 40 

shows the load displacement curve and the critical force can be observed. 

Figure 40: Coil's displacement curves. 

 
Source: Author 
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Figure 41: Coil's deformed state. 

 
Source: Author 

9.9. Pinched Cylinder 

This example is shown to demonstrate that the connection between shells can be accomplished 

by using 𝜑∆ instead of the angle between normal vectors of neighboring elements 𝛽. A 

Lagrange multiplier approaches was implemented. This is a benchmark problem that can be 

seen in Campello Pimenta and Wriggers (2003) [11] and in Pimenta, Campello and Wriggers 

(2004) [47]  for shear deformable theory. It is also shown in Ivannikov, Tiago and Pimenta 

(2015) [33]  and Viebahn, Pimenta and Schröder (2016) [65] for the  shear rigid theory. Figure 

42 shows the boundary value problem which is similar to a finger-pinched beer can. The 

cylinder was modelled with shell elements with rigid end-diaphragms in its ends, which under 

large loads shows extremely nonlinear behavior.  The isotropic cylindrical shell has the 

geometrical properties presented in Figure 42, while the material parameters are: Young’s 

modulus 𝐸 =  3 × 10  𝑁/𝑚𝑚  and Poisson ratio 𝜈 =  0.3. The final load applied is 𝐹 =

 5.4 × 10 𝑁. The displacements curves are shown in Figure 43, only one curve is shown 

because all the implementations leaded to the same results. The deformed configuration in true 

scale at the maximum load is depicted in Figure 44. It can be assured by the final deformation 

state that the element with both connection schemes behaves very well with large deformations 

and curvatures. 

B 

A 
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Figure 42: Pinched Cylinder – Boundary value problem. 

 
Source: Author 

Figure 43: Pinched Cylinder – Analysis results. 

 
Source: Author 
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Figure 44: Pinched Cylinder – Deformed State at final load. (unscaled) 

 
Source: Author 

9.10. Simply supported square plate with diagonal stiffeners. 

A simple supported square plate with diagonal stiffeners, with beam and shell elements for the 

stiffeners, is analyzed. In Viebahn, Pimenta and Schröder (2016) [65] this example was 

performed only with shells, now the results of the rod elements as stiffeners are compared to 

the shell elements. 

The deflection of the square plates, which are loaded by a uniform distributed pressure p, are 

compared for three different stiffening conditions, the geometrical properties are shown in 

Figure 45 and Figure 46. The material parameters are E = 117.25 GPa for the Young’s modulus, 

ν = 0.3 for the Poisson’s ratio. The plate is meshed by 8 × 8 × 2 elements, whereas the flange 

is discretized by 2, respectively. One element over the thickness for the eccentric and concentric 

stiffening. In order to demonstrate the stiffening effects, the out of plane displacements in the 

center of the plate are compared in Figure 48. The obtained results are in very close agreement 

compared to the results from Viebahn, Pimenta and Schröder (2016) [65]. 
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Figure 45: Reference configuration for the plates. 

 
Source: Author 

Figure 46: Square plate with diagonal stiffeners (in mm). 

 
Source: Author 

Figure 47: Eccentric Stiffened Plate deformed configuration scaled (by factor 10). 

 
Source: Author 
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Figure 48 : Load–displacement plot for different stiffeners. 

 
Source: Author 
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Conclusions 

Shear rigid geometrically-exact rod and shell theories were presented. Within the theory new 

formulas to represent the Rodrigues vector were developed. These formulas made it possible to 

originate simple finite elements for shells and rods. New interpolation polynomials were also 

applied and compared for the rod theory. Since all the polynomials show similar response, one 

can select the best for each case. An important example is the connections with compatible 

elements.  As in Pimenta and Yojo (1993) [41] , our approach has defined energetically 

conjugated generalized cross section stress and strains based on the concept of a cross section. 

Besides their practical importance, cross section quantities make the derivation of equilibrium 

equations easy, as well as the achievement of the corresponding tangent bilinear form, which is 

always symmetric for hyper-elastic materials and conservative loadings, even far from an 

equilibrium state.  A straight/flat reference configuration was assumed for the rod/shell. Some 

examples were computed to show the capabilities of the formulation presented. As exposed 

throughout this work some benchmark problems were compared and presented satisfying 

results.  

The cantilever investigations are simple and make it easy to show some basic capabilities of the 

formulation for problems undergoing large rotations or deformations. Different load cases for 

the cantilever are explored, first there is pure bending and the cantilever reaches a final state at 

full circle, and the follower load that also shows large displacements and rotations as it deforms. 

Some stability problems are presented as well, first the lateral buckling of a cantilever. It is also 

shown that cross section with different shapes can be applied to the formulation and the 

connection between shell and rods can be accomplished. Then there is a L-shaped frame that 

has change of the directions of the axis, this example shows some capabilities of the rod and 

shell theories, as well as their connection. For the shells one can see by the example of the 

pinched cylinder that the theory has no problem with large displacements and rotation and its 

continuity can be performed by the continuity of the rotation scalar originated by the Rodrigues 

vector. The connection between rod and shell elements is also verified by the simply supported 

plate with diagonal stiffeners. All examples demonstrate similar results when compared to the 

literature cited in this work  
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This work is relevant to structural analysis because there are many practical cases that need 

rods, shells and shells coupled with rods. These rod and shell theories can be used for very 

flexible structures, like thin shells and slender rods. 
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Appendix A – Tensor Properties 

 

For 𝜿 = axial(𝜥) and 𝒎 a vertor, the following property is valid 

𝜥𝒎 = 𝜿 × 𝒎 (236) 

If B and C are skew-symmetric tensors with their b and c axial vectors, respectively then, 

𝑩𝑪 = 𝒄 ⊗ 𝒃 − (𝒃 ⋅ 𝒄)𝑰 (237) 

Considering A to be a skew-symmetric tensor the following applies, 

𝑨 = −𝛼 𝑨
𝑨 = −𝛼 𝑨

 (238) 

Let A, B and C be skew-symmetric tensors and a, b and c their respective axial vectors. Then 

it is possible to write,  

𝑪 = 𝑨𝑩 − 𝑩𝑨 ⇔ 𝒄 = 𝒂 × 𝒃 (239) 

The cross product of the vector 𝒂 and the vector 𝒃 with 𝜃 denoting the angle between them is 

not commutative and has the following properties 

‖𝒂 × 𝒃‖ = ‖𝒂‖‖𝒃‖sin𝜃 (240) 

𝒂 × 𝒃 = −𝒃 × 𝒂 (241) 

Let 𝜈 be a scalar, then 

(𝜈𝒂) × 𝒃 = 𝒂 × (𝜈𝒃) = 𝜈(𝒂 × 𝒃) (242) 

Let 𝑐 be another vector, where 

𝒄 ⋅ (𝒂 × 𝒃) = 𝒂 ⋅ (𝒃 × 𝒄) = 𝒃 ⋅ (𝒄 × 𝒂) (243) 

𝒄 × (𝒂 + 𝒃) = (𝒄 × 𝒂) + (𝒄 × 𝒃) (244) 

There is the Lagrange’s identity 

(𝒂 × 𝒃) ⋅ (𝒄 × 𝒅) = (𝒂 ⋅ 𝒄)(𝒃 ⋅ 𝒅) − (𝒂 ⋅ 𝒅)(𝒃 ⋅ 𝒄) (245) 

There is the vector triple product rule 
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𝒂 × (𝒃 × 𝒄) = 𝒃(𝒂 ⋅ 𝒄) − 𝒄(𝒂 ⋅ 𝒃) (246) 

(𝒂 ⋅ 𝒃)𝒄 = (𝒄 ⊗ 𝒂)𝒃 (247) 
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Appendix B – Euler Rodrigues Parameters 

For the complete understanding of the Rodrigues parameterization used it is shown in this 

appendix how to get the rotation tensor just thinking about vector properties and trigonometric 

relationships. 

When there is a rigid body motion of a vector a to b this motion can be expressed by finding a 

rotation axis designated by the versor 𝒆 and an intensity angle designated by 𝜃 in a way that 

there is 𝜽 = 𝜃𝒆  with this parameterization there is 0 ≤ 𝜃 ≤ 2𝜋, and as it is seen in Figure 49 

one has,  

𝒃 = 𝑸𝒂 (248) 

The objective here is to find  𝑸, if one looks at  Figure 49 one can draw the following 

conclusions. 

Figure 49: Rotation on 3D space for the Euler-Rodrigues parameterization. 

 

Source: Author 

 

 

Considering a basic vector property, there is 
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‖𝒆 × 𝒂‖ = ‖𝒆‖‖𝒂‖sin𝜙 = ‖𝒂‖sin𝜙 = ‖𝒓‖ (249) 

Looking at Figure 49  and using (249) there is 

‖𝒈‖ = sin𝜃‖𝒓‖ = sin𝜃‖𝒆 × 𝒂‖

‖𝒇‖ = (1 − cos𝜃)‖𝒓‖ = (1 − cos𝜃)‖𝒆 × 𝒂‖
 (250) 

 

Considering that 𝒈  is orthogonal to 𝒆  and 𝒂 one has  

𝒈 = sin𝜃(𝒆 × 𝒂) (251) 

𝒇 is orthogonal to g and e, 

𝒇 = (1 − cos𝜃)‖𝒆 × 𝒂‖
(𝒆 × 𝒈)

‖𝒆 × 𝒈‖
 (252) 

Considering the vector property  

‖𝒆 × 𝒈‖ = ‖𝒈‖‖𝒆‖sin90° = ‖𝒈‖ (253) 

and (250)1 one has 

𝒇 = (1 − cos𝜃)𝒆 × (𝒆 × 𝒂)𝜑 = 𝜑  (254) 

Considering  

𝒃 = 𝒂 + 𝒇 + 𝒈 (255) 

one gets, 

𝒃 = 𝒂 + (1 − cos𝜃)𝒆 × (𝒆 × 𝒂) + sin𝜃(𝒆 × 𝒂) (256) 

Using 𝑬 = Skew(𝒆) one gets 

𝒃 = 𝒂 + (1 − cos𝜃)𝑬 𝒂 + sin𝜃𝑬𝒂 (257) 

Hence,  

𝑸 = 𝑰 + sin𝜃𝑬 + (1 − cos𝜃)𝑬  (258) 

That is a well-known formula for the Euler-Rodrigues rotation tensor 
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If one considers an 𝛼 instead of 𝜃 with 𝛼 = 2tan  one has a computationally simpler 

parameterization, with this parameterization one has 0 ≤ 𝜃 ≤ 𝜋, the singularity can be avoided 

when needed by implementing the rotation incrementally. 

 

 

 

 

 

Figure 50: Rotation on 3D space for the Rodrigues parameterization. 

 
Source: Author 

 

Considering a basic vector property, one has  

‖𝒆 × 𝒎‖ = ‖𝒆‖‖𝒎‖sin𝜙 = ‖𝒎‖sin𝜙 (259) 

Looking at Figure 50 and using (259) one has  

tan
θ

2
=

𝒉
2

‖𝒎‖sin𝜙
=

‖𝒉‖

2‖𝒆 × 𝒎‖
 (260) 

Since 𝒉 is orthogonal to 𝒎 and 𝒆 one has 
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𝒉 =
(𝒆 × 𝒎)

‖𝒆 × 𝒎‖
‖𝒉‖ (261) 

And 

𝒉 =
(𝒆 × 𝒎)

‖𝒆 × 𝒎‖
2tan

𝜃

2
‖𝒆 × 𝒎‖ = 𝛼(𝒆 × 𝒎)  (262) 

Considering (262) and 

𝒉 = 𝒃 − 𝒂 (263) 

𝒎 =
1

2
(𝒂 + 𝒃) (264) 

one has 

𝒃 − 𝒂 = 𝛼 𝒆 ×
1

2
(𝒂 + 𝒃)  . (265) 

Since 𝜶 = 𝛼𝒆  

𝒃 − 𝒂 = 𝜶 ×
1

2
(𝒂 + 𝒃) . (266) 

Using 𝑨 = Skew(𝜶)  

𝒃 −
𝑨

2
𝒃 =

𝑨

2
𝒂 + 𝒂

𝑰 −
𝑨

2
𝒃 = 𝑰 +

𝑨

2
𝒂

𝒃 = 𝑰 −
𝑨

2
𝑰 +

𝑨

2
𝒂

 (267) 

Hence,  

𝑸 = 𝑰 −
𝑨

2
𝑰 +

𝑨

2
 (268) 

From (258) considering 𝛼 = 2tan  a rotation tensor that is equivalent to  (268) is achieved and 

demonstrated ahead using trigonometric properties. 

If on considers 
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tan
𝜃

2
=

1 − cos𝜃

sin𝜃
=

sin𝜃

1 + cos𝜃
 (269) 

Then one has, 

𝑸 = 𝑰 +
sin𝜃

1 + cos𝜃
(1 + cos𝜃)𝑬 +

1 − cos𝜃

sin𝜃
sin𝜃𝑬

= 𝑰 + tan
𝜃

2
(1 + cos𝜃)𝑬 + tan

𝜃

2
sin𝜃𝑬

 (270) 

And, 

𝑸 = 𝑰 +
𝛼

2
(1 + cos𝜃)𝑬 +

𝛼

2
sin𝜃𝑬  (271) 

Considering 

1 + cos𝜃

2
= cos

𝜃

2
=

1

1 + tan
𝜃
2

=
4

4 + 2tan
𝜃
2

=
4

4 + 𝛼
and

sin𝜃

2
= sin

𝜃

2
cos

𝜃

2
=

sin
𝜃
2

cos
𝜃
2

cos
𝜃

2
=

tan
𝜃
2

1 + tan
𝜃
2

=
4 2tan

𝜃
2

4 + 2tan
𝜃
2

1

2
=

4𝛼

4 + 𝛼

1

2
.

 (272) 

 

(273)a, is equivalent to (268). 

𝑸 = 𝑰 +
4

4 + 𝛼
𝛼𝑬 +

4

4 + 𝛼

1

2
𝛼 𝑬  

and

𝑸 = 𝑰 +
4

4 + 𝛼
𝑨 +

1

2
𝑨

 (273) 
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Appendix C – Relationship between 𝝎 and �̇� - Operator 𝜩 

Herein the math work on the achievement of 𝜩 is demonstrated. Knowing that 𝜴 = �̇�𝑸 .  The 

objective here is to find the relationship between 𝝎 and �̇�. 

First there is the need for the time derivative of 𝑸 which is 

�̇� =
4

4 + 𝛼
�̇� −

2𝜶 ⋅ �̇�

4 + 𝛼
𝜜 +

𝜜

2
+

1

2
(�̇�𝜜 + 𝜜�̇�)  (274) 

There is also the need for 𝑸  

𝑸 = 𝑰 +
4

4 + 𝛼
−𝜜 +

𝜜

2
 (275) 

Now 𝜴 = �̇�𝑸 is developed 

�̇�𝑸 =
4

4 + 𝛼
�̇� −

2𝜶 ⋅ �̇�

4 + 𝛼
𝜜 +

𝜜

2
+

1

2
(�̇�𝜜 + 𝜜�̇�) −

4

4 + 𝛼
�̇�𝜜 + +

+
4

4 + 𝛼

8𝜶 ⋅ �̇�

(4 + 𝛼 )
𝜜 +

𝜜

2
−

2

4 + 𝛼
(�̇�𝜜 + 𝜜�̇�𝜜) +

2�̇�𝜜

4 + 𝛼
+

+
4

4 + 𝛼
−

4𝜶 ⋅ �̇�

(4 + 𝛼 )
𝜜 +

𝜜

2
+

1

4 + 𝛼
(�̇�𝜜 + 𝜜�̇�𝜜 )

 (276) 

Considering the following operations, (237) and (238) properties  

(𝜜�̇�)𝜜 = [�̇� ⊗ 𝜶 − (𝜶 ⋅ �̇�)𝑰]𝜜 = �̇� ⊗ 𝜜 𝜶 − (𝜶 ⋅ �̇�)𝜜 =
= −�̇� ⊗ (𝜜𝜶) − (𝜶 ⋅ �̇�)𝜜 = −�̇� ⊗ (𝜶 × 𝜶) − (𝜶 ⋅ �̇�)𝜜 = −(𝜶 ⋅ �̇�)𝜜

 (277) 

one gets, 

�̇�𝑸 =
4

4 + 𝛼
�̇� −

2𝜶 ⋅ �̇�

4 + 𝛼
𝜜 +

𝜜

2
+

1

2
(�̇�𝜜 + 𝜜�̇�) −

4

4 + 𝛼
�̇�𝜜 +

+
4

4 + 𝛼
+

8𝜶 ⋅ �̇�

(4 + 𝛼 )
𝜜 +

−𝜶 𝜜

2
−

2

4 + 𝛼
(�̇�𝜜 + 𝜜�̇�𝜜) +

2

4 + 𝛼
�̇�𝜜 +

+
4

4 + 𝛼
−

4𝜶 ⋅ �̇�

(4 + 𝛼 )
−𝜶 𝜜 +

−𝜶 𝜜

2
+

1

4 + 𝛼
(−𝜶 �̇�𝜜 + 𝜜�̇�𝜜 )

 (278) 

Then with the following operations 
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4 + 𝛼

4
�̇�𝑸 = �̇� −

2𝜶 ⋅ �̇�

4 + 𝛼
𝜜 −

𝜶 ⋅ �̇�

4 + 𝛼
𝜜 +

1

2
(�̇�𝜜 + 𝜜�̇�) −

+
4

4 + 𝛼
�̇�𝜜 +

8𝜶 ⋅ �̇�

(4 + 𝛼 )
𝜜 −

4𝜶 ⋅ �̇�

(4 + 𝛼 )
𝛼 𝜜 −

2

4 + 𝛼
�̇�𝜜 −

+
2

4 + 𝛼
𝜜�̇�𝜜 +

2

4 + 𝛼
�̇�𝜜 +

4𝜶 ⋅ �̇�

(4 + 𝛼 )
𝛼 𝜜 +

+
2𝜶 ⋅ �̇�

(4 + 𝛼 )
𝛼 𝜜 −

𝛼

4 + 𝛼
�̇�𝜜 +

1

4 + 𝛼
𝜜�̇�𝜜

 (279) 

4 + 𝛼

4
�̇�𝑸 = �̇� −

2𝜶 ⋅ �̇�

4 + 𝛼
𝜜 +

1

2
−

4 + 𝜶

4 + 𝜶
�̇�𝜜 +

+
1

2
𝜜�̇� +

8𝜶 ⋅ �̇�

(4 + 𝛼 )
+

2𝜶 ⋅ �̇�

(4 + 𝛼 )
𝛼 𝜜

 (280) 

 

4 + 𝛼

4
�̇�𝑸 = �̇� + −

1

2
�̇�𝜜 +

1

2
𝜜�̇� +

+
8𝜶 ⋅ �̇�

(4 + 𝛼 )
+

2𝜶 ⋅ �̇�

(4 + 𝛼 )
𝛼 −

2𝜶 ⋅ �̇�

4 + 𝛼
𝜜

 (281) 

 

4 + 𝛼

4
�̇�𝑸 = �̇� +

1

2
(𝜜�̇� − �̇�𝜜) + 2(𝜶 ⋅ �̇�)

4 + 𝛼

(4 + 𝛼 )
−

1

4 + 𝛼
𝜜  (282) 

 

4 + 𝛼

4
�̇�𝑸 = �̇� +

1

2
(𝑨�̇� − �̇�𝜜) (283) 

 

�̇�𝑸 =
4

4 + 𝛼
�̇� +

1

2
(𝜜�̇� − �̇�𝜜) = 𝜴 (284) 

 

Finally, applying 𝝎 = axial(𝜴)there is, 

𝝎 = axial
4

4 + 𝛼
�̇� +

1

2
(𝜜�̇� − �̇�𝜜)  (285) 

With use of the property 𝑪 = 𝑨𝑩 − 𝑩𝑨 ⇔ 𝒄 = 𝒂 × 𝒃 one has 
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𝝎 =
4

4 + 𝛼
�̇� +

1

2
(𝜶 × �̇�) =

4

4 + 𝛼
𝑰 +

1

2
𝜜 �̇� (286) 

From 𝝎 = 𝜩�̇� one reaches the conclusion  

𝜩 =
4

4 + 𝛼
𝜤 +

1

2
𝜜  (287) 

 

which agrees with Pimenta and Campello (2001) [40]. 

That is an important result because many authors believed that the spin vector was directly 

related to the time derivative of the rotation vector and it is not. The spin vector comes from 

second order tensors, so this relation doesn’t necessarily have to be equal, 𝜩 tends to the identity 

for small rotation vectors. 
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