LIEDI LEGI BARIANI BERNUCCI

EXPANSÃO E CONTRAÇÃO DE SOLOS TROPICAIS COMPACTADOS E SUAS APLICAÇÕES ÀS OBRAS VIÁRIAS. CLASSIFICAÇÃO DE SOLOS TROPICAIS COM BASE NA EXPANSÃO E CONTRAÇÃO.

Dissertação apresentada à Escola Politécnica da Universidade de São Paulo para a obtenção do Título de Mestre em Engenharia.

São Paulo, 1987
LIEDI LEGI BARIANI BERNUCCI

Engenheira Civil - EPUSP, 1981

Expansão e Contração de Solos Tropicais Compactados e suas Aplicações às Obras Viárias. Classificação de Solos Tropicais com Base na Expansão e Contração

Dissertação apresentada à Escola Politécnica da Universidade de São Paulo para a obtenção do Título de Mestre em Engenharia.

Orientadora: Profa. Dra. Vera Mary N. Cozzolino
Professora Assistente Doutora do Departamento de Engenharia de Estruturas e Fundações da EPUSP.

São Paulo, 1987
AOS MEUS PAIS LEILA E LUIZ BERNULLI

E AO MEU MARIDO NIKLAUS WETTER
A dissertação aqui apresentada, para obtenção do grau de Mestre em Engenharia de Solos, faz parte integrante das pesquisas desenvolvidas pelo convênio IGB-ETHZ - Instituto de Mecânica dos Solos e Fundações da Escola Politécnica Federal Zurich, Suíça e EPUSP - Escola Politécnica da Universidade de São Paulo.

A maior parte dos ensaios de laboratório foi executada em Zurich. Resultados de ensaios complementares foram cedidos pelo Prof. Noqami - EPUSP e pelo Geol. Eraldo Pastore - Instituto de Pesquisas Tecnológicas - S.P.

Os trechos experimentais ou rodovias citadas foram acompanhadas pelo IGB-ETHZ na Costa do Marfim ou pelo grupo de pesquisa do GT-40 DER-SP no Estado de São Paulo.
RESUMO

Admite-se normalmente na Mecânica dos Solos que os solos que são expansivos em presença d'água, são contráteis ao perderem umidade, e vice-versa. Nas regiões tropicais, encontram-se solos, como por exemplo as argilas e solos argilosos sedimentares de baixadas ou ainda argilias e solos argilosos saprolíticos, que assim se comportam quanto às propriedades de expansão e de contração.

Gracas à atuação do clima quente e úmido das regiões tropicais, os solos se formam e se desenvolvem rápida e intensamente. Os solos tropicais saprolíticos e lateríticos podem apresentar composição mineralógica e estrutura peculiares resultantes destes processos de intemperismo. Dadas estas características, eles podem se comportar de forma particular sob diversos aspectos e, em especial neste trabalho, são abordadas suas "anomalias" quanto à expansão e à contração.

Há solos tropicais, como as argilas e solos argilosos lateríticos, que são geralmente pouco expansivos, embora contráteis. De outro lado, existem siltes e solos silitosos micáceos e/ou caulínicos saprolíticos que são frequentemente muito expansivos, apesar de serem pouco ou não contráteis. Hipóteses sobre os mecanismos envolvidos nos processos de expansão e de contração são feitas na tentativa de compreender o comportamento particular destes solos.

Alguas propriedades dos solos de grande interesse à pavimentação, como resistência e perda de resistência em presença d'água, deformações em geral, fissuras e trincas de contração, entre outras, dependem também do tipo de comportamento do solo à expansão e à contração. Ensaios em
amostras compactadas mostram como alguns tipos de comportamento podem ser previstos através da expansão e da contração.

Estuda-se os efeitos da secagem dos solos compactados, fenômeno comum nas regiões tropicais, seja logo após a construção, como já na fase de utilização das rodovias. Consta-se que para solos argilosos e siltosos saprolíticos, como para grande parte dos solos transportados, a secagem é em geral prejudicial, tornando o solo compactado potencialmente mais expansivo e com maior perda de capacidade de suporte em contato com a água. Contrariamente, há alguns tipos de solos lateríticos onde a secagem imprime efeitos benéficos irreversíveis ao solo, gerando uma diminuição na expansão e na perda de resistência quando em presença d'água.

Propõe-se ensaios de reexpansão com medida da capacidade de reabsorção d'água após secagem de pastilhas moldadas no limite de licuidze e da resistência à penetração do cone para identificar estes solos tropicais lateríticos que possam apresentar melhorias de comportamento pela secagem após compactação. A secagem promove cimentação entre as partículas do solo com a formação de "agregados". Utiliza-se ensaios cíclicos de secagem-infiltração em corpos de prova compactados para a verificação da estabilidade destes "agregados" em presença d'água, ou seja, da durabilidade desta transformação. Chamam-se solos "autoestabilizantes" aqueles que por desidratação formam "agregados" estáveis e duráveis.

Na conclusão do presente trabalho, valendo-se do comportamento diferenciado à expansão e à contração de certos grupos de solos tropicais, novos critérios são estabelecidos como proposta para uma classificação geotécnica de solos tropicais para aplicação viária.

- VI -
ABSTRACT

In Soil Mechanics it is widely accepted that soils which swell when wet shrink as their water content diminishes and vice versa. In tropical regions there are soils such as sedimentary clay soils or even saprolitic clay soils which conform to this pattern of shrinking and swelling.

Because of the hot, wet, tropical climate soil formation and evolution is rapid and intense. These weathering processes may result in saprolitic and lateritic soils having a distinctive mineralogical composition and structure. Given these characteristics they may exhibit unusual behaviour patterns in many ways. This paper deals specifically with those anomalies concerning soil shrinkage and swelling.

There are some tropical soils, for example lateritic soils, which swell very little and yet can shrink considerably. On the other hand there are various types of micaceous and/or kaolinic saprolitic silt soils which can swell considerably but which shrink very little or not at all. This work contains some hypotheses concerning the mechanisms involved in these swelling and shrinking processes in attempt to understand the special behaviour pattern of these soils.

Some soil properties which are of great importance to pavement, such as strength and strength loss when contact with water occurs, deformation in general, fissures and cracks due to shrinkage, also depend on the type of soil behaviour patterns observed in shrinkage and swelling. Tests on compacted samples have shown how some types of behaviour can be predicted through shrinkage and swelling.

- VII -
Studies have been made of the effects of the drying of compacted soils, a common phenomenon in tropical regions, which may occur shortly after construction is completed or when the highways are already operative. These studies show that for both saprolitic silt and clay soils drying has usually a detrimental effect by making the compacted soil more susceptible to swelling and leading to a greater loss of bearing capacity when rewet. However, there are some types of lateritic soils where drying has irreversible beneficial effects on the soil, reducing both swelling and strength loss.

As part of my research I used reswelling tests that measure the capacity for water re-absorption of dried soil pats and the fall cone penetration strength after the re-absorption in order to identify those lateritic tropical soils that benefit from drying after compaction. These soils have a self-bonding capacity which facilitates, the formation of "aggregates". Cycle tests of drying-rewetting were conducted on compacted specimens to verify the stability of the "aggregates" when the water content changes or in the other words, the durability of this transformation. Those soils which when dehydrated form stable aggregates are called "self-stabilizing".

In the final part of my work, new criterias based on the different behaviour patterns of certain tropical soils for swelling and shrinkage are established as part of a new geotechnical classification of tropical soils for road construction purposes.
ÍNDICE

I - INTRODUÇÃO ... 1
TERMINOLOGIA ... 6
OBJETIVOS ... 8

II - ESTUDO DAS PROPRIEDADES DE EXPANSÃO E DE CONTRAÇÃO ... 9

A - TIPOS BÁSICOS DE SOLOS SEGUNDO SEU COMPORTAMENTO À EXPANSÃO E À CONTRAÇÃO 10

B - MECANISMOS DE EXPANSÃO E DE CONTRAÇÃO 16
B.1 - Introdução ... 16
B.2 - Solos TIPO A - Clássico: Argilas e Solos Transportados não Lateríticos e Argilas e Solos Argilosos Saprolíticos 16
B.2.1 - Expansão .. 17
B.2.2 - Contração ... 27
B.3 - Solos TIPO B: Argilas e Solos Argilosos Lateríticos .. 32
B.3.1 - Expansão ... 33
B.3.2 - Contração .. 37
B.4 - Solos TIPO C: Siltes e Solos Siltosos Micáceos e/ou Caulínicos Saprolíticos 39
B.4.1 - Expansão ... 40
B.4.2 - Contração .. 43

C - ENSAIOS CLÁSSICOS DE LABORATÓRIO PARA A DETERMINAÇÃO DA EXPANSÃO E DA CONTRAÇÃO ... 45
C.1 - Expansão .. 45
C.1.1 - Medidas Diretas de Expansão 45

- IX -
C.1.2 - Estimativa da Expansão através de outras Propriedades...... 48
C.1.3 - Pressão de Expansão...................... 50
C.2 - Contração.................................. 54
 C.2.1 - Medidas Diretas de Contração... 54
 C.2.2 - Estimativa da Contração através de outras Propriedades...... 58
C.3 - Previsão das Mudanças de Volume no Campo............................. 59

D - ENSAIOS DE LABORATÓRIO PROPOSTOS PARA A DETERMINAÇÃO DA EXPANSÃO E DA CONTRAÇÃO DE SOLOS TROPICAIS COMPACTADOS.......................... 61

E - RESULTADOS OBTIDOS... 67

III - RESISTÊNCIA DOS SOLOS TROPICAIS COMPACTADOS E AS PROPRIEDADES DE EXPANSÃO E DE CONTRAÇÃO.................. 78

A - RESISTÊNCIA E EXPANSÃO................................. 79
 A.1 - Ensaio CBR e MINI-CBR............................. 79
 A.2 - Relação entre Capacidade de Suporte e Expansão.................. 80
 A.3 - Relação entre Capacidade de Suporte e Pressão de 'Expansão...... 85

B - RESISTÊNCIA E CONTRAÇÃO............................... 88

C - EFEITO DA SECAGEM NO COMPORTEMENTO DOS SOLOS COMPACTADOS.......................... 90
 C.1 - Introdução.. 90
 C.2 - Fissuras e Trincas de Contração.................. 90
 C.3 - Efeito da Secagem na Resistência e na Expansibilidade de Solos Compactados.... 97

- X -
C.3.1 - Histórico ... 97
C.3.2 - Efeito da Secagem na Resistência ao Cisalhamento 101
C.3.3 - Efeito da Secagem na Expansão e na Resistência à Penetração 104
C.3.4 - Efeito da Secagem em Função da Energia de Compactação 112
C.3.5 - Verificação da Estabilidade de Solos Lateríticos compactados. Ensaio Cíclico de Secagem - Infiltração ... 115

IV - CLASSIFICAÇÃO DE SOLOS TROPICAIS COM BASE NA EXPANSÃO E NA CONTRAÇÃO ... 127
A - INTRODUÇÃO .. 128
B - CLASSIFICAÇÃO DE SOLOS TROPICAIS 129
C - IDENTIFICAÇÃO DE SOLOS BENEFICIADOS PELA SECAGEM 133
C.1 - Efeitos da Desidratação de alguns Solos Lateríticos 133
C.2 - Reabsorção D’água .. 134
C.3 - Resistência à Penetração após reabsorção D’água 137
C.4 - Ensaio ... 138
C.5 - Resultados e Comentários 140
C.6 - Aplicações .. 144

D - CLASSIFICAÇÃO DE SOLOS TROPICAIS COM BASE NA CONTRAÇÃO E NA CONTRAÇÃO ... 146
V - CONSIDERAÇÕES FINAIS... 151

VI - AGRADECIMENTOS.. 157

VII - BIBLIOGRAFIA.. 159

VIII - ANEXOS... 172
LISTA DE FIGURAS

FIGURA 1 : Pressão Osmótica.. 19

FIGURA 2 : Pressão osmótica entre duas partículas
imersas em água... 20

FIGURA 3 : Forças entre duas partículas de argila...... 21

FIGURA 4 : Comparação entre as expansões de
montmorilonitas e de caulinitas. Efeito do cátion
trocável na expansão... 22

FIGURA 5 : Efeito da mudança na concentração de água
livre dos poros na expansão. Efeito da aplicação de
pressão normal na expansão.. 24

FIGURA 6 : Contração de um solo por perda de umidade... 28

FIGURA 7 : Resultados de ensaios porosimétricos sobre
amostras de solos lateríticos e saprolíticos...................... 36

FIGURA 8 : Métodos de determinação da pressão de
expansão.. 50

FIGURA 9 : Ensaio de contração. Medida de volume da
pastilha de solo seco.. 56

FIGURA 10 : Contração de um solo em função do teor de
umidade. Determinação do limite da contração............... 57

FIGURA 11 : Equipamentos utilizados para a medida da
contração e da expansão.. 63
FIGURA 12: Comparação entre os valores obtidos de contração axial e de contração volumétrica ... 66

FIGURA 13: Solos TIPO A ... 73

FIGURA 14: Solos TIPO A ... 74

FIGURA 15: Solos TIPO B ... 75

FIGURA 16: Solos TIPO B ... 76

FIGURA 17: Solos TIPO C ... 77

FIGURA 18: Ensaios de adensamento de uma areia siltsosa com pouca argila ... 100

FIGURA 19: Efeito da secagem na resistência ao cisalhamento ... 102

FIGURA 20: Efeito da secagem na resistência ao cisalhamento ... 103

FIGURA 21: Equipamento utilizado para aplicações de tensão de confinamento lateral ... 105

FIGURA 22: Efeito da secagem no total de expansão .. 106

FIGURA 23: Efeito da secagem na resistência de uma areia siltsosa com argila sedimentar ... 107

FIGURA 24: Efeito da secagem na resistência de uma areia argilosa laterítica ... 108

FIGURA 25: Histerese na relação entre teor de umidade e sução durante o umidicímetro e a secagem de dois solos no campo .. 109

- XIV -
FIGURA 26: Histerese na quantidade de água contida em um poro de um solo a uma dada sucção.

FIGURA 27: Efeito da secagem na resistência de uma areia argilosa lateríflca em função da energia de compactação.

FIGURA 28: Equipamentos e montagem para o ensaio cíclico de secagem-infiltração.

FIGURA 29: Ensaios cíclicos de secagem-infiltração com algumas amostras compactadas de solos tropicais.

FIGURA 30: Análise granulométrica de uma areia argilosa lateríflca no estado natural e após 1 e 12 ciclos de secagem-infiltração.

FIGURA 31: Gráfico 1: Resistência à compressão diamentral X ciclos de secagem. Gráfico 2: Resistência à penetração do pistão CBR X ciclos de infiltração.

FIGURA 32: Ensaio para identificação de solos que se agregam por secagem.

FIGURA 33: Identificação de solos susceptíveis a mudanças benéficas por secagem.

FIGURA 34: Resultados de ensaios de identificação de solos tropicais que se agregam por secagem.

FIGURA 35: Classificação de solos tropicais segundo Arnold, 1985-b.

FIGURA 36: Resultados de ensaios classificatórios de solos tropicais segundo Arnold, 1985-b.
LISTA DE FOTOS

FOTO 1 : Areia Silto-argilosa saprolítica de Basalto. Serra dos Padres, SP 310 Ampliação : 10.000 X 14

FOTO 2 : Latossol Roxo. São Carlos - Dourado SP 215, Km 154. Ampliação : 3.000 14

FOTO 3 : Silte Saprolítico de Filito - Grupo São Roque. Placas de Mica entre Grãos de Quartzo. 1000 15

FOTO 4 : Silte Argiloso Saprolítico de Filito. SP 280, Km 40. Macrocristais de caulinita na forma de "sanfona". 5000 X .. 15

FOTO 5 : Rodovia Descalvado-Usina Sta. Rita. Pouquíssimas fissuras de contração da base e muito espassadas umas das outras 93

FOTO 6 : Rodovia Descalvado - Usina Sta. Rita. Ruptura da superfície da base antes de receber o revestimento por causa do tráfego de obra .. 93

FOTO 7 : Fissuração desejada, indicando coesão do material da base ... 94

FOTO 8 : Rodovia Sertãozinho - Dumont. Trincamento excessivo do material da base 96

FOTO 9 : Rodovia Sertãozinho - Dumont. Trecho Experimental de pesquisa do Grupo GT-40 - DER-SP. Reflexão das trincas na superfície do Revestimento 96

- XVI -
I - INTRODUÇÃO
I - INTRODUÇÃO

A expansão é uma das propriedades mais importantes dos solos utilizados como material de construção para a pavimentação. Os materiais expansivos perdem capacidade de suporte em presença d'água, gerando por vezes deformações excessivas no subleito ou nas camadas compactadas da estrutura do pavimento.

Nas regiões de clima temperado, o degelo é uma das condições mais desfavoráveis ao solo expansivo. No ensaio CBR, por exemplo, a expansão é medida após 4 dias de imersão em água do corpo de prova compactado, justamente para simular o encharcamento que o solo está sujeito na época do degelo. Outras situações propiciam também a expansão, como infiltração d'água pelas bordas dos acostamentos ou pelos canteiros, subida do nível do lençol freático, etc.

Por outro lado, o solo expansivo é em geral também contráctil. A perda de umidade é indesejada após a compactação, pois o solo contráctil apresentará fissuração e/ou trincamento. As fissuras e as trincas favorecem a circulação de água e de ar, podendo causar desprendimento de material na vizinhança da trinca. As condições de permeabilidade e drenabilidade das camadas compactadas ficam afetadas e, na época do congelamento, a água acumulada nas fissuras e trincas próximas à superfície de rolagem podem congelar, aumentando de volume. Na época do degelo, a água acumulada favorece o encharcamento e consequente expansão e deformação do pavimento.

Além disso, frequentemente os solos contrácteis submetidos à secagem, quando reabsorvem água, tornam-se potencialmente mais expansivos e perdem maior capacidade de suporte.
Por todos os motivos expostos, a contração tem sido indesejada na pavimentação. Duas providências são tomadas para evitá-la: 1) não se permite a perda de umidade após compactação de cada camada, e 2) limita-se a contração limitando-se o total de expansão e a plasticidade do material a ser escolhido.

De outro lado, nas regiões tropicais de clima quente e úmido, com períodos intercalados de chuvas e secas, não é rara a perda de umidade das camadas compactadas do pavimento, seja logo após a construção, como na fase de utilização da rodovia. Tem-se observado nas regiões tropicais caracterizadas por estações de seca, que a umidade de equilíbrio dos solos compactados do pavimento está geralmente um pouco abaixo da umidade ótima na qual foi compactado.

Nesta situação, um solo contráctil pode fissurar ou trincar e, dependendo das proporções, o trincamento se reflete na superfície de rolamento, causando não só o desconforto ao usuário, como o aparecimento de regiões mais fracas com consequente desprendimento de material com o tempo e formação de buracos ou "panelas".

Se por um lado, o degelo nas regiões temperadas é uma das situações que limita a escolha dos materiais; nas regiões tropicais, a secagem deveria ser uma das condições importantes a ser levada em conta na pavimentação. Esperar-se-ia, portanto, um grande rigor na limitação da contração nas regiões tropicais.

Porém, limitar ou prever a contração dos solos tropicais não é uma tarefa simples. Há solos tropicais como os siltes micáceos e/ou caulínicos saprolíticos que podem ser muito expansivos embora, contrariamente aos solos de grande ocorrência nas regiões temperadas, sejam pouco ou não
contrácteis. E, ainda, há solos argilosos lateríticos que são pouco expansivos, mesmo os mais plásticos, contudo frequentemente contrácteis.

Estas "anomalias" de comportamento quanto à expansão e à contração não podem ser tratadas como exceções frente a grande frequência de ocorrência destes tipos de solos nas regiões tropicais. Por exemplo, grande parte da área do estado de São Paulo é recoberta por solos lateríticos cuja espessura das camadas variam de dezenas de centímetros a cerca de 10 metros. Na região do Cristalino Brasileiro, é comum encontrar-se horizontes espessos, da ordem de dezenas de metros, de solos siltosos micáceos e/ou caulínicos saprolíticos.

Portanto, no caso de solos tropicais, a contração, ao lado de outras propriedades, deve ser medida diretamente, ou pelo menos avaliada através de outras propriedades que não sejam somente a expansão e/ou plasticidade. Dentro de uma determinada classe de solo tropical, quanto mais plástico for o solo, maior a contração. Porém, não se pode generalizar certos limites para toda gama de solos tropicais, pois eles podem exibir índices plásticos idênticos, embora o comportamento em campo seja completamente diferenciado. Assim, a plasticidade não é um critério capaz de agrupar solos de mesma classe, ou seja, de propriedades e comportamentos similares.

Além do exposto, há anos tem-se observado que certos solos lateríticos tropicais, quando submetidos à perda de umidade, ao reabsorverem água apresentam melhoria no comportamento, com diminuição da expansão e da perda de capacidade de suporte. Este fenômeno ressalta a importância em se considerar a secagem na construção viária.
Nas regiões tropicais, não é raro a escassez de material granular, material "nobre" para a pavimentação. Por motivos econômicos, vem se acentuando a necessidade de se utilizar os solos locais, já que os empréstimos a longa distância de transporte têm onerado as obras, principalmente na construção de rodovias secundárias. Neste contexto, toma dimensões importantes o estabelecimento de uma metodologia de ensaios capaz de classificar e prever o comportamento "in situ" dos solos tropicais, auxiliando a escolha correta do material local para a pavimentação.
TERMINOLOGIA

Adotou-se a terminologia utilizada pelo Comitê de Solos Tropicais da ISSMFE (1985), cuja finalidade é estritamente geotécnica.

"Solos tropicais" englobam os solos saprolíticos e os lateríticos. Os demais tipos, embora também ocorram nas regiões tropicais, são chamados "solos não-tropicais".

Os solos lateríticos constituem camadas superficiais, de composição e macroestrutura homogêneas, pertencentes aos horizontes pedológicos A e B de perfis bem drenados, com espessuras variando entre dezenas de centímetros até 10 a 20 metros. Importantes em engenharia como solos de fundações, de taludes de cortes ou como material de empréstimo.

As condições tropicais de altas temperaturas, de presença d'água abundante e de boa drenagem são propícias ao intemperismo intenso e rápido. Os solos tropicais lateríticos são formados pelo processo físico-químico avançado de laterização. A laterização caracteriza-se pela decomposição de feldspatos e de minerais ferromagnesianos, pela lixiviação da sílica e de bases e, finalmente, pela concentração de óxidos de ferro e/ou alumínio (Mitchell, 1982).

Devido à laterização, a fração argila dos solos lateríticos é constituída essencialmente de minerais do grupo da caulinita e de óxidos hidratados de ferro e/ou alumínio. Graças à combinação destes componentes, formam-se estruturas de agregados altamente estáveis, mesmo em contato com a água. Por esta razão, os solos lateríticos, mesmo os mais argilosos, apresentam-se porosos e bastante permeáveis.
Na fração areia e silte encontram-se quartzo principalmente, concreções lateríticas e minerais pesados.

Os solos saprolíticos (solo no senso geotécnico) são de origem residual, comumente localizados sobre a rocha que lhes deu origem e, nas condições naturais, subjacentes ao horizonte superficial (Nogami, 1976). Devido à atuação intensa do intemperismo nas regiões tropicais, com clima quente, chuvas bem distribuídas e relevos suaves, a decomposição da rocha e acúmulo do material decomposto são favorecidos. A espessura da camada resultante pode atingir dezenas de metros, sendo portanto de grande interesse à engenharia pois constituem grande parte dos solos de fundações, dos túneis e dos taludes de corte e, eventualmente, material de empréstimo.

A macroestrutura é herdada da rocha matriz e é geralmente complexa, longe de ser homogênea. Através dela é possível se identificar a rocha de origem. A constituição mineralógica é complexa e dependente da rocha matriz e do grau de intemperização.
OBJETIVOS

Este trabalho tem por objetivos:

1) Estudar as propriedades de expansão e contração por mudança no teor de umidade de solos tropicais. Propõe-se uma revisão bibliográfica dos mecanismos físicos e químicos envolvidos, tanto para solos no estado natural como compactado, e dos ensaios mais utilizados em laboratório para medida destas propriedades. Verificar-se-á as eventuais anomalias dos solos tropicais em relação aos mecanismos clássicos estabelecidos, procurando-se justificativas para estes comportamentos diferenciados e a melhor forma de quantificar a expansão e a contração de solos compactados para fins viários.

2) Estudar a influência da secaqem após compactação na resistência e na expansibilidade dos solos tropicais. Investigar-se-á quais ensaios de laboratório podem quantificar este efeito em amostras compactadas. De outro lado, buscar-se-á ensaios que possam identificar os solos tropicais que potencialmente possam ser beneficiados pela secaqem após compactação (diminuição da perda de resistência e da expansão quando em contato com a água).

3) Estabelecer uma metodologia de ensaios de laboratório que seja capaz de separar em classes distintas os solos tropicais que se comportam diferentemente quanto à contração e à expansão. Desta forma, pretende-se auxiliar na escolha do solo tropical como material de construção viária, prevendo-se algumas propriedades de campo dos mesmos.
II - ESTUDO DAS PROPRIEDADES DE EXPANSÃO E DE CONTRAÇÃO DOS SOLOS TROPICAIS
A - TIPOS BÁSICOS DE SOLOS SEGUNDO SEU COMPORTAMENTO À EXPANSÃO E À CONTRAÇÃO.

Como foi visto na introdução deste trabalho, nem todos solos tropicais se comportam como a maior parte dos solos sedimentares que quando expansivos são contrácteis e vice-versa. Constatou-se também que há solos tropicais, como alguns lateríticos, que são contrácteis mas em geral pouco ou não expansivos; como de outro lado há, por exemplo, alguns solos siltosos saprolíticos que são expansivos e pouco ou não contrácteis.

A fim de se facilitar a compreensão dos fenômenos envolvidos no processo de expansão e de contração dos solos tropicais, Nogami et al., 1985, subdividiram estes solos em três tipos básicos. Cada tipo é caracterizado segundo sua fração granulométrica responsável pela expansão e pela contração.

TIPO A: A fração argila, constituída de argilo-minerais capazes de adsorver água e de expandir suas camadas duplas, é responsável pela expansão e pela contração do solo. O total de expansão ou de contração depende da quantidade e da natureza mineralógica e físico-química destes argilo-minerais. Os solos expansivos são também contrácteis, e vice-versa. Chamamos de "tipo clássico" por ser o tipo de solo utilizado para explicar os mecanismos envolvidos nos fenômenos da contração e da expansão e que serão abordados no próximo item deste capítulo. É, em geral, característico dos solos não-tropicais,
sedimentares, normalmente encontrados nos países de clima temperado e que foram utilizados como "tipo básico" para as especificações internacionais do uso do solo como material de construção (AASHO, ASTM, etc.). Nas regiões tropicais, este tipo de comportamento pode ser encontrado nos solos argilosos ou argilas sedimentares, como por exemplo a argila mole da Baixada Santista, argilas aluvionares não lateríticas da Amazônia, etc, e nas argilas e solos argilosos saprolíticos provenientes por exemplo de Folhelhos, Arqilítos, alguns Basaltos e Diabásicos, rochas cuja granulação é geralmente fina, Foto 1.

TIPO B: A fração argila laterítica, constituída principalmente de caulinita e óxidos hidratados de ferro e/ou alumínio, é responsável pela contração e expansão do solo. O total de contração e de expansão depende do grau de laterização do solo, da porcentagem e da constituição da fração argila, do grau de cimentação das partículas pelos óxidos de ferro e de alumínio e, portanto, do grau de agregação. Graças à combinação dos constituintes básicos da fração argila, estes solos são em geral caracterizados pela baixa expansibilidade, embora possam se apresentar contráteis. Este comportamento é típico de argilas ou de solos argilosos lateríticos, Foto 2.

TIPO C: A fração silte, constituída principalmente por mica e/ou macrocristais de caulinita, é responsável pela expansão do solo. Os macrocristais caulínicos são formados pela superposição de várias placas de caulinita, interligadas entre si, assemelhando-se à
"sanfonas", e os cristais micáceos, dimensão silte, têm forma laminar sem contorno definido (Pastore, 1982). O total de expansão depende da porcentagem da constituição e do estado destas partículas de dimensão silte. Nos solos TIPO básico C, a fração argila é praticamente ausente ou mesmo inexistente. Ela contribui, como nos solos TIPO básico A, na expansão e na contração, porém, devido a sua pequena presença nestes solos, sua participação no total de expansão e de contração não é preponderante. Estes solos se caracterizam pela elevada expansão, embora apresentem baixa pressão de expansão, sendo em geral pouco ou não contráteis por secagem. Este tipo de comportamento pode ser encontrado nos siltes e solos siltosos saprolíticos provenientes por exemplo de Granitos, Gnaisses, e de alguns Filitos, Fotos 3 e 4.

Apresentou-se uma subdivisão de solos tropicais em tipos básicos segundo seus comportamentos à contração e à expansão. A contração e a expansão dos solos tropicais podem ser uma soma de efeitos dos tipos acima citados, ou seja, o total de contração e de expansão do solo depende da porcentagem de cada uma das frações presentes.

A expansão de um solo saprolítico, por exemplo, pode ser causada em parte pela fração silte se esta for micácea e/ou caulínica, como também pela absorção d'água dos argilo-minerais de sua fração argila. Em solos parcialmente laterizados, pode-se encontrar argilo-minerais, como as montmorilonitas, as nontronitas, etc., que são mais ativos, segundo a conceituação de Skempton, que os argilo-minerais típicos da fração argila dos solos do TIPO básico B.
Estas características podem levar a um comportamento quanto à contração e à expansão mais próximo do TIPO A - clássico que aquele propriamente de laterítico TIPO B.

O tipo de expansão ou de contração dos solos tropicais depende, portanto, da contribuição de cada uma de suas frações.
FOTO 1: Areia Silto-argilosa saprolítica de Basalto. Serra dos Padres, SP 310. Ampliação: 10.000 X

FOTO 2: Latossol Roxo. São Carlos - Dourado, SP 215, Km 154. Ampliação: 3.000 X
FOTO 3: Silte Saprólitico de Filito - Grupo São Roque. Placas de Mica entre Grãos de Quartzo. 1000 X

FOTO 4: Silte Argiloso Saprólitico de Filito. SP 280, Km 40. Macrocrístais de caulinita na forma de "sanfona". 5000 X
B - MECANISMOS DE EXPANSÃO E DE CONTRAÇÃO

B.1 - INTRODUÇÃO

Uma determinada massa de solo sofre mudanças de volume por várias razões, como por exemplo: aumento ou diminuição das pressões externas aplicadas, aumento ou diminuição no teor de água do solo, mudança na temperatura ambiental, dilatação, mudança no ambiente químico, etc. Trataremos especificamente da mudança de volume (expansão ou contração) por mudança no teor de umidade que causa uma mudança das tensões internas no solo.

Os próximos sub–ítems abordarão os mecanismos físico-químicos envolvidos na contração e na expansão de cada tipo básico de solo definido no item A deste capítulo.

B.2 - SOLOS TIPO A-CLÁSSICO: ARGILAS E SOLOS ARGILOSES TRANSPORTADOS NÃO LATERÍTICOS E ARGILAS E SOLOS ARGILOSES SAPROLÍTICOS

Os mecanismos de expansão e de contração, que serão apresentados resumidamente nos dois próximos sub–ítems, se aplicam aos solos cuja fração argila, constituída por argilo-minerais capazes de adsorver água, é a porção ativa do solo, responsável por sua expansão e contração. Uma extensa gama de argilo-minerais pode estar presente na
fração argila destes solos, tais como montmorilonitas, nontronitas, ilitas, haloisitas, caulinitas, etc.

Estas características são encontradas em geral nos solos argilosos ou argilas de origem transportadas ou nas argilas e solos argilosos saprolíticos. Solos superficiais de origem transportada ou residual, onde processos avançados de intemperismo, como o da laterização, modificam-os mineralogicamente, físico-quimicamente e principalmente estruturalmente, podendo conter agregações, não se enquadram neste tipo básico. Conforme o grau de intemperização e de laterização podem ser melhor caracterizados no TIPO B-laterítico, que será visto no item B.3.

Os solos tropicais que melhor se enquadram segundo seu comportamento à contração e à expansão neste TIPO A, são os solos saprolíticos provenientes de Folhelhos, Argilitos, muitos Basaltos e Diabásios, etc, cujas granulometrias resultantes dos processos de intemperismo são de argilas, argilas arenosas ou areias argilosas principalmente.

B.2.1 - EXPANSÃO

A absorção d'água não é sempre acompanhada pela expansão. O solo seco pode absorver água por exemplo por capilaridade com nenhum ou pouco aumento de volume, como ocorre com areias e siltes inertes. Para a expansão, requer-se uma força resultiva afastando as partículas umas das outras o que se dá com argilos-minerais capazes de adsorver água por hidratação.

Embora a maior parte dos solos não se comporte segundo sistemas ideais, teorias como as que envolvem os
princípios da repulsão osmótica nos auxiliam a compreender qualitativamente alguns fenômenos da expansão (Ladd, 1960).

Quando uma solução aquosa é separada da água pura por uma membrana semi-permeável (ela permite a passagem das moléculas de água, mas impede a saída das substâncias dissolvidas na solução aquosa), a água pura tende a diluir a solução aquosa a fim de se atingir uma situação de equilíbrio. Para se evitar o fluxo d'água, é necessário se aplicar à solução uma pressão, chamada pressão osmótica (figura 1). Segundo a equação de van't Hoff, a pressão osmótica é diretamente proporcional à diferença de concentrações \(C \), em moles/litro, entre a solução e o solvente.

\[
\pi = RT \left(C_a - C_b \right)
\]

onde \(\pi \) é a pressão osmótica, \(R \) é a constante do gás e \(T \) a temperatura absoluta.

No solo não há membranas semi-permeáveis, mas o campo elétrico, formado graças aos cátions absorvidos e às cargas elétricas negativas da superfície dos argilo-minerais, funciona como tal. Devido à atração dos cátions às superfícies das partículas, eles não estão livres, havendo portanto uma diferença de concentração entre a camada dupla difusa e a água livre dos poros. A camada dupla difusa são os íons e a água adsorvida da micela, que constitui um sistema eletricamente neutro formado pela partícula de argila, pelos cátions atraídos e pela água circundante.

Tomemos um modelo ideal de duas partículas de argilo-minerais, planas, com forma lamelar, dispostas paralelamente, distanciadas de \(2d \), (figura 2). A diferença das pressões osmóticas no plano médio entre as partículas e
FIGURA 1: PRESSÃO OSMÓTICA. (a) condição inicial: não há equilíbrio; (b) condição final: equilíbrio; (c) pressão osmótica de equilíbrio. (Mitchell, 1976).
na água livre dos poros resulta numa pressão osmótica de repulsão das partículas, a qual chamaremos de "pressão de expansão".

FIGURA 2: Pressão osmótica entre duas partículas imersas em água.

Enquanto houver diferença na concentração eletrolítica, e desde que não haja qualquer impedimento, a água livre dos poros continuará sendo atraída osmoticamente, aumentando a espessura do filme d'água que envolve o argilo-mineral, distanciando cada vez mais as partículas umas das outras.

Para se evitar o fluxo d'água para a camada dupla, é necessário se aplicar externamente uma pressão de igual
valor à pressão de expansão. Assim, a pressão de expansão é a mínima necessária que, quando aplicada ao solo nas condições de equilíbrio em que ele se apresenta, impede sua expansão quando ele é posto em contato com a água livre. A pressão de expansão pode apresentar valores elevados, excedendo a 10 atm em algumas argilas expansivas (Bauer et al., 1972).

A aplicação de uma pressão externa significa aumentar a tensão efetiva que pode vir a reequilibrar o sistema das forças de repulsão R e de atração A atuantes no solo, cuja resultante é uma força de repulsão entre as partículas quando a argila expande (Lambe, 1958), (figura 3). As forças de atração são as forças de valência secundária de van der Waals entre duas partículas de argila adjacentes. Elas são função da espessura da partícula e do espaçamento entre elas. As forças de repulsão são provenientes da interação das duplas camadas difusas.

![Diagrama](image)

Figura 3: Forças entre duas partículas de argila

Em argilas saturadas, a expansão está relacionada diretamente à mudança na umidade (Marshall and Holmes, 1979):
dV_m = S \ dx

onde: \ V_m = \text{volume de água por unidade de massa de argila.}

\ S = \text{superfície por unidade de massa de argila.}

\ x = \text{espessura d'água sobre a superfície da partícula de argila}

A expansão aumenta com o aumento da superfície específica \ S \ do argilo-mineral. Por exemplo, as argilas montmorilonitas sódicas se apresentam geralmente mais expansivas que as caulinitas, cujas superfícies específicas são de 750 e 15 m\^2/g \ respectivamente (figura 4).

FIGURA 4: Comparação entre as expansões de montmorilonitas e de caulinitas. Efeito do cátion trocável na expansão.(Hillel, 1980).
Quanto maior a espessura d'água potencial sobre a superfície de uma partícula de argila, maior a variação do volume d'água por unidade de massa de argila e, portanto, maior a expansão. A espessura do filme d'água varia inversamente com a valência do cátion trocável, com a concentração da solução dos poros (Marshall and Holmes, 1979) e com a carga das partículas. Para as montmorilonitas, por exemplo, a expansão aumenta, fixadas todas as outras variáveis, segundo a seguinte sequência de cátions trocáveis: K < H < Ba < Ca < Na < Li (Baver et al., 1972). Veja na figura 4 a comparação entre as expansões de montmorilonitas cálcicas e sódicas.

Aumentando a concentração do fluido dos poros, diminui-se a diferença de concentração entre a água dos poros e a da solução aquosa entre as partículas, diminuindo consequentemente a pressão de repulsão osmótica e a expansão. A figura 5 ilustra o efeito da adição de cloreto de sódio na água dos poros na redução da expansão (Mowafy et al., 1985). O efeito da aplicação de uma pressão externa na diminuição do total de expansão pode ser verificado na mesma figura. A adição de sal na água dos poros diminui consideravelmente a absorção d'água de argilas altamente expansivas, como as montmorilonitas, bentonitas, etc., especialmente para aquelas cujos cátions trocáveis são monovalentes (por exemplo Na), (Jong and Warkentin, 1975).

Uma vez conhecidas as concentrações da água livre dos poros e da solução entre as duas partículas de argila através da valência dos cátions e da distância entre partículas, pode-se calcular a pressão de expansão pela equação de van't Hoff,vista anteriormente. Apesar disso, é difícil se calcular a expansão, pois muitos outros fatores interferem. Dificilmente se encontrará na natureza um solo puramente constituído de argilo-minerais com as mesmas
características, dispostos paralelamente uns aos outros, ou seja, com estrutura completamente dispersa.

FIGURA 5: Efeito da mudança na concentração da água livre dos poros na expansão. Efeito da aplicação de pressão normal na expansão. (Mowafy et al, 1985).

Nas argilas não saturadas, independentemente do estado em que se encontram, a espessura da camada dupla dos argilo-minerais é menor que aquela que teriam se houvesse acesso à água livre. Devido à deficiência da água na camada dupla, as tensões superficiais criadas nas interfaces água-ar agem como uma componente da tensão efetiva, prevenindo a absorção da água e, consequentemente, a expansão. Estando a argila não saturada em contato com a água, alguns meniscos são rompidos, e a água pode então fluir pelo solo graças às tensões das água dos poros. Com o tempo, a pressão na água dos poros aumenta até a atmosférica, diminuindo a tensão efetiva. As camadas duplas se expandem, expandindo a massa.
de argila, até que as pressões de repulsão, diminuídas de intensidade com a expansão, menos as de atração, sejam novamente equilibradas pelas tensões efetivas do solo (Ladd, 1960).

Durante a absorção d'água dos solos não saturados, algumas bolhas de ar escapam, outras são dissolvidas na água e outras são comprimidas pelas tensões capilares. A reação da compressão das bolhas de ar no esqueleto do solo é uma força de tração, diminuindo ainda mais as tensões efetivas, tendo como consequência um aumento no espaçamento das partículas (Ladd, 1960).

A expansão das argilas no estado natural além de depender de todos fatores anteriormente enumerados (como teor de umidade, grau de saturação, mineralogia, concentração da água livre, etc) é também função do arranjo estrutural do solo. O total de expansão depende da quantidade de superfícies que se interagem. A repulsão ocorre nos pontos de maior proximidade. As tentativas de cálculos das forças envolvidas se complicam ainda mais, principalmente para arranjos não totalmente dispersos, devido ao efeito da atração das extremidades positivas das partículas pelas faces negativas das partículas vizinhas.

Com a compactação as argilas apresentam-se no ramo seco menos saturadas e, portanto, com maior quantidade de ar no seu interior que aquelas compactadas no ramo úmido. Dado o menor grau de saturação, as argilas compactadas no ramo seco apresentam maior deficiência d'água na camada dupla e, portanto, maior potencial à absorção d'água e expansão da camada dupla que aquelas com a mesma densidade, porém compactadas no ramo úmido. Devido a estes dois fatores, as argilas compactadas no ramo seco são em geral mais expansivas que aquelas compactadas no ramo úmido.
Lambe, 1958, supõe que as microestruturas resultantes da compactação de uma argila nos ramos seco e úmido sejam diferentes, apresentando tendência à floculação no ramo seco, e à dispersão no ramo úmido. Esta diferença no arranjo estrutural atua como um fator adicional para a explicação da maior expansão constatada em geral no ramo seco.

As argilas compactadas no ramo seco tendem a absorver maior quantidade de água; porém, deve-se realçar que parte desta água é absorvida por capilaridade quando o arranjo é floculado (Jong and Warkentin, 1975).

Segundo Barden et al, 1970, pouca diferença existe ao nível da microestrutura entre os ramos seco e úmido de uma argila compactada, contrariando a teoria defendida por Lambe, 1958. A argila compactada no ramo seco, apresenta uma leve tendência a maior floculação. A diferença significante está a nível da macroestrutura. No ramo seco, há maior tendência à interligação dos macroporos (poros existentes entre os diversos aglomerados de partículas) possibilitando mais facilmente o fluxo de água por capilaridade. Já no ramo úmido, devido à maior presença d'água, os contatos entre partículas e aglomerados estão mais enfraquecidos e, sob efeito da compactação, há uma diminuição na quantidade destes "canais" interligantes. Argilas compactadas com mesma densidade (mesmo índice de vazios), mas nos ramos seco e úmido respectivamente, apresentam diferenças na distribuição porosa dos macroporos, acarretando diferenças em suas propriedades, tais como permeabilidade, expansão, etc.

Outro fator que deve ser levado em conta é a presença de material cimentante, como matéria orgânica, óxidos hidratados de ferro e/ou alumínio, carbonatos, etc. Estes agentes cimentantes de partículas se resistentes pelo
menos em parte durante a absorção d'água, diminuem o total de expansão. Ainda não está claro se a expansão destes solos é diminuída por causa do material ligante entre as partículas ou se as propriedades físico-químicas são afetadas (Jong and Warkentin, 1975).

A expansão dos solos TIPO básico A depende portanto de vários fatores combinados, tais como: porcentagem da fração argila, natureza mineralógica dos argilo-minerais, natureza do cátion trocável, carga das partículas, concentração do fluido dos poros, ar aprisionado no interior do solo, grau de saturação, arranjo estrutural, presença de material cimentante, pressão de confinamento, entre outros.

B.2.2 - CONTRAÇÃO

Haines (1),1923, observou durante a secagem de um bloco remoldado de argila saturada que a diminuição de volume do bloco era, numa primeira fase, igual ao volume de água perdida. Desta forma, durante este período, a argila continua saturada. Este primeiro estágio é chamado de "contração normal" (figura 6). Para argilas não saturadas no estado natural, porém com pouquíssimo volume em ar aprisionado, o volume da fase gasosa pode permanecer constante ao secar e, portanto, pode-se observar também claramente neste caso a existência de um estágio de "contração normal".

A água evapora pela superfície da amostra. Um gradiente de pressões é gerado devido à presença de pressões menores no lado convexo das interfaces água-ar formadas à superfície da amostra de solo. Este gradiente é responsável

1. veja em Marshall and Holmes, 1979
AB - CONTRAÇÃO NORMAL
BC - CONTRAÇÃO RESIDUAL
DG - VOLUME DE AR NOS POROS DO SOLO SECO
V - VOLUME DE ÁGUA PRESENTE NO SOLO DEFINIDO PELA INTERSEÇÃO DE DC COM AB

LIMITE DE CONTRAÇÃO = \(\frac{V}{\text{Peso seco}} \)

FIGURA 6: Contração de um solo por perda de umidade
pelo fluxo d’água que se forma de dentro para fora da amostra (Jong and Warkentin, 1975). A saída d’água gera a aproximação das partículas, ou seja, a contração.

Num estágio subsequente, há um aumento de resistência à deformação, pois a argila perde sua plasticidade e o volume de água perdida é maior que a diminuição de volume da amostra. Nesta situação, a água é substituída por ar. Este estágio é chamado de "contração residual" (figura 6). Acredita-se que nesta fase, haja mudanças nos arranjos estruturais e, em alguns casos, um encurvamento das partículas (Jong and Warkentin, 1975).

Algumas argilas apresentam ao invés de "contração residual", uma "expansão residual". Isto ocorre provavelmente por causa do ricochete elástico das partículas após quebra dos filmes d’água que as interligavam. Este comportamento foi constatado em algumas caulinitas puras, dimensão argila (Jong and Warkentin, 1975).

Após a "contração residual", a argila pode continuar a perder umidade, porém o volume cessa de diminuir. A umidade para qual isto ocorre é chamada de limite de contração, que pode ser determinado graficamente conforme mostra a figura 6. O limite de contração é o limite entre o estado semi-sólido e sólido. Nesta umidade, há uma interação entre as partículas do solo. Esta interação existe graças aos contatos diretos de partículas ou de suas camadas hidratadas, somados à repulsão entre partículas devido às forças de expansão.

Para argilas e solos argilosos saturados ou com alto grau de saturação, tanto no estado natural, remoldado, como compactado, é possível se constatar as três fases de contração: "contração normal", "contração residual" e a
última fase onde a contração cessa, porém o solo continua a perder umidade.

Alguns fatores afetam a contração. Um deles é a natureza mineralógica e físico-química dos argilo-minerais. Quanto maior a atividade do argilo-mineral, segundo conceituação de Skempton, maior a potencialidade à mudança de volume. Grandes mudanças de volume estão em geral associadas a pequenos valores do limite de contração. As montmorilonitas puras, por exemplo, argilo-minerais muito expansivos e ativos, têm um limite de contração em torno de 10 a 15%, enquanto para as caulinitas puras, argilo-minerais pouco expansivos e pouco ativos, o intervalo gira em torno de 20 a 25% (Jong and Warkentin, 1975).

Outro fator que afeta a contração é a porcentagem da fração argila no solo. Quanto maior a proporção da fração ativa no total do solo, maior a contração. Porém, há um limite mínimo desta porcentagem para que a fração argila seja a fração que comande a contração do solo. Segundo Seed et al, 1964, para areias e siltes inativos com porcentagens da fração argila inferiores a 9%, o índice de plasticidade é zero. Tem-se portanto um modelo de matriz arenosa. Para estes solos, a saída d'água não gera diminuição de volume, pois as partículas do esqueleto do solo (areia e silte) já estão em contato umas com as outras e a fração argila não preenche todos vazios deste esqueleto sólido, não consistindo um meio contínuo.

A estrutura atua como um dos fatores preponderantes da contração. Em solos sedimentares depositados em condições lacustres, é comum encontrar uma certa orientação preferencial de partículas lamelares. Nestas condições, a contração se dá basicamente na direção perpendicular à orientação. Para arranjos floculados, a contração é em geral isotrópica. Para uma dada argila, o
limite de contração é maior quando em arranjo floculado que em disperso. Para arranjos floculados, a interação entre as partículas se dá a teores de umidades maiores e, portanto, a argila para de contrair antes (Jong and Warkentin, 1975).

A diminuição do grau de saturação diminui a espessura da camada dupla difusa, diminuindo, portanto, a quantidade d'água em potencial a ser perdida e, consequentemente, a contração. O menor grau de saturação de argilas e solos argilosos compactados no ramo seco resulta numa contração menor em comparação com aquelas compactadas no ramo úmido. Além disso, se admitirmos a diferença na microestrutura segundo Lambe, 1958, no ramo seco há uma tendência à interação das partículas a maiores teores de umidade, o que também limita a contração (Jong and Warkentin, 1975).

A presença de agentes cimentantes pode modificar os solos granulometricamente, aumentando o grau de agregação e diminuindo a porcentagem da fração argila. Consequentemente há uma diminuição na contração do solo.

O total de contração dos solos TIPO A - Clássico, independentemente do estado em que se encontram, é função principalmente da natureza mineralógica e físico-química do argilo-mineral (superfície específica, capacidade de troca cationica, espessura da camada dupla, etc), da porcentagem da fração argila do solo, da estrutura, do grau de saturação e da presença de agentes cimentantes.
B.3 - SOLOS TIPO B: ARGILAS LATERÍTICAS E SOLOS ARGILOSOS LATERÍTICOS

Os mecanismos de expansão e de contração que serão nos dois próximos sub-itens apresentados, são hipóteses que se aplicam aos solos argilosos e argilas lateríticas. A fração argila é constituída principalmente por caulinita e óxidos hidratados de ferro e/ou alumínio. Na fração areia e silte há predominância de minerais resistentes ao intemperismo como o quartzo e alguns minerais pesados e, ainda, de concreções lateríticas.

Graças à combinação dos componentes da fração argila, uma das características mais importantes e frequentes nos solos lateríticos é a presença de agregados. Estes agregados são em geral estáveis à desintegração pela ação da água (Baver, 1940). Os agregados são associações de partículas do solo no estado natural, formando unidades discretas ou grãos individuais que interagem produzindo estruturas cuja aparência é granular (Collins, 1985).

O caso da barragem de Sasumua, Quênia, muito discutido na literatura, mostrou como a presença de agregações pode modificar as propriedades mecânicas e hidráulicas de um solo cujo teor em argila era de pelo menos 70%, apresentando-se no entanto, com alta permeabilidade, baixa compressibilidade e alto ângulo de atrito (Terzaghi, 1958).

Trataremos nos dois próximos sub-itens da influência destas composição e estrutura particulares das argilas e solos argilosos lateríticos em suas propriedades de expansão e de contração.
B.3.1 - EXPANSÃO

A expansão de argilas e solos argilosos lateríticos é em geral pequena.

A laterização, processo pedogenético avançado, caracteriza a presença de argilo-minerais estáveis e pouco ativos, como os da família da caulinita. Sua pequena superfície específica e baixa capacidade de troca catiônica resultam numa concentração iônica da camada dupla difusa menor, comparada àquelas de argilo-minerais mais ativos como as montmorilonitas, bentonitas, etc, apresentando portanto menor tendência à expansão, já que ela é diretamente proporcional à diferença entre a concentração da camada dupla e a da água livre dos poros (item B.2.1).

Além disto, tem-se mostrado que os sesquióxidos (óxidos hidratados de ferro e/ou alumínio) estão adsorvidos às superfícies das caulinitas, graças à interação entre as cargas positivas dos sesquióxidos com as cargas negativas dos argilo-minerais (Towsemd et al, 1971). Sugere-se que este recobrimento da caulinita, mesmo que parcial, leve a uma certa neutralização das cargas negativas, contribuindo à agregação. Esta neutralização de uma parcela das cargas negativas da superfície dos argilo-minerais contribui em parte à diminuição do total de expansão por causa da diminuição da concentração iônica da camada dupla.

De outro lado, há autores que têm mostrado que os sesquióxidos não estão associados por recobrimento, mas estão finamente divididos, existindo como micro-agregados compostos por cristalitos com diâmetros efetivos da ordem de $100 \AA$ (10^{-6} cm), já apresentando cristalinidade (Casanova, 1986). A superfície específica destes cristalitos, segundo os resultados obtidos por Casanova, variam de 300 a 420
m**2/g para os óxidos amorfo, e de 100 a 200 m**2/g para os óxidos cristalinos.

Apesar da magnitude da superfície específica dos sesquióxidos, sua atuação na expansão parece ser bastante diferente da dos argilo-minerais de mesma superfície específica carregados negativamente. Wooltorton, 1954, observou que a diminuição da relação sílica-sesquióxidos SiO : (Al O + Fe O) gera uma diminuição da expansão por hidratação.

Seja qual for a associação dos sesquióxidos com os argilo-minerais, os sesquióxidos podem agir como cimentantes de partículas, produzindo agregados em geral estáveis à desintegração em presença d'água, típicos nos solos lateríticos.

Há boas correlações entre a quantidade de óxidos de ferro livres e o grau de agregação (Baver et al., 1972). Com o aumento do grau de agregação, a estrutura se torna mais granular e o solo menos expansivo, como se fosse uma areia ou um silte inertes.

Wooltorton, 1954, justifica a baixa expansibilidade dos solos lateríticos pela absorção d'água pelos seus vesículos, ou seja, grande parte da água é absorvida por capilaridade.

Nas argilas e solos argilosos lateríticos não saturados, durante a absorção d'água, o ar existente nos macroporos escapam facilmente devido à presença de interligações entre eles (estrutura granular porosa), não causando diminuição da pressão efetiva por compressão das bolhas de ar (item B.2.1).
A distribuição porosa dos solos lateríticos é bastante peculiar. Constatou-se um aumento significativo da superfície específica acumulada e do volume específico acumulado de poros para raios de poros entre 0.01 a 0.10 m (figura 7); ou seja, há uma presença marcante de poros extremamente finos (microporos) nos solos lateríticos (Arnold, 1985-b).

Nos solos não saturados, as tensões nas interfaces água-ar destes microporos são extremamente altas, uma vez que elas são inversamente proporcionais ao diâmetro dos poros. Durante a absorção, dificilmente a água livre poderá atingir estes poros para expandir a camada dupla dos argilo-minerais e distanciar as partículas umas das outras. Acredita-se que as altas pressões de sucção que se desenvolvem nos solos lateríticos sejam provenientes das tensões elevadas nas interfaces água-ar dos microporos, e que sem dúvidas é um dos fatores responsáveis pela diminuição da expansibilidade destes solos.

Os solos lateríticos amolgados são em geral menos porosos pois, ao serem trabalhados as ligações mais fracas entre agregados são rompidas. Os agregados mais resistentes dificilmente são desintegrados por remoldagem ou mesmo pela compactação normalmente utilizada. Os hidróxidos férricos, um dos materiais cimentantes presentes nos solos lateríticos aderidos aos argilo-minerais, não podem ser removidos mecanicamente (Baver et al, 1972).

Os solos lateríticos compactados apresentam-se em geral com graus de saturação elevados (próximos a 90% ou superiores) na umidade ótima de compactação. Quanto mais próximos da saturação, menor a deficiência da camada dupla (item B.2.1) e menor a quantidade de ar nos poros. Ambos fatores favorecem a diminuição da expansão durante a absorção d'água.
FIGURA 7: Resultados de ensaios porosimétricos sobre amostras de solos lateríticos e saprolíticos. (Arnold, 1985).
Como foi visto, por vários fatores as argilas e solos argilosos lateríticos tipo B são pouco expansivos: 1) estabilidade e baixa atividade de seus argilo-minerais; 2) eventual neutralização de cargas negativas das superfícies dos argilo-minerais pelas cargas positivas dos sesquióxidos; 3) cimentação de partículas produzindo agregados em geral resistentes em presença d'água, modificando a granulometria destes solos, tornando-os mais granulares; 4) porosidade particular resultante da agregação, caracterizada por macroporos interligados que agem como condutos capilares de absorção d'água e por microporos no interior dos microagregados extremamente pequenos responsáveis pelo desenvolvimento de altas pressões de sucção nas interfaces água-ar de solos parcialmente saturados; e 5) em particular no estado compactado, atigem graus de saturação bastante elevados na umidade ótima.

B.3.2 - CONTRAÇÃO

As argilas e solos argilosos lateríticos TIPO B saturados ou com altos graus de saturação apresentam-se geralmente contráteis.

Os solos lateríticos TIPO B saturados, com seus agregados bem desenvolvidos, perdem inicialmente a água existente nos macroporos. A água é substituída por ar graças às interliações entre os macroporos. A saturação do solo diminui e a contração volumétrica é inferior a quantidade de água perdida. Este estágio inicial é conhecido por "contração estrutural" (Marshall and Holmes, 1979).
Este estágio não é particular aos solos lateríticos. Ele também pode ser encontrado nos solos que apresentam estruturação natural, resultante da cimentação de partículas pela matéria orgânica, por carbonatos, etc. Comparando-se as curvas de contração (diminuição do volume do solo X diminuição do volume de água) no estado natural e remoldado, pode-se verificar a sensibilidade do solo, ou seja, se com a remoldagem há mudanças em sua estrutura.

Após a "contração estrutural", a água perdida na secagem é proveniente dos microporos no interior dos agregados (Jong and Warkentin, 1975). Tem-se então estágios de "contração normal", seguido de "contração residual" (item B.2.2), e, finalmente, o solo não varia mais de volume até secagem completa.

Nos solos lateríticos pouco argilosos com estruturas de agregados extremamente desenvolvidas, a perda de água é sempre acompanhada pela entrada de ar, não chegando a apresentar um estágio de contração do tipo normal e, nem tão pouco, um limite de contração bem definido.

A contração dos solos TIPO B compactados no ramo úmido é maior que daqueles compactados no ramo seco, como acontece com todos solos. O total de contração, no entanto, depende muito do grau de agregação e da resistência destes agregados à ação conjunta da água e do esforço imprimido pela compactação. No ramo seco a argila laterítica conserva grande parte dos macroagregados, diminuindo assim o total de contração. Já no ramo úmido, os agregados são comprimidos, deformados, e as partículas de argila dos microagregados podem ser liberadas tornando assim estes solos mais ativos.

Normalmente os solos do TIPO A, saturados ou com alto grau de saturação, quando são contráteis, ao reabsorverem água são expansivos. Já as argilas e solos
argilosos lateríticos do TIPO B apresentam-se em geral contráteis quando saturados ou com alto grau de saturação, embora se reabsorverem água sejam pouco expansivos, como foi visto no sub-ítem anterior.

Não foram encontradas na literatura disponível explicações para este "paradoxo". Acredita-se porém, que a contração seja proveniente da perda d'água dos poros entre as partículas da fração argila e dos microporos do interior dos agregados. Parte da contração pode ser explicada caso admitamos a existência de sesquisóxidos finamente divididos sob a forma de microagregados compostos por cristalitos (Casanova, 1986). Estes cristalitos possuem superfícies específicas comparáveis às de ilitas ou mesmo de montmorilonitas. A expansão, no entanto, obedece mecanismos diferentes, pois não se trata de partículas carregadas negativamente como acontece com argilo-minerais.

O total de contração dos solos TIPO B depende da porcentagem da fração argila no solo, da natureza de seus constituintes, do grau de saturação, do grau de agregação e da resistência destes agregados.

B.4 - SOLOS TIPO C : SILTES E SOLOS SILTOSOS MICÁCEOS E/OU CAULÍNICOS SAPROLÍTICOS

Os mecanismos de expansão e de contração que serão apresentados nos dois próximos sub-ítems, referem-se às hipóteses de comportamento de siltes e solos siltosos micáceos e/ou caulínicos saprolíticos. A fração silte é constituída principalmente por mica e macrocristais de caulinita. As partículas de silte micáceo são cristais
laminares, sem contorno definido; enquanto as de caulínico são macrocristais de caulinita sobrepostos e interligados, sob a forma de "sanfonas" (Pastore, 1982).

A susceptibilidade à decomposição e à transformação com o intemperismo depende da natureza do mineral. A decomposição do quartzo e da muscovita, mineral que dá origem às partículas de mica dimensão silte, é bastante lenta; de outro lado, da biotita e dos plagioglásios é rápida. Estudos feitos por Ruddock, 1967, revelaram que a partícula de caulinita existe em grandes dimensões (silte ou até de areia fina a média), provenientes, em parte, da transformação dos feldspatos. Somente com processos secundários de intemperismo, elas são reduzidas de tamanho lentamente, até atingirem dimensão argila.

Enquadram-se neste TIPO C, solos saprolíticos provenientes de Granitos, Gnaisses, Filitos, etc, cujas granulometrias resultantes são predominantemente de areias siltosas, siltes arenosos e siltes com pouca ou nenhuma fração argila.

B.4.1 - EXPANSÃO

Os siltes e solos siltosos micáceos e/ou caulínicos saprolíticos TIPO C apresentam-se em geral altamente expansivos no estado compactado. A expansão destes solos no estado natural é um fenômeno bastante complexo. Há tanto aqueles altamente expansivos, erodíveis, etc, como aqueles resistentes. Pastore, 1982, mostrou que a expansão destes solos em presença d'água é proveniente da fração silte de natureza micácea e/ou caulínica, separando
granulometricamente esta fração (eliminando a fração argila) e ensaiando o solo assim obtido.

Pastore, 1982, encontrou altos valores de expansão (em torno de 25%) em amostras compactadas no teor de umidade ótima e densidade aparente seca máxima, tanto para siltes micáceos como caulínico. Apesar de serem altamente expansivos, apresentam baixas pressões de expansão e altas velocidades de expansão (1 Kgf/cm**2 e 5 a 50 minutos para alcançar a expansão próxima da máxima). Em contrapartida, com amostras de argilas expansivas, compactadas na umidade ótima e densidade aparente seca máxima, testadas no mesmo equipamento, foram obtidos os seguintes valores: 25 a 30 Kgf/cm**2 de pressão de expansão (2) e 200 a 600 minutos para a expansão próxima da máxima.

Moura e Garcia, 1985, estudando solos siltosos micáceos e caulínico saprolíticos, encontraram pressões de expansão maiores para as amostras compactadas que para aquelas no estado natural, nas mesmas condições de umidade e densidade.

Sowers, 1963, estudando areias siltosas e siltes arenosos micáceos saprolíticos, descreve uma estrutura básica, composta por um esqueleto de mica e quartzo, que mantêm suas interligações originais (estrutura reliquiar), com a caulinita levemente comprimida dentro deste arranjo mica-quartzo. Sowers constatou que a expansão destes solos em presença d'água é comparável àquela de argilas altamente expansivas, como montmorilonitas, bentonitas, etc.

Graft-Johnson et al, 1969, consideraram a natureza elástica das partículas de mica para explicar o

2. Os máximos valores de pressão de expansão encontrados para solos expansivos pelo Laboratório de Mecânica dos Solos da EPUSP estão em torno de 6 a 8 Kgf/cm**2, obtidos pelo método convencional do edômetro.
comportamento "elástico" de solos micáceos saprolíticos sobre Granitos de Gana, África, no ensaio de adensamento. As partículas de mica ficam sujeitas a dobramentos de suas placas durante o carregamento, sofrendo deformações elásticas e, graças a estas característica, ao serem descarregadas, tendem a retomar rapidamente a forma original, retornando praticamente ao volume inicial.

Sowers, 1963, propõe que o processo de expansão em presença d'água seja mecânico, tal como no adensamento. O progressivo umidecimento reduz as tensões capilares, permitindo ao esqueleto mica-quartzo ocupar uma outra posição no espaço, com maior índice de vazios.

Pastore, 1982, supõe que fenômeno semelhante ao proposto por Sowers, 1963, ocorra com os siltes caulínicos. Os macrocristais de caulinita, pacotes de placas de contorno regular, ligados uns aos outros, apresentando em geral espaçamento entre eles, deformam-se elasticamente dada sua forma alongada e encurvada. Balduzzi, 1984, compara estas partículas da fração silte a macrocristais formados a grandes velocidades, sem presença constante de água, com movimentação limitada e a altas temperaturas. O cristal assim desenvolvido, é grande, apresentando assimetrias que possibilitam ligações com a água e, portanto, a expansão.

Acredita-se na hipótese de que a expansão dos siltes e solos siltosos caulínicos saprolíticos se dá pela ação conjunta de deformações elásticas e de ligações com a água dos macrocristais caulínicos de dimensão silte.

O total de expansão dos solos TIPO C compactados depende principalmente da porcentagem da fração silte micácea e/ou caulínica no solo, do estado destas partículas, do grau de saturação, do tipo de estrutura herdada da rocha matriz, além de fatores externos, como por exemplo da
pressão de confinamento, que será abordada com mais detalhes no item E, deste capítulo.

Caso a fração argila esteja presente, ela será responsável por parte da expansão, envolvendo mecanismos como foram descritos no item B.2.1. Porém sua atuação não é preponderante, pois a fração argila nos solos TIPO básico C é muito pequena ou mesmo inexistente.

B.4.2 - CONTRAÇÃO

Apesar dos siltes e solos siltosos micáceos e/ou caulínicos saprolíticos apresentarem-se expansivos quando em contato com a água, são em geral pouco ou não contráteis por secagem no estado compactado.

Pastore, 1982, obteve em amostras de siltes micáceos e/ou caulínicos compactadas na umidade ótima e densidade seca máxima, contrações axiais em torno de 0.5%, em contraposição a expansões de 25%. Os siltes micáceos podem inclusive apresentar expansão ao secarem.

Os solos saturados podem contrair a princípio por perda de umidade. O estágio de "contração normal" é bastante pequeno já que a interação das partículas se dá rapidamente graças à estrutura e à matriz não argilosa destes solos. Na "contração residual", o ar ocupa parte da parcela de água perdida.

Sowers, 1963, supõe que para os siltes micáceos, o processo de contração, tal como ocorre com o de expansão, seja puramente mecânico. O esqueleto mica-quartz é sustentado pelas tensões capilares nas interfaces água-ar
criadas pela secagem. Por perda constante de umidade, estes elos de sustentação são rompidos e, por causa da natureza elástica das partículas de mica, o solo se expande. A expansão dos siltes e solos siltosos micácios saprolíticos por secagem foi observada quando a umidade atinge valores abaixo do teor de umidade correspondente ao limite de contração.

Acredita-se que a contração dos siltes e solos siltosos caulínicos saprolíticos se dá conjuntamente por uma movimentação proveniente do processo mecânico de deformação elástica dos "pacotes" de caulinita e pela perda d'água adsorvida por estes macrourstais. A hipótese de capacidade de adsorção d'água por estes macrourstais (Balduzzi, 1984), justificaria a contração destes solos, sem expansão por secagem.

O total de contração dos solos TIPO C depende principalmente da porcentagem da fração silte micácea e/ou caulínica do solo, da constituição mineralógica e do estado das partículas da fração silte (siltes quartzosos, por exemplo, são inertes - não expandem nem contraem), da proporção de cada tipo de mineral presente na fração silte, do grau de saturação e da estrutura herdada da rocha matriz.

Quando a fração argila está presente, o comportamento à contração é uma soma dos processos de contração das frações argila e silte micácea e/ou caulínica. O total de contração e o mecanismo de contração prevalecente dependem da proporcionalidade e da natureza destas frações. Deve-se ressaltar, no entanto, que a fração argila nos solos TIPO básico C é muito pequena ou mesmo inexistente.
C - ENSAIOS CLÁSSICOS DE LABORATÓRIO PARA A DETERMINAÇÃO DA
EXPANSÃO E DA CONTRAÇÃO

C.1 - EXPANSÃO

C.1.1 - MEDIDAS DIRETAS DE EXPANSÃO

Existem inúmeros ensaios de laboratório para a medida da expansão. Um dos mais difundidos no meio rodoviário é o ensaio CBR (California Bearing Ratio).

O corpo de prova é compactado num molde de 152.4mm de diâmetro e 177.8mm de altura, na umidade e densidade aparente seca desejada (ASTM D.1883-73, 1982). Immerge-se o corpo de prova em água por 96 horas com sobrecarga padrão, mantendo-se sempre constante o nível de água. Mede-se a mudança de volume, no caso axial, por meio da diferença entre leituras de um extensômetro acoplado ao topo do corpo de prova. A taxa de expansão medida não deve ultrapassar certos limites para que o solo seja utilizado como material de construção de pavimentos. A expansão é dada por:

\[
E = \frac{L_{fina} - L_{inicial}}{L_{inicial}} \times 100 \ (%)
\]
onde $E = \text{expansão (\%)}$

$L_{\text{inicial}} = \text{leitura do extensômetro imediatamente anterior à imersão do corpo de prova em água (mm)}$

$L_{\text{final}} = \text{leitura do extensômetro após 96 horas de imersão do corpo de prova em água (mm)}$

$H_{\text{inicial do cp}} = \text{altura do corpo de prova imediatamente anterior a sua imersão em água (mm)}$

Uma das maiores vantagens do ensaio CBR é a obtenção de expansão e da resistência à penetração após imersão em água com o mesmo corpo de prova.

O LNEC (Castro, 1964) recomenda utilizar a expansão de amostras compactadas como um dos parâmetros na escolha de materiais para a construção rodoviária nas colônias portuguesas da África. Os limites de expansão baseados neste ensaio foram introduzidos principalmente porque os limites de consistência exigidos para bases de pavimento pelas normas tradicionais (AASHO, ASTM) são muito rigorosos, subtraindo o bom comportamento de alguns solos lateríticos.

O solo passado na peneira No. 40 e previamente secado em estufa a 105°C, é compactado em um anel por um soquete de igual diâmetro do anel (60 mm), em duas camadas, de maneira que a altura final resultante seja de 15 mm. O corpo de prova é então colocado sobre uma pedra porosa, e o conjunto é posto em contato com a água de maneira que o nível d'água coincida durante todo o ensaio com o nível da superfície superior da pedra porosa. Durante a infiltração
d'água, a expansão é lida com o auxílio de um extensômetro colocado em contato com o topo do corpo de prova. Aguardar-se o tempo que for necessário para que toda expansão se processe. O total de expansão é calculado como no ensaio anterior.

Este ensaio apresenta inconvenientes em relação ao ensaio CBR, tais como energia de compactação e condições de compactação diferentes das habitualmente empregadas no meio rodoviário.

A expansão obtida no ensaio edométrico é uma das mais tradicionalmente utilizadas em estudos geotécnicos envolvendo variação volumétrica dos solos. Existem diversos procedimentos para a quantificação da expansão no edômetro.

No ensaio edométrico direto, a amostra é submetida ao carregamento correspondente ao de campo à umidade natural ou desejada e, após o adensamento sob estas condições, adiciona-se água ao edômetro (Horta da Silva, 1975). A expansão se processa, e é medida com o auxílio de um extensômetro acoplado sobre o corpo de prova. Depois de estabilizada a expansão, prossegue-se ao ensaio fornecendo incrementos de carga.

Algumas variações deste ensaio foram propostas, modificado-se principalmente a sequência das etapas de carregamentos, descarregamentos eventuais, adição de água, etc, a fim de melhor simular determinadas situações em campo. O caminhamento das tensões influencia a variação dos índices de vazios, resultando, portanto, em diferentes valores de expansão (Kassif et al, 1969).

Existem inúmeras variáveis dos ensaios de expansão anteriormente descritos. Variam na dimensão do molde, no estado da amostra (indeformado, remoldado ou compactado), na
energia e na forma de compactação em caso de amostras compactadas, no tempo em que a amostra é mantida em contato com a água, na tensão de confinamento aplicada, além da sequência de carregamentos e alívios de tensões.

C.1.2 - ESTIMATIVA DA EXPANSÃO ATRAVÉS DE OUTRAS PROPRIEDADES

Pode-se prever qualitativamente o potencial de expansão de um solo através de suas características e propriedades como: natureza mineralógica e porcentagem de ocorrência de argilo-minerais no solo; plasticidade (quanto mais plástico, mais expansivo); atividade (quanto maior a atividade, segundo conceituação de Skempton, mais expansivo); contração (limites de contração baixos estão geralmente associados a solos expansivos), etc.

Seed et al, 1962, procuraram estabelecer correlações para fins rodoviários entre a expansão de amostras compactadas na umidade ótima e densidade seca máxima da energia normal AASHO com sobrecarga de 1 psi (7 KN/m²) e propriedades da fração argila que possam afetar a expansão. A correlação obtida foi a seguinte:

\[E = 3.6 \times 10^{-5} A \times C \]

onde
- \(E \) = potencial de expansão (%)
- \(A \) = atividade da fração argila, sendo \(A = IP/(C-10\%) \)
- \(C \) = porcentagem da fração argila menor que 2 \(\mu \)m
Para argilas e solos argilosos inorgânicos, conforme o potencial de expansão E dado pela correlação acima, fixaram-se "graus de expansão" de baixo a muito alto, de forma a prever qualitativamente a expansão "in situ".

Ranganathan e Satyanarayana (1), 1965, correlacionam a expansão com o índice de contração:

\[-5 \quad 2.67\]
\[E = 41.13 \times 10^{-10} \quad IC\]

onde \(E\) = potencial de expansão

\(IC\) = índice de contração \((IC = LL - LC)\)

Estas correlações podem ser aplicadas a solos TIPO A - Clássico, cuja fração ativa é composta por argilominerais com diâmetro inferior a 2 \(\mu\)m, capazes de adsorverem água.

Propriedades como plasticidade, potencial de contração, etc., não são capazes de prever corretamente o potencial de expansão de solos do TIPO B (argilas e solos argilosos lateríticos) ou do TIPO C (siltes e solos siltosos micáceos e/ou caulínicos saprolíticos), como já foi discutido no item B deste capítulo. Outros fatores devem ser levados em conta para estes solos, tais como cimentação e agregação, ricochete elástico de partículas, adsorção d'água pelos siltes caulínicos, etc.

C.1.3 - PRESSÃO DE EXPANSÃO

Em algumas situações é interessante conhecer a pressão de expansão de um solo, como por exemplo na determinação da altura necessária de um aterro que evite a expansão do solo a ele subjacente, ou na espessura mínima necessária de um pavimento para evitar a expansão do subleito, ou na proteção de saias de aterros compactados ou mesmo de taludes de corte, etc.

O ediómetro é o aparelho mais tradicionalmente utilizado para este fim. Sridharan et al, 1986, fazem a comparação dos resultados obtidos através de três métodos distintos (figura 8).

![Diagrama de Pressão e Vazão]

FIGURA 8: Métodos de determinação da pressão de expansão. (Sridharan et al, 1986).
O primeiro método, conhecido por convencional, consiste em deixar a amostra expandir em contato com a água no edômetro, sob pressão de 0.0625 Kg/cm², até o equilíbrio. Em sequida, prosseque-se ao carregamento normalmente utilizado no ensaio de adensamento. A pressão de expansão P1 é aquela que, aplicada ao solo expandido, fá-lo retornar ao seu índice de vazios inicial por adensamento.

O segundo método consiste na determinação da pressão de expansão P2 através da interpolação de alguns (no mínimo três) índices de vazios obtidos sob diferentes pressões de adensamento aplicadas e posterior expansão por adição de água à amostra. A pressão de expansão é aquela para qual o índice de vazios após adensamento e expansão é igual ao inicial, ou seja, não há mudanças de volume.

No terceiro método, a amostra é posta em contato com a água, mas a expansão é evitada por aplicações adicionais de pressão vertical. Colocam-se car-gas sempre que for necessário, de maneira a manter a amostra em equilíbrio, ou seja, no mesmo índice de vazios inicial, sem expansão ou compressão do solo. Próximo à pressão de expansão, um pequeno acréscimo de carga faz com que haja compressão, levando a amostra a um índice de vazios menor que o inicial. Nesta situação, a intersecção desta curva com a reta do índice de vazios da condição inicial determina a pressão de expansão P3.

Há diversos equipamentos para a determinação da pressão de expansão, principalmente utilizando o princípio do terceiro método acima apresentado (Madsen, 1979; Frazão et al. (2), 1960; Kassiff (3), 1960; Kazda (3), 1961). Em geral, a aplicação automática do aumento de pressão é preferível, pois o contínuo ajuste manual de car-gas é

2. ver referência em Pastore, 1982.
3. ver referência em Kassiff et al., 1969.
trabalhoso, além de difícil controle. Nos equipamentos automáticos, a pressão é aplicada logo que um pequeno aumento de volume da amostra é detectado. Porém, pequenas taxas de expansão já são suficientes para diminuir consideravelmente a pressão de expansão (Kassiff et al., 1969). Assim, aconselha-se a aplicação de carregamento adicional quando deformações da ordem de 0.01 mm forem detectadas.

Existem, portanto, diversas formas e equipamentos para a determinação da pressão de expansão; cada qual fornecendo um valor diferente. O método que melhor reproduzir o caminho das tensões do solo no campo dará a pressão de expansão mais próxima do valor real. Nestes termos, acredita-se que o segundo método apresentado por Sridharan et al. represente melhor as condições de campo das camadas de um pavimento. Uma das desvantagens deste método é a necessidade de se obter três amostras em condições idênticas, principalmente em se tratando de solos no estado indeformado.

Devido à longa duração dos ensaios, Lambe (3), 1960, propôs o uso do "índice de expansão", valor da expansão de uma amostra compactada após 2 horas de imersão em água. Com base neste índice, estabeleceu-se quatro categorias do potencial de mudança volumétrica dos solos, de não crítico a muito crítico.

Apesar de ter como vantagem a rapidez do ensaio, o "índice de expansão" não avalia corretamente a pressão de expansão de solos tropicais. Há solos, como os siltes micáceos e/ou caulínicos saprolíticos, que expandem rapidamente, porém são caracterizados por baixas pressões de expansão. Por outro lado, há solos argilosos saprolíticos que expandem lentamente mobilizando altas pressões de expansão.
Pode-se ainda calcular a pressão de expansão de argilas cuja orientação das partículas é paralela (estrutura completamente dispersa) de acordo com a teoria da camada dupla (van Olphen (4), 1977):

\[p = 2 n K T (\cosh u - 1) \]

onde \(p \) = pressão de expansão
\(n \) = concentração iônica do fluido dos poros
\(K \) = constante de Boltzmann
\(T \) = temperatura absoluta
\(u \) = potencial elétrico no plano médio entre duas partículas de argila.

Porém, o cálculo da pressão de expansão se aplica somente em casos particulares onde a situação real se aproxima da idealizada pela teoria da camada dupla e onde uma investigação mineralógica mais detalhada se justifica.

Um grande número de fatores afetam a pressão de expansão, tais como a umidade de campo ou de moldagem, a densidade, o método e a energia de compactação, além dos fatores que dependem da natureza mineralógica e físico-química dos solos.

C.2 - CONTRAÇÃO

C.2.1 - MEDIDAS DIRETAS DE CONTRAÇÃO

Pelos motivos já expostos na Introdução deste trabalho, tem havido pouco interesse na determinação da contração para fins rodoviários, exceto quando se trata de uma camada que por secagem possa apresentar fissuração ou trincamento.

Os ensaios de contração mais divulgados são utilizados geralmente para a determinação do limite de contração. O limite de contração é definido como sendo a umidade abaixo da qual o solo não sofre mais redução de volume ao perder umidade. É o limite entre os estados semi-sólido e sólido. Teoricamente um solo saturado perde umidade mantendo seu grau de saturação igual a 1 até o limite de contração. Comparando-se o limite de contração à umidade do solo no campo, tem-se um primeiro indício se o solo vai ou não contrair em caso de secagem.

O ensaio de contração proposto pela ASTM (D.427-81, 1982) consiste na moldagem de um corpo de prova dentro de uma cápsula de 44,5 mm de diâmetro e 12,7 mm de altura com o solo que passa na peneira No. 40, preparado no limite de liquidez ou um pouco acima dele para solos friáveis, e 10% acima do limite de liquidez para solos plásticos.

Seca-se o solo ao ar até que haja mucança de coloração, passando dos tons mais escuros aos mais claros. Coloca-se então o corpo de prova para secar na estufa a 110 ± 5 ºC, até constância de peso. O limite de contração é dado por:
$$LC = \left(\frac{Pcp - Pcp\ seco}{Pcp\ seco} \times 100 \right) - \left(\frac{Vcap - Vcp\ seco}{Pcp\ seco} \times \frac{1}{\gamma_a} \times 100 \right)$$

onde \(LC \) = limite de contração (%)

\(Pcp \) = peso do corpo de prova logo após moldagem (g)

\(Pcp\ seco \) = peso do corpo de prova seco em estufa (g)

\(Vcap \) = volume da cápsula (cm\(^3\))

\(Vcp\ seco \) = volume do corpo de prova seco em estufa (cm\(^3\))

\(\gamma_a \) = peso específico da água (1 g/cm\(^3\))

O volume do corpo de prova é o volume deslocado de mercurio causado pela imersão total da pastilha do corpo de prova numa cuba de vidro repleta de mercurio (figura 9).

A contração volumétrica potencial \(CV \) de um solo numa dada umidade \(h \), é:

$$CV = \left(h - LC \right) \times \frac{1}{\gamma_a} \times \frac{Pcp\ seco}{Vcp\ seco} \times \%$$

A norma brasileira (ABNT-MB-55) faz uma adaptação do método acima proposto, modificando as dimensões da cápsula de contração para 4.0 cm de diâmetro e 1.0 cm de altura.
FIGURA 9: Ensaio de contração. Medida de volume da pastilha de solo seco.

O "Road Research Laboratory" determina o limite de contração com um solo moldado no limite de plasticidade nas dimensões de 2" de diâmetro e 0.5" de altura. Durante a secaagem ao ar, executam-se periodicamente pares de medidas de peso e de volume do corpo de prova. Desta forma, obtém-se a curva de contração do solo (volume do solo x volume de água) e deduz-se graficamente o limite de contração, como foi visto na figura 8.2.2 deste capítulo.

O Instituto de Mecânica dos Solos e Fundações da Escola Politécnica Federal Zurich, Suíça, determina o limite de contração com corpos de prova moldados em um anel metálico de 45.0 mm de diâmetro e 20.0 mm de altura, com o solo passado na peneira No. 40, preparado no limite de liquidez ou ligeiramente abaixo (Arnold, 1985-B).

Durante a secaagem ao ar, executam-se periodicamente pares de medidas de peso e de volume do corpo de prova, a fim de se calcular a umidade do solo e sua massa específica aparente seca. Traca-se a curva de contração do solo num gráfico de umidade x inverso da
densidade específica aparente seca (figura 10). Obtém-se o limite de contração grafiamente, como no método do RRL.

FIGURA 10: Contração de um solo em função do teor de umidade. Determinação do Limite de Contração.

Em todos os ensaios vistos, as medidas de volume são efetuadas por imersão do corpo de prova no mercurio. Apesar de ser o método mais preciso para este fim, o mercurio pode causar danos à saúde do operador, além de que pode haver deformação do corpo de prova, no caso de solos plásticos, pelo seu manuseio quando ainda úmido.

Pode-se recobrir o corpo de prova com parafina e determinar seu volume pelo empuxo em água. Porém, é possível somente uma medida por este método (Jonq and Warkentin, 1975). Pode-se fixar duas marcas à superfície do corpo de prova, se este for suficientemente grande de
maneira a permitir, com certa precisão, a medida da contracção linear pela distância entre estes dois pontos (Jong and Warkentin, 1975).

Existem vários outros métodos para a medida de volume para auxiliar o cálculo da contracção. Para solos plásticos, depois de uma certa taxa de secagem, dependendo das dimensões do corpo de prova, a contracção pode ser medida diretamente com auxílio de um paquímetro.

C.2.2 - ESTIMATIVA DA CONTRAÇÃO ATRAVÉS DE OUTRAS PROPRIEDADES

Dado o pequeno interesse na determinação da contracção, são poucas as correlações existentes com outras propriedades na literatura.

Autret, 1982, pesquisando solos tropicais lateríticos africanos para aplicação em obras viárias, procurou estabelecer relações simples com outras propriedades mais facilmente determináveis em laboratório.

Realizou-se a análise granulométrica dos solos e com a fração passada na peneira No.40, executou-se os ensaios dos limites de Atterberg e de contração. A maior parte destes solos são CL ou ML, segundo a Classificação Unificada. O limite de contração apresentou uma gama de variação entre 10% a 30%.

Infelizmente não foram encontradas por Autret correlações satisfatórias entre o limite de contração e os parâmetros estudados - limite de liquidez, limite de
plasticidade, índice de plasticidade, porcentagem de partículas de dimensão inferior a 2 μm, porcentagem de partículas de dimensão inferior a 80 μm, valor da absorção do azul de metileno, e coeficiente de atividade de Skempton. Constatar-se-ram apenas tendências e, eventualmente, pode-se obter uma ordem de grandeza do LC através do limite de plasticidade, porém com grande margem de erro.

No que concerne à estimativa da aparição de trincas de contração nas camadas compactadas do pavimento, deve-se determinar diretamente o limite de contração ou medir a contração por outros métodos que sejam capazes de prever o potencial à contração dos solos tropicais. As comparações entre a umidade de compactação, a de equilíbrio e a referente ao limite de contração levam à previsão do potencial de contração da camada compactada do pavimento sujeito à secagem, tendo em vista que para umidades inferiores ao limite de contração, a contração volumétrica é nula ou praticamente nula.

C.3 - PREVISÃO DAS MUDANÇAS DE VOLUME DOS SOLOS NO CAMPO

Os solos do sub-leito ou das camadas compactadas da estrutura do pavimento podem sofrer mudanças de volume por mudanças no teor de umidade. As mudanças no teor de umidade podem ser provenientes das mudanças sasonais do nível do lençol freático, da secagem devido a presença de árvores nas proximidades da rodovia que roubam água pelas raízes, da infiltração d'água de chuva pelos acostamentos, da evaporação d'água logo após a construção ou pelos acostamentos na fase de operação, etc.
Quando a umidade e a densidade mudam, deve-se prever as mudanças de volume potencial dos solos pois elas acarretam o aparecimento de trincas ou de deformações no corpo da estrada. Algum tempo após a construção, estabelecer-se-á uma distribuição particular de equilíbrio de umidade e sução na estrutura do pavimento. Deve-se prever as mudanças de volume entre a situação logo após a construção até a de equilíbrio, para possibilitar a previsão correta das mudanças volumétricas futuras.

A previsão das mudanças volumétricas de campo envolvem muitos fatores, tornando difícil de determiná-la corretamente. O uso de propriedades índices como plasticidade, composição mineralógica, atividade, etc, auxiliam a previsão das mudanças volumétricas apenas de forma qualitativa de solos TIPO A.

A previsão no laboratório do potencial de mudança volumétrica do solo no campo pode estar perto do real desde que sejam conhecidas e levadas em conta as forças externas atuantes e o estado do solo no campo. Neste sentido, parece ser mais adequado um ensaio onde se possa não só variar o carregamento vertical, mas também as tensões confinantes laterais e a tensão de sução.

Apesar das críticas que se possa ter em relação à expansão determinada no ensaio CBR, ela é bastante útil na medida em que se criou uma "linguagem comum" entre os engenheiros rodoviários. O total de expansão não corresponde à expansão real de campo, mas a experiência acumulada em torno destas porcentagens leva a uma previsão do comportamento do solo, auxiliando a escolha de materiais para as diversas camadas do pavimento através de limites máximos fixados de expansão.
D - ENSAIOS DE LABORATÓRIO PROPOSTOS PARA A DETERMINAÇÃO DA
EXPANSÃO E DA CONTRAÇÃO DE SOLOS TROPICAIS COMPACTADOS

Foram utilizados nos estudos de expansão e de
contracção os métodos de ensaios propostos por Noqami e

Os corpos de prova são de dimensões reduzidas com
50.0 mm de diâmetro e 50.0 mm de altura, com o solo passado
na peneira 2.0 mm, compactado na energia normal, em uma só
camada, com soquete de 2270 g, de igual diâmetro do corpo de
prova, caindo em queda livre de uma altura de 305 mm, com 5
 golpes em cada face do corpo de prova (M-1-81P - Ensaio de
Compactação de Solos com Equipamento de Dimensões Reduzidas

Para cada solo estudado, foram compactados 3
grupos de corpos de prova, sendo que cada grupo é composto
por corpos de prova compactados em diferentes teores de
umidade (e consequentemente diferentes densidades)
distribuídas ao longo da curva de compactação referente à
energia normal (S).

GRUPO 1: 1.1 - Compactam-se corpos de prova com o solo
preparado no teor de umidade desejado no
mínimo com 12 horas de antecedência.
Utiliza-se a quantidade em peso necessária
para que no final da compactação se obtenham
corpos de prova com 50.0 x 1.0 mm de altura.

S. utiliza-se a energia que for compatível com o problema.
1.2 - Determina-se a curva de compactação Ys (densidade específica aparente máxima) x h (umidade).

1.3 - Faz-se a penetração do pistão CBR ø = 16.0mm na velocidade CBR (1.27 mm/min). Mede-se a força (diretamente nas prensas CBR automáti-
cas ou através de leitura no anel dinamométrico nas prensas manuais) para penetrações de 0.5 em 0.5 mm até a penetração total de 5.0 mm (M-2-81P - Ensaio Mini-CBR e Expansão dos Solos - Villibor, 1981).

1.4 - Traça-se a curva Força x Penetração, corrigindo-a se necessário, como é feito no ensaio CBR. Determinam-se as forças correspondentes às penetrações de 2.0 e 2.5 mm.

1.5 - Pela tabela do ANEXO 1, determinam-se os valores Mini-CBR para as penetrações de 2.0 e 2.5 mm.

1.6 - O valor Mini-CBR 1 é o maior dentre os dois valores determinados no item 1.5.

1.7 - Após a penetração do pistão CBR, retiram-se os corpos de prova de dentro dos cilindros de compactação, colocando-os para perder umidade ao ar no aparelho de contração (figura 11-a), (M-4-81P - Ensaio de Contração de Solos - Villibor, 1981).

1.8 - Mede-se periodicamente a contração axial por meio de um extensômetro acoplado ao topo do corpo de prova. O total de contração axial dado em porcentagem é a diferença entre a
leitura inicial e a leitura final (quando a leitura não mais variar) do extensômetro em mm, dividida pela altura inicial do corpo de prova em mm.

(a) aparelho de contração

(b) aparelho de expansão

FIGURA 11: equipamentos utilizados para a medida da contração e da expansão.

GRUPO 2: 2.1 - idem ao item 1.1.

2.2 - Coloca-se cada conjunto cilindro - corpo de prova em um aparelho de expansão (figura 11-b).

2.3 - Os corpos de prova são imersos em água por 24 horas, mantendo-se sempre constante o nível d’água, com sobrecarga de 2.5 KN/m² (M-2-81P - Ensaio Mini-CBR e Expansão dos Solos - Villibor, 1981).
2.4 - Mede-se periodicamente a expansão dos corpos de prova através de um extensômetro acoplado ao topo do corpo de prova. O total de expansão dado em porcentagem é a diferença entre a leitura inicial e a leitura após 24 horas de imersão em água dada em mm, dividida pela altura inicial do corpo de prova em mm.

2.5 - idem ao item 1.3.

2.6 - idem ao item 1.4.

2.7 - idem ao item 1.5.

2.8 - O valor Mini-CBR 2 é o maior dentre os dois valores determinados no item 2.7.

GRUPO 3 : 3.1 - idem ao item 1.1.

3.2 - idem ao item 2.2.

3.3 - Os corpos de prova são imersos em água por 24 horas, mantendo-se sempre constante o nível d'água, sem sobrecarga (M-2-81P - Ensaio Mini-CBR e Expansão dos Solos - Villibor, 1981).

3.4 - idem ao item 2.4.

3.5 - idem ao item 1.3.

3.6 - idem ao item 1.4.

3.7 - idem ao item 1.5.
3.8 - O valor Mini-CBR 3 é o maior dentre os dois valores determinados em 3.7.

A metodologia proposta tem como vantagens a medida de expansão e da contração, conjuntamente com a de resistência à penetração e da perda de resistência em contato com a água.

Nogami e Villibor, 1980, recomendam estudar as propriedades dos solos tropicais com os valores medidos ao longo da curva de compactação para melhor caracterizá-los e diferenciá-los. Há solos tropicais, como os lateríticos, onde uma pequena variação no teor de umidade de compactação gera uma grande diferença na resistência medida. A determinação desta propriedade de forma mais completa torna possível uma melhor previsão do comportamento do solo no campo.

Além disso, a influência dos erros inerentes aos ensaios fica diminuída ao se avaliar as propriedades com maior número de corpos de prova ao longo da curva de compactação. Esta metodologia permite determinar melhor as propriedades de interesse à pavimentação com menor quantidade em peso de material e mais rapidamente.

Esta metodologia inclui a medida da contração e, portanto, ela pode melhor avaliar o desempenho das rodovias construídas com solos tropicais locais, que estão sujeitos à perda de umidade. A secagem pode levar ao trincamento excessivo da base, refletindo em alguns casos na camada de rolamento e reduzindo, consequentemente, a vida útil do pavimento.

A contração axial medida não corresponde à contração real de campo. Porém, como no caso da expansão
(item C.3 anterior), o estabelecimento de certos limites de contração axial para a utilização do solo em pavimentos, significa relacionar estes valores a um certo comportamento em campo do material.

A contração axial se correlaciona bem com a contração volumétrica. Com corpos de prova compactados em condições idênticas de umidade, densidade e energia, foram medidas a contração axial pelo método acima exposto e a contração volumétrica por imersão em mercúrio. Os resultados se encontram na figura 12.

![Diagrama mostrando contração axial e contração volumétrica em função de umidade.]

FIGURA 12: comparação entre os valores obtidos de contração axial e de contração volumétrica.
E - RESULTADOS OBTIDOS

Foram ensaiados alguns solos com a metodologia exposta no item D deste capítulo, a fim de se fazer uma comparação e diferenciação entre comportamentos segundo as propriedades de expansão e de contração dos solos TIPO A, B e C, definidos no item A deste capítulo.

Os solos TIPO A quando se apresentam expansivos ao absorverem água, contraem ao perderem umidade, e vice-versa. A expansão e a contração dependem basicamente da fração argila (composição mineralógica, porcentagem no total do solo, etc - item B.2 deste capítulo). Comportamento encontrado nas argilas e solos argilosos transportados não lateríticos, e nas argilas e solos argilosos saprolíticos.

Foram escolhidos quatro solos representando o comportamento típico dos solos TIPO A - Clássico (figuras 13 e 14): uma areia siltosa com argila de origem sedimentar da Suíça; uma areia argilosa saprolítica de sienito do Estado do Rio de Janeiro; uma argila aluvial do Estado de São Paulo; e uma argila siltosa saprolítica de Solhelho do Estado de São Paulo.

As porcentagens de contração e de expansão na umidade ótima da energia normal dos quatro solos ensaiados são diferentes, porém o que se pretende mostrar é o mecanismo semelhante de reação destes solos TIPO A com a água, ou seja, o solo que expande, contrai, e vice-versa.

Os solos TIPO A possuem o comportamento típico admitido pela Mecânica dos Solos Clássica. Quanto mais granular, menor a umidade ótima e maior a densidade aparente seca máxima. As inclinações dos ramos seco e úmido da curva de compactação são compatíveis com sua distribuição
granulométrica, ou seja, quanto maior a quantidade de finos e maior a atividade, mais abatidos são os ramos. Quanto mais argiloso e plástico for o solo TIPO A, mais expansivo ou contrátil.

A expansão geralmente diminui rapidamente com o aumento do teor de umidade até aproximadamente a umidade ótima. Note-se que há diferenças entre as expansões obtidas com e sem sobrecarga, principalmente no ramo seco. A contracção aumenta acentuadamente a partir de umidades próximas à umidade ótima. Compare os seguintes valores de contracção e de expansão na umidade ótima de compactação (outros dados estão disponíveis nas figuras 13 e 14):

solo 40903 : \(C = 0.5\% \)
\[E2 = 0.1\% \quad E2 = 0.3\% \]
\[E3 = 0.2\% \quad E3 = 0.7\% \]

Taquaritinga: \(C = 5.4\% \)
Sta Gertrudes: \(C = 3.0\% \)
\[E2 = 10.2\% \quad E2 = 2.0\% \]
\[E3 = 13.0\% \quad E3 = 3.8\% \]

sendo \(C = \) contração axial

\[E2 = \text{expansão axial após 24 horas de imersão em água com sobrecarga de 2.5 KN/m}^2 \]
\[E3 = \text{expansão axial após 24 horas de imersão em água sem sobrecarga} \]
Quanto mais expansivo e contráctil for o solo do TIPO A, maior a perda de capacidade de suporte a qual está sujeito — as relações entre contração ou expansão e a resistência dos solos serão abordadas no próximo capítulo.

Os solos TIPO B se apresentam em geral contrácteis ao perderem umidade quando saturados ou parcialmente saturados, mas são pouco expansivos ao absorverem água quando secos ou parcialmente saturados. São solos de comportamento particular devido ao processo da laterização, que caracteriza a presença principalmente de caulinita e de óxidos hidratados de ferro e/ou alumínio em sua fração argila. Na fração silte ou areia (ou mesmo nas mais grossas), pode-se encontrar agregados desses constituintes, ou ainda quartzo e minerais pesados resistentes ao intemperismo. Comportamento típico dos solos tropicais lateríticos.

Foram escolhidos quatro solos para representar o comportamento dos solos TIPO B (figuras 15 e 16): uma areia e uma areia argilosa lateríticas da Costa do Marfim; uma areia argilosa do Estado do Rio de Janeiro; e um silte argiloso laterítico do Estado de São Paulo.

As curvas de compactação de solos lateríticos apresentam geralmente os ramos seco e úmido bastante inclinados, mesmo as dos tipos mais argilosos. Alcançam frequentemente valores altos de densidade aparente seca máxima. Os solos mais arenosos são pouco contrácteis e pouco expansivos, como era de se esperar; porém conforme aumenta a quantidade de finos, a contração aumenta, embora a expansão se mantenha quase que inexpressiva.

A expansão, embora pequena, diminui rapidamente com o aumento de umidade até a umidade ótima. Em torno deste valor ou no ramo úmido, ela se torna praticamente
constante e bastante pequena. Nos solos lateríticos, o grau de saturação na umidade ótima costuma atingir valores em torno dos 90%, o que diminui sensivelmente a expansão nestas condições. Quase não há diferenças entre os valores de expansão com e sem sobrecarga, mesmo no ramo seco, para umidades bem abaixo da ótima.

A expansão passa a ser expressiva nos tipos mais argilosos a partir de umidades próximas à ótima. Na energia Normal, a umidade ótima está bem próxima do valor da umidade correspondente ao limite de plasticidade destes solos saturados. No ramo seco, os teores de umidades correspondentes estão próximos, ou mesmo abaixo, do limite de contração.

Compara os seguintes resultados de contração e de expansão obtidos com os solos ensaiados na umidade ótima de compactação da energia normal (outros dados estão disponíveis nas figuras 15 e 16):

solo 41024 : C = 0.3% solo 41266 : C = 0.5%

E2 = 0.1% E2 = 0.1%
E3 = 0.1% E3 = 0.1%

solo 40182 : C = 0.6% LR - 7 : C = 1.3%

E2 = 0.1% E2 = 0.1%
E3 = 0.1% E3 = 0.2%
Uma das características mais típicas dos solos lateríticos é a pequena perda de resistência quando em contato com a água, mesmo para os tipos mais argilosos - este assunto será tratado no capítulo III.

Os solos TIPO C se apresentam em geral bastante expansivos quando absorvem água, e pouco contráteis ao secarem. A fração silte micácea e/ou caulínica é responsável pela expansão. Comportamento típico dos siltos ou solos siltosos micáceos e/ou caulínicos saprolíticos.

Foram escolhidos três solos para representarem o comportamento dos solos TIPO C (figura 17): um silte saprolítico de Filito da Costa do Marfim, um silte saprolítico de Filito de Minas Gerais e um silte de cauém do Estado de São Paulo.

A fração silte do primeiro solo (71%) é composta por mica principalmente, quartzo em quantidade inferior e traços de caulinita (Mueller, 1978). A fração argila (4%) é composta sobretudo por caulinita, com traços de muscovita e goetita. A fração silte do segundo solo (100%) é composta principalmente por mica com muito pouca caulinita (Pastore, 1982). Não há fração argila. A fração silte do terceiro solo (80%) é constituída por "sanfonas" de caulinita e a fração argila (18%) por placas e "sanfonas" de caulinita, tubos de haitolita e quantidades desprezíveis de ilita e montmorilonita (Pastore, 1982).

As curvas de compactação dos solos TIPO C são bastante peculiares: geralmente abatidas, variando muito pouco a densidade aparente seca com as mudanças de umidade.

Todos solos ensaiados se apresentam bastante expansivos. A expansão diminui proporcionalmente pouco ao longo do ramo seco. Diminui rapidamente de valor para
umidades acima da ótima. Observe as grandes diferenças entre os totais de expansão na imersão com e sem sobrecarga.

A contração do primeiro solo é bastante pequena, enquanto o segundo expande ao perder umidade - comportamento comumente encontrado nos siltes micáceos; e, finalmente, o terceiro apresenta maior contração devido à natureza da fração silte e à presença da fração argila. Compare os resultados de expansão e de contração obtidos na umidade ótima da energia normal (demais dados se encontram na figura 17):

solo 40814 : C = 0.5% Ouro Preto : C = -4.0%
E2 = 4.5% E2 = 13.0%
E3 = 12.0% E3 = 19.5%

Caulim Perus : C = 0.2%
E2 = 5.4%
E3 = 11.0%

Os solos TIPO C perdem grande capacidade de suporte em contato com a água e apresentam geralmente baixas pressões de expansão - estes aspectos serão abordados no próximo capítulo.
FIGURA 13

SOLO

<table>
<thead>
<tr>
<th>Número de Laboratório - Proveniência</th>
<th>40903 - areia siltsosa com argila sedimentar</th>
<th>40183 - areia argilaosa saprolítica de Siem</th>
<th>Weininger-Kreuz, ZH, Suíça</th>
<th>Br - l16 sul, R.J., Brasil</th>
</tr>
</thead>
</table>

LIMITES DE ATTERBERG

<table>
<thead>
<tr>
<th>LL</th>
<th>IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.7%</td>
<td>5.2%</td>
</tr>
<tr>
<td>53.9%</td>
<td>17.2%</td>
</tr>
</tbody>
</table>

GRANULOMETRIA

<table>
<thead>
<tr>
<th>Diâmetro</th>
<th>Peso específico dos Grãos</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.5 mm</td>
<td>100%</td>
</tr>
<tr>
<td>< 0.06 mm</td>
<td>45%</td>
</tr>
<tr>
<td>< 0.002 mm</td>
<td>13%</td>
</tr>
<tr>
<td>> 27.0 KN/m³</td>
<td></td>
</tr>
<tr>
<td>< 2 mm</td>
<td>100%</td>
</tr>
<tr>
<td>< 0.5 mm</td>
<td>95%</td>
</tr>
<tr>
<td>< 0.06 mm</td>
<td>60%</td>
</tr>
<tr>
<td>< 0.002 mm</td>
<td>34%</td>
</tr>
<tr>
<td>> 25.6 KN/m³</td>
<td></td>
</tr>
</tbody>
</table>

CLASSIFICAÇÃO: USCS - HBB

<table>
<thead>
<tr>
<th>SM</th>
<th>TIPO A (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MH</td>
<td>TIPO A (2)</td>
</tr>
</tbody>
</table>

TIPO básico de comportamento

CURVA DE COMPACTAÇÃO

Densidade aparente seca X umidade

ENERGIA: NORMAL

contração axial (c) x umidade de comp.

Expansão axial (E_l) após 24 horas de imersão em água com sobrecarga de 2.5 KN/m² X umidade de compactação (h). Expansão lateral impedida.

Expansão axial (E_s) após 24 horas de imersão em água sem sobrecarga X umidade de compactação (h). Expansão lateral impedida.

valor MINI-CBR imediatamente após compactação X umidade de compactação (h)

valor MINI-CBR após imersão em água por 24 horas com sobrecarga de 2.5 KN/m² X umidade de compactação (h).

valor MINI-CBR após imersão em água por 24 horas sem sobrecarga X umidade de compactação (h).
FIGURA 14

SOLO

número de laboratório - Proveniência

|--|--|

LIMITE DE ATTERBERG

Limite de liquidez - Índice de Plast.

| LL = 114% | IP = 79% | LL = 80% | IP = 47% |

GRANULOMETRIA

Peso específico dos Grãos

| \(\mu < 0.42 \text{ mm} = 100\% \), \(\mu < 0.075 \text{ mm} = 85\% \), \(28.2 \text{ KN/m}^2 \) | \(\mu < 0.42 \text{ mm} = 100\% \), \(\mu < 0.075 \text{ mm} = 99\% \), \(27.0 \text{ KN/m}^2 \) |

CLASSIFICAÇÃO : USCS - HRB

TIPO básico de comportamento

<table>
<thead>
<tr>
<th>CH</th>
<th>TIPO A</th>
<th>A-7-5</th>
</tr>
</thead>
</table>

CURVA DE COMPACTAÇÃO

densidade aparente seca X unidade

ENERGIA : NORMAL

contração axial (c) X unidade de comp.

Expansão axial (E2) após 24 horas de imersão em água com sobrecarga de 2.5 KN/m² X unidade de compactação (h).

Expansão lateral impedida.

Expansão axial (E3) após 24 horas de imersão em água sem sobrecarga X unidade de compactação (h). Expansão lateral impedida.

valor MINI-CBR imediatamente após compactação X unidade de compactação (h).

valor MINI-CBR após imersão em água por 24 horas com sobrecarga de 2.5 KN/m² X unidade de compactação (h).

valor MINI-CBR após imersão em água por 24 horas sem sobrecarga X unidade de compactação (h).
FIGURA 15

SOLO
número de laboratório - Proveniência
41024 - área laterítica - Rute Binger
Ville, Costa do Marfim
41266 - área argilosa laterítica - Sadefor
Costa do Marfim

LIMITES DE ATTERBEG
limite de liquidez - Índice de plast.
LL = 34.3% IP = 15.8%
LL = 34.8% IP = 16.4%

GRANULOMETRIA
Peso específico dos Grãos
\(\Theta < 2 \, \text{mm} = 100\% \quad \Theta < 0.5 \, \text{mm} = 81\% \)
\(\Theta < 0.06 \, \text{mm} = 14\% \quad \Theta < 0.02 \, \text{mm} = 6\% \)
\(\Theta < 0.002 \, \text{mm} = 27\% \quad \Theta < 0.002 \, \text{mm} = 21\% \)

CLASSIFICAÇÃO: USCS - HBB
Tipo básica de comportamento
SM TIPO B A-2-6 (0)
SC TIPO 3 A-2-6-(1)

CURVA DE COMPACTAÇÃO
densidade aparente seca x umidade
ENERGIA: NORMAL

contração axial (c) x umidade de comp.
Expansão axial (E) após 24 horas de imersão em água com sobrecarga de 2,5
KN/m² X umidade de compactação (h).

Expansão axial (E) após 24 horas de imersão em água sem sobrecarga X umida
de compactação (h).

valor MINI-CBR imediatamente após compacta
ção X umidade de compactação (h).

valor MINI-CBR após imersão em água por
24 horas com sobrecarga de 2,5 KN/m² X
umidade de compactação (h).

valor MINI-CBR após imersão em água por
24 horas sem sobrecarga X umidade de
compactação (h).
<table>
<thead>
<tr>
<th>SOLO</th>
<th>n.º laboratório - Proveniência</th>
<th>LR = 7 - silte argilooso laterítico Ribeirão Preto, S.P. - Br.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limite de Atterberg</td>
<td>LL = 28.6%</td>
<td>IP = 10.0%</td>
</tr>
<tr>
<td>GRANULOMETRIA</td>
<td>$\phi < 2 \text{ mm} = 100%$</td>
<td>$\phi < 0.5 \text{ mm} = 72%$</td>
</tr>
<tr>
<td>Peso específico dos Grãos</td>
<td>$\phi < 0.06 \text{ mm} = 36%$</td>
<td>$\phi < 0.002 \text{ mm} = 19%$</td>
</tr>
<tr>
<td>29.8 KN/m³</td>
<td>29.8 KN/m³</td>
<td></td>
</tr>
</tbody>
</table>

CLASSIFICAÇÕES: USCS - HRB
TIPO Básico de comportamento

CURVA DE COMPACTAÇÃO

Densidade aparente seca X Umidade
ENERGIA: NORMAL

Contração axial (c) X unidade de compact.
Expansão axial (E_2) após 24 horas de imersão em água com sobrecarga de 2.5 KN/m² X unidade de compactação (h). Expansão lateral impedida.
Expansão axial (E_1) após 24 horas de imersão em água sem sobrecarga X umidade de compactação (h). Expansão lateral impedida.

valor MINI-CBR imediatamente após compactação X unidade de compactação (h).

valor MINI-CBR após imersão em água por 24 horas com sobrecarga de 2.5 KN/m² X unidade de compactação (h).

valor MINI-CBR após imersão em água por 24 horas sem sobrecarga X unidade de compactação (h).
SOLO
número de laboratório - Proveniência
48814 - silte saprolítico de Filito - Costa do Marfim.
F5 - silte saprolítico de Filito Duero Preto-Itabirito, M.G., Br.
Silte do caulim Perus = Perus, S.P., Brasil

LIMITE DE ATTERBERG
LL = 40% IP = 21%
LL = 43% IP = 19%
LL = 46% IP = 19%

GRANULOMETRIA
Peso específico - aparente seco
θ < 2 mm = 100% θ < 0.5 mm = 84%
θ < 0.06 mm = 73% θ < 0.002 mm = 44%
28.4 Kn/m³

CLASSIFICAÇÃO : USCS - HRB
TIPO básico de comportamento
CL TIPO C A-6 (14)
CL TIPO C A-7-6 (20)
CL TIPO C A-7-6

CURVA DE COMPACTAÇÃO
, densidade aparente seca x umidade
ENERGIA : NORMAL

contração axial (c) X umidade de compac-
tação (h).

Expansão axial (E₂) após 24 horas de im-
mersão com sobrecarga de 2.5 KN/m² X
umidade de compactação (h). Expansão
lateral impedida.

Expansão axial (E₃) após 24 horas de im-
mersão sem sobrecarga X umidade de com-
 pactação (h). Expansão lateral impedida

valor MINI-CBR imediatamente após com-
 pactação X umidade de compactação (h).

valor MINI-CBR após imersão em água por
24 horas com sobrecarga de 2.5 KN/m² X
umidade de compactação (h).

valor MINI-CBR após imersão em água por
24 horas sem sobrecarga X umidade de
compactação (h).
III - RESISTÊNCIA DOS SOLOS TROPICAIS COMPACTADOS

E AS PROPRIEDADES DE EXPANSÃO E DE CONTRAÇÃO
A - RESISTÊNCIA E EXPANSÃO

A.1 - ENSAIO CBR E MINI-CBR

O ensaio CBR é ainda hoje amplamente utilizado no projeto de pavimentos flexíveis, apesar das desvantagens já ressaltadas por diversos autores.

Em primeiro lugar, o ensaio envolve uma grande dispersão nos resultados. Valores CBR determinados sob as mesmas condições em corpos de prova semelhantes mostraram um grande intervalo de variação. Desvios padrões da ordem de 6 a 9% foram encontrados (Peltier (1), 1953; Souza Pinto (1), 1964; Noqami (1), 1972).

Vendrami e Souza Pinto, 1974, mostraram que o valor do CBR depende do processo de compactação, embora haja tendências semelhantes de aumento e de diminuição dos valores CBR, com a variação da densidade e da umidade de compactação para os três processos testados.

1. ver referência em Villibor, 1981.
Dada a superestimação da capacidade de suporte pelo uso do cilindro rígido, pode-se aplicar à amostra confinamento lateral controlado através de uma membrana, compatível com a distribuição de pressões no campo, obtendo portanto valores CBR mais próximos do real (Livneh and Greenstein, 1978).

Com base na experiência acumulada, consque-se relacionar o valor do suporte CBR e da expansão a um determinado comportamento de campo, com certo grau de confiança.

A metodologia proposta por Nogami e Villibor (Villibor, 1981), para a determinação da expansão e da capacidade de suporte é baseada essencialmente no ensaio CBR padrão, porém ela consegue melhor caracterizar e diferenciar os solos tropicais. A utilização de corpos de prova de dimensões reduzidas torna os ensaios mais rápidos e permite mais facilmente a medida destas propriedades ao longo da curva de compactação, o que diminui de certa forma a grande dispersão dos resultados. Além disso, a metodologia proposta prevê a medida de outras propriedades, dando condições de melhor proceder à escolha do material, pois leva em conta certas peculiaridades dos solos tropicais, o clima e a hidrologia das regiões tropicais.

A.2 - RELAÇÃO ENTRE CAPACIDADE DE SUORTE E EXPANSÃO

Qualquer solo, tropical ou não, quanto mais expansivo for, apresenta menor capacidade de suporte e maior perda de capacidade de suporte por umidecimento.
A análise dos resultados obtidos com alguns solos ensaiados segundo a metodologia de Nogami e Villibor (figuras 13, 14, 15, 16 e 17) mostram que as areias e solos arenosos são geralmente pouco expansivos, resistentes, perdendo pouca ou muito pouca capacidade de suporte em presença d'água, como já era de se esperar. Comparando-se os valores de Mini-CBR 3 (após 24 horas de imersão sem sobrecarga) com o Mini-CBR 1 (imediatamente após compactação), pode-se avaliar a perda da capacidade de suporte dos solos através da relação Mini-CBR 3/Mini-CBR 1. Compare alguns resultados obtidos na umidade ótima de compactação da energia normal:

solo 40903 : **M-CBR 3** = 76% **M-CBR 1**
areia siltsosa com argila de origem sedimentar.

solo 40183 : **M-CBR 3** = 73% **M-CBR 1**
areia argilosa saprolítica de sienito.

solo 41024 : **M-CBR 3** = 88% **M-CBR 1**
areia fina laterítica

solo 41266 : **M-CBR 3** = 79% **M-CBR 1**
areia argilosa laterítica

solo 40182 : **M-CBR 3** = 89% **M-CBR 1**
areia argilosa laterítica

Apesar das areias saprolíticas poderem se apresentar tão resistentes e pouco expansivas quanto as lateríticas, devem ser tomadas precauções para sua
utilização devido à pequena representabilidade destes valores. Os solos saprolíticos são heterogêneos, variando geralmente bastante de propriedades de um lugar para outro de uma mesma jazida. A quantidade de finos pode aumentar e como consequência a resistência pode diminuir acentuadamente dependendo da quantidade e da natureza mineralógica destes finos.

Para os solos TIPO A - Clássico, o aumento da quantidade de finos e da plasticidade ocasionam aumento em sua expansão, diminuição em sua capacidade de suporte e aumento em sua perda de capacidade de suporte por imersão em água. Observe os seguintes resultados obtidos:

Sta. Gertrudes: $M_{-}CBR_{3} = 19\%$

$M_{-}CBR_{1}$

Argila siltosa saprolítica de Folhelho

Para os solos TIPO B, dada a composição peculiar de sua fração argila, o aumento da quantidade de finos e mesmo da plasticidade pode não corresponder a um aumento da expansão e uma diminuição da capacidade de suporte:

$LR-7 : M_{-}CBR_{3} = 74\%$

$M_{-}CBR_{1}$

Silte argiloso laterítico

As especificações normalmente utilizadas (AASHO, DNER, DER-SP, etc) frequentemente subestimam o bom comportamento de argilas lateríticas e solos argilosos lateríticos, limitando seu emprego por causa de sua distribuição granulométrica e de sua plasticidade. A prática tem mostrado que estas metodologias são limitadas e incompletas em se tratando de solos lateríticos. Muitas
rodovias secundárias de baixo volume de tráfego, porém com presença constante de veículos pesados, cujas bases ou sub-bases foram construídas com solos lateríticos, têm mostrado um bom desempenho. A limitação do uso dos solos lateríticos deve ser feita por outras propriedades, que serão abordadas nos próximos ítens.

Normalmente os siltes e solos siltosos cuja fração silte é inerte, apresentam um comportamento à expansão e à resistência intermediário entre as areias e as argilas. É o caso, por exemplo, dos siltes quartzosos encontrados tanto em solos saprolíticos como nos lateríticos.

Os solos TIPO C, siltes e solos siltosos micáceos e/ou caulínicos saprolíticos, não sequem esse modelo de comportamento. São geralmente muito expansivos, e apesar de poderem apresentar certa resistência logo após compactação, quando em presença d’água perdem grande capacidade de suporte. Compare os seguintes resultados:

solo 40814: \[
\frac{M-CBR}{3} = 5\% \quad \frac{M-CBR}{1} \quad \text{silte saprolítico de Filito}
\]

Ouro Preto: \[
\frac{M-CBR}{3} = 5\% \quad \frac{M-CBR}{1} \quad \text{silte saprolítico de Filito}
\]

Caulim Perus: \[
\frac{M-CBR}{3} = 2\% \quad \frac{M-CBR}{1} \quad \text{silte de caulim}
\]

Conforme a distribuição granulométrica e a plasticidade, estes solos algumas vezes se classificam como A-4 ou A-5. Contudo, dada a grande expansibilidade e grande
perda de capacidade de suporte, eles não devem ser empregados em qualquer das camadas compactadas da estrutura do pavimento, exceto se estabilizados com aditivos. Subleitos deste tipo de solo exigirão pavimentos espessos, onerando as obras (Carneiro, 1966).

Por serem pouco coesivos e expansivos, oferecem baixa resistência à erosão. Deve-se evitar deixá-los expostos tanto em taludes de corte, como de aterro.

Como os resultados dos ensaios mostraram, para qualquer tipo de solo há uma relação direta entre o total de expansão e a perda da capacidade de suporte. Mesmo aqueles solos que possam apresentar uma certa resistência no ensaio CBR logo após compactação, se expansivos perdem capacidade de suporte por reumidecimento.

O que se deve ter em mente é que, em se tratando de solos tropicais, a expansão e a capacidade de suporte não devem ser avaliadas indiretamente pela distribuição granulométrica, presença de finos ou plasticidade. Vimos que solos argilosos lateríticos são pouco expansivos, resistentes e perdem muito pouca capacidade de suporte na imersão, apesar da presença da fração argila e de serem plásticos. Por outro lado, alguns siltes saprolíticos podem não conter argila, serem até mesmo pouco plásticos e, no entanto, serem expansivos e pouco resistentes em presença d'água.
A.3 - RELAÇÃO ENTRE CAPACIDADE DE SUPORTE E PRESSÃO DE EXPANSÃO

Tanto os solos argilosos como os silto-saposaprolíticos são geralmente expansivos e perdem capacidade de suporte em presença d'água. Porém as pressões de expansão destes solos podem ser bastante diferentes.

Argilas muito ativas exibem em geral altas pressões de expansão - encontrou-se valores máximos entre 6 a 8 Kgf/cm²² em ensaio executados pelo Laboratório de Mecânica dos Solos da EPUSP no edômetro pelo método convencional, com argilas muito expansivas como por exemplo o massapé da Bahia. Siltos micáceos e/ou caulínicos saprolíticos, por sua vez, expandem envolvendo baixas pressões de expansão. Pastore, 1982, obteve 0,40 Kgf/cm²² de pressão para o "Caulim Perus" na umidade ótima e densidade aparente seca máxima da energia normal de compactação, e 0,42 Kgf/cm²² para o "Ouro Preto" nas mesmas condições em ensaios executados com impedimento à expansão - ver descrição dos solos no item E do capítulo anterior.

A pressão de expansão é a pressão mínima necessária que, aplicada a um solo num determinado estado físico e de tensões, evita sua expansão.

Foram apresentados no item D do capítulo anterior, vários ensaios para a medida da pressão de expansão. O segundo método utilizando-se o edômetro (Sridharan et al., 1986) mostra a possibilidade de se determinar a pressão de expansão por interpolação de índices de vazios obtidos em ensaios edométricos com várias amostras semelhantes, adensadas sob diferentes pressões verticais e então levadas à expansão (figura 8).
Pode-se lançar mão do mesmo princípio, utilizando-se diferentes sobrecargas em corpos de prova compactados em condições semelhantes, levando-os à expansão no ensaio CBR e interpolor ou extrapolar os resultados obtidos para a condição de expansão nula. A expansão E2 e o valor M-CBR 2 determinados com a aplicação de uma pequena sobrecarga de 2.5 KN/m², já mostram diferenças de comportamento em relação à situação sem sobrecarga. Compare os resultados obtidos para alguns solos ensaiados no item E do capítulo anterior:

solo 40814: silte micáceo com caulinita saprolítico de Filito

\[
\begin{align*}
E2 &= 38\% \\
M-CBR \ 2 &= 4.0 \\
E3 \\
M-CBR \ 3
\end{align*}
\]

Sta. Gertrudes: argila saprolítica de Folhelho

\[
\begin{align*}
E2 &= 53\% \\
M-CBR \ 2 &= 1.9 \\
E3 \\
M-CBR \ 3
\end{align*}
\]

Taquaritinga: argila aluvial

\[
\begin{align*}
E2 &= 78\% \\
M-CBR \ 2 &= 2.0 \\
E3 \\
M-CBR \ 3
\end{align*}
\]

Uma aplicação bastante pequena de sobrecarga durante a imersão em água do silte saprolítico de Filito levou a uma grande redução da expansão e, apesar da
capacidade de suporte continuar pequena, o aumento foi significativo.

Assim, conclui-se que os solos TIPO C, siltes e solos siltosos micáceos e/ou caulínicos saprolíticos, mesmo quando forem pouco resistentes após o ensaio de imersão sem sobrecarga, podem ser empregados nos aterros compactados, desde que estejam devidamente confinados (Carneiro, 1966). Desta forma, pode-se fazer uso de um solo expansivo, sabendo-se, contudo, utilizar sua propriedade de baixa pressão de expansão. Baixa pressão de expansão significa que aplicado um pequeno acréscimo de sobrecarga, a expansão pode diminuir consideravelmente.

A erosão e até mesmo as rupturas de taludes de corte ou de aterro neste tipo de solo podem ser evitadas recobrindo-os com a espessura necessária de solo resistente à erosão, ou seja, confinando-os corretamente.

Um solo expansivo que mobilize altas pressões de expansão, quando constituir o material do sub-leito, causará problemas de deformações e afundamentos no pavimento, dependendo muito pouco da variação de espessura das camadas compactadas sobre ele apoiadas. Estes solos frequentemente são desastrosos para a pavimentação.

Em alguns casos, portanto, a consideração da pressão de expansão leva a soluções mais econômicas na construção viária, ou mesmo evita insucessos por causa de interpretações incompletas dos parâmetros de dimensionamento.
B - RESISTÊNCIA E CONTRAÇÃO

Como foi visto no item anterior, há uma estreita relação entre resistência e expansão. Os solos expansivos perdem capacidade de suporte.

Os solos de comportamento clássico, solos TIPO A, quando expansivos, são também contráteis. Portanto, para este tipo de solos, quanto mais contrátil, maior a perda de capacidade de suporte em presença d'água. Analisando os resultados de ensaios expostos nas figuras 13 e 14 do item E do capítulo anterior, nota-se claramente que quanto mais fino e plástico for o solo de TIPO A, mais contrátil e, portanto, menos resistente e mais susceptível à perda de resistência por imersão em água.

Porém, como foi visto no capítulo anterior, há solos tropicais de comportamento peculiar que não mantém relação direta entre contração e expansão.

Os solos TIPO C, siltes e solos siltosos micácceos e/ou caulíníticos saprolíticos, são geralmente pouco contráteis, às vezes até expandem por secagem, e, no entanto, são expansivos e perdem grande capacidade de suporte em contato com a água.

Por outro lado, os solos TIPO B, argilas e solos argilosos lateríticos, podem se apresentar contráteis, embora resistentes e pouco expansivos.

A amostra 41266, areia argilosa laterítica, e a amostra 40814, silte micáceo com caulínita saprolítico, apresentam a mesma taxa de contração ($C = 0.5\%$) na umidade ótima e densidade aparente seca máxima da energia normal. Contudo o primeiro manifesta uma expansão inexpressiva,
resistência e pouca perda de resistência (E3 = 0.1%, M-CBR 1 = 19% e M-CBR 3/M-CBR 1 = 79%, respectivamente), enquanto o segundo é altamente expansivo, possui resistência relativa, mas com grande perda de capacidade de suporte por imersão (E3 = 12.0%, M-CBR 1 = 11% e M-CBR 3/M-CBR 1 = 5%).

Para solos tropicais, não se deve concluir a respeito da expansão e da resistência pelos valores de contração, exceto para aqueles que se encaixam no TIPO A ou para as areias que são geralmente resistentes, pouco expansivas e pouco contrácteis. Do mesmo modo, não se deve prever o potencial à contração somente pelos valores de expansão e resistência.

Embora não se possa relacionar resistência e contração, a contração é uma propriedade que se necessita avaliar dadas às condições favoráveis à secagem nas regiões tropicais. A contração é uma medida de prevenção e controle de trincamento exagerado por secagem.
C - EFEITO DA SECAGEM NO COMPORTAMENTO DOS SOLOS COMPACTADOS

C.1 - INTRODUÇÃO

Como vimos no item B anterior, não há relação direta entre contração e resistência, exceto para alguns tipos de solos. Assim, não se pode avaliar a resistência dos solos tropicais através da taxa de contração.

Nas regiões tropicais, dada a possibilidade de secagem das camadas compactadas do pavimento durante a construção ou já na fase de operação, a contração passa a ser uma propriedade que deve ser levada em conta. Sua consideração não é somente importante para prever a potencialidade no aparecimento de trincas de contração. Deve-se procurar avaliar qual é o efeito da perda de umidade na expansibilidade e na resistência dos solos quando reabsorvem água.

C.2 - FISSURAS E TRINCAS DE CONTRAÇÃO

Tem-se observado que nos climas tropicais quentes e úmidos, com estações de seca e chuvas alternadas, a umidade de equilíbrio das camadas compactadas do pavimento tendem a ser inferiores à umidade ótima na qual foram compactadas.

A diminuição de umidade pode ocasionar contração da massa do solo, e consequente aparecimento de fissuras e/ou trincas. As fissuras e trincas são caminhos
preferenciais para a circulação de água e de ar, modificando a permeabilidade e homogeneidade da camada compactada (Dagg and Russam, 1966). O fluxo d'água concentrado pelas trincas pode produzir o desprendimento de material próximo à trinca, propiciando o aparecimento de afundamentos ou mesmo de buracos no pavimento.

O trincamento intenso de bases pode refletir na superfície de rolamento, deixando-a descontínua e trincada, diminuindo a vida útil do pavimento.

A fissuração e o trincamento são indícios da coesão do material quando perde umidade. Solos não coesivos, essencialmente granulares, não fissuram por contração. Sua contração, quando existente, é inexpressiva.

Nos climas temperados, a coesão capaz de gerar fissuração na secagem é indesejada. As fissuras e trincas são lugares de acúmulo de água. Durante o inverno, esta água pode congelar-se, aumentar de volume e, portanto, tornar maior as aberturas das fissuras e trincas.

Na época do degelo, há saturação do solo, expansão e consequente amolecimento por perda da coesão, gerando o aparecimento de afundamentos, deformações de diversos tipos e até de rupturas do pavimento.

Nas regiões tropicais não há o problema do gelo-degelo, e, por este motivo, ao contrário das regiões de clima temperado, a "boa" coesão do solo é desejada, mesmo que resulte em fissuração. Finos de "boa" qualidade, responsáveis pela "boa" coesão, são finos pouco ativos, estáveis, e presentes em tal porcentagem em peso que o material não perde capacidade de suporte ao reabsorver água, expandindo muito pouco. Os finos lateríticos são finos de "boa" qualidade.
Mesmo sendo um fino de "boa" qualidade, há um limite máximo desejável em porcentagem em peso no total do solo. O aumento da coesão a tal ponto que por secagem o solo contrai excessivamente, produz trincas de abertura e espaçamento prejudiciais ao pavimento.

De outro lado, um solo não coesivo, inerte, muito arenoso ou siltoso, apesar de apresentar alta capacidade de suporte após imersão e baixa expansão, pode não ser adequado como material de construção de bases de rodovias com baixo volume de tráfego (2). Estes tipos de solos não permitem boa aderência da camada de rolamento à base. Durante a execução da capa, já pode haver escorregamento desta em relação à base. O material da base não suporta os esforços cisalhantes localizados aplicados pelo rolo compactador e há deslizamento da camada superior e consequente formação de buracos (fotos 5 e 6).

Mesmo quando não aparecem defeitos na execução, o pavimento está condenado a uma vida útil bastante curta. Por falta de aderência, o próprio esforço causado pelo tráfego faz a capa deslizar, abrindo trincas, com futuro desprendimento de material e formação de "panelas". Além disso, se as bordas do pavimento não estiverem bem protegidas, o material de base pode ser carreado pelas águas por falta de coesão. Pode-se fornecer coesão aos solos granulares por adição de argila laterítica, por exemplo.

Assim, solos lateríticos coesivos, apesar de CBR menor, podem apresentar melhor desempenho no campo que aqueles essencialmente granulares com maior CBR (Nogami e Villibor, 1983). A resistência, a baixa expansibilidade e a

2. Excluem-se desta discussão os materiais nobres em pavimentação como: pedra britada, pedregulho, etc. Estamos tratando de areias siltes e argilas.

FOTO 6 (ao lado): Rodovia Descalvado - Usina Sta. Rita. Ruptura da superfície da base, antes de receber o revestimento, por causa do tráfego de obra.
baixa plasticidade, como recomendam as normas (AASHD, DNER, DER-SP, etc.), não caracterizam o bom comportamento dos solos tropicais.

A nova metodologia de ensaios proposta por Villibor e Nogami, 1982, estabelece critérios complementares que levam em consideração as peculiaridades dos solos tropicais, possibilitando uma melhor escolha de solos para bases de pavimentos econômicos.

A aparição de fissuras algumas horas após a secagem da camada compactada é um indício da coesão do solo. O tipo de fissuração apresentado na Foto 7 é um dos parâmetros qualitativos que tem indicado a presença de quantidade adequada de finos (material que passa na peneira 200) no solo.

Foto 7: Fissuração desejada, indicando coesão do material da base.
A previsão da abertura e do espaçamento das trincas é bastante complexa envolvendo coesão, contração e outras propriedades. O trincamento caracterizado por trincas de grande abertura (fotos 8 e 9) pode ser corrigido adicionando-se areia inerte (areia quartzosa, areia laterítica, etc.) seguindo um padrão granulométrico de misturas adequado, ou colocando-se aditivos que inibam em parte a coesão, ou ainda executar tratamentos alternativos sobre as bases trincadas de maneira a evitar sua reflexão na superfície de rolamento. Várias soluções vem sendo estudadas e testadas pelo grupo de pesquisas do GT-40 DER-4, Araraquara, S.P., e pelo DER do Paraná.

Nas regiões tropicais, a medida da contração é, portanto, necessária quando se deseja utilizar os solos locais na pavimentação econômica.

Este item tratou da fissuração e do trincamento dos solos com “boa” coesão, proveniente da presença de “bons” finos (material que passa na peneira 200) lateríticos - finos de baixa atividade, portanto pouco expansivos e com poder cimentante quando desidratados. Deve-se distinguir os solos estáveis lateríticos dos solos que apresentam coesão mas que devido à atividade de seus finos, expandem e perdem resistência em presença d’água. No item C do próximo capítulo, são apresentados ensaios que possibilitam esta distinção e que identificam alguns solos lateríticos com o potencial de petrificação e estabilidade em relação à ação da água quando compactados.
FOTO 8: Rodovia Sertãozinho-Dumont. Trincamento excessivo do material de base.

FOTO 9: Rodovia Sertãozinho-Dumont, Trecho Experimental de pesquisa do grupo GT-40 - DER-SP. Reflexão das trincas na superfície do Revestimento.
C.3. - EFEITO DA SECAGEM NA RESISTÊNCIA E NA EXPANSIBILIDADE DE SOLOS COMPACTADOS.

C.3.1 - HISTÓRICO

Há muitos anos vem se utilizando com sucesso bases de "solo arenoso fino" (areia fina argilosa laterítica) em rodovias econômicas no Estado de São Paulo. Observou-se que as bases que perderam umidade após a compactação, apresentando fissuras de contração, antes de receberem a imprimadura betuminosa e o revestimento, comportaram-se melhor que aquelas onde a secagem foi evitada (Villibor e Nogami, 1982).

A secagem de alguns solos argilosos lateríticos imprime efeitos benéficos irreversíveis, como se fosse um tratamento, diminuindo tanto sua expansão quanto sua perda de capacidade de suporte quando novamente em contato com a água. Este efeito, contudo, não é regra geral para todos solos lateríticos.

Mudanças irreversíveis de propriedades de solos lateríticos resultantes da secagem já foram constatadas em 1807 por Buchanan (3) na Índia. Ele define o material laterítico como um material facilmente trabalhável quando na forma de pasta, sem resistência ao corte por lâminas de ferro. Porém, quando exposto ao ar, perde umidade, endurecendo-se e tornando-se tão ou mais resistente que um tijolo, sem se desagregar com a ação da água ou ar.

A aplicabilidade da secagem como tratamento na construção viária foi primeiramente abordada por McDowell

(4) em 1946. Ele enfatiza os benefícios da "cura a seco" na resistência após imersão de vários tipos de solos granulares grossos e finos com plasticidade de baixa à média dos Estados Unidos. Os solos foram submetidos a diversas condições de secagem em estufa até a umidade ser praticamente zero.

A resistência após reumidecimento foi determinada à compressão simples e por um ensaio cujo equipamento é similar ao CBR. McDowell encontrou resistências 1,5 a 2,0 vezes maiores para os solos tratados pela cura a seco, compactados com energia da ordem de 2 x AASHO Normal. Solos cujo índice de plasticidade supera 5%, não apresentam efeitos benéficos. Não consta a origem dos solos ensaiados.

Zalazar, 1963, estudou o efeito da secagem na resistência de 3 solos argentinos para sua aplicação na construção de pavimentos. A secagem das amostras compactadas se processou em estufa a 60 °C até que se obtivesse umidades próximas a 0,75 do limite de plasticidade para dois dos solos e 0,60 da umidade ótima para o terceiro. Comparou as resistências através de três métodos: CBR, triaxial sem drenagem e estabiliômetro de Hveen. Para cada método ensaiou somente dois corpos de prova, um tratado pela secagem e outro não.

Acredita-se que os dados obtidos não sejam consistentes devido ao pequeno número de corpos de prova ensaiados. Os solos exibem efeitos benéficos provenientes da secagem por um método de ensaio, e efeitos prejudiciais por outro.

Gneiss do Rio de Janeiro. Comparou corpos de prova secos em estufa a 40°C por 3 horas imediatamente após compactação, com outros não tratados pela secagem, através da medida da resistência à penetração de ambos no ensaio CBR após 4 dias de imersão.

Para o solo ensaiado, a secagem aumentou a capacidade de suporte em 6% para amostras compactadas no ramo seco e em 15% ou mais no ramo úmido. Assim, neste caso específico, a secagem significa um tratamento natural equivalente a um aumento complementar em termos de energia de compactação. Barata supõe que a secagem não exercê influência sobre solos granulares, cascalhos ou areias, porém acresça a capacidade de suporte para aqueles bem graduados com finos de baixa a média plasticidade.

Netterberg, 1975, chama de “auto-estabilização” proveniente da secagem o aumento natural de resistência após imersão de solos compactados, não causado por compactação adicional do tráfego, nem pela adição de agentes estabilizantes. Apesar de não existir nenhuma comprovação medida em campo de que a auto-estabilização seja permanente e significativa em termos de engenharia, há fortes evidências em rodovias, em taludes e em agricultura, citadas por vários autores nomeados por Netterberg, de que certos materiais (entre eles lateritas, solos calcáreos, solos ferruginosos, etc) apresentem de alguma forma a auto-estabilidade. Acredita-se que ela seja proveniente da propriedade de auto-cimentação destes materiais.

Netterberg encontrou aumentos substanciais na resistência após imersão no CBR, principalmente para solos calcáreos ensaiados sob efeito de vários ciclos de umidecimento e secagem após compactação. Tem-se, portanto, evidências quantitativas apenas em laboratório até o momento.
Carvalho, 1984, estudou o efeito da secagem na resistência à erosão, ensaiando uma areia siltosa com pouca argila da Suíça de origem glaciária, solo TIPO A segundo definição dada no item A do Capítulo II. Um par de amostras foram compactadas em condições idênticas, sendo que a segunda foi submetida à secagem até o grau de saturação de 20%. Em seguida, ambas foram infiltradas por água até saturação próximas a 100%. As amostras foram então talhadas e colocadas no edômetro. Os resultados de ensaio estão na figura 18.

![Diagrama com três curvas de pressão e um gráfico de Sro.](image)

Sro = saturação da amostra após secagem e antes de ser submetida ao umedecimento para o ensaio de adensamento.

FIGURA 18: Ensai de adensamento de uma areia siltosa com pouca argila.

A perda de umidade de um solo causa um aumento nas tensões efetivas provenientes do aumento das tensões de sucção. O reumedecimento provoca um aumento nas tensões intersticiais na água e no ar que destróem a "sobreconsolicação" adquirida com a secagem. Assim, há uma diminuição das tensões efetivas, aumentando o potencial à
expansão e causando uma diminuição na resistência (Carvalho, 1984).

Bender, 1984, estudando uma areia siltosa micácea saprolítica de granito e um silte micáceo com caulinita arenoso de Filito da Costa do Marfim, solos TIPO C, obteve resultados semelhantes aos de Carvalho, 1984. A secagem imprime efeitos prejudiciais a estes tipos de solos, aumentando sua expansibilidade e diminuindo sua resistência.

C.3.2 - EFEITO DA SECAGEM NA RESISTÊNCIA AO CISALHAMENTO

A fim de se constatar se há diferenças de comportamento quanto aos efeitos da secagem após compactação entre solos tropicais lateríticos e saprolíticos, executou-se um primeiro tipo ensaio que permitiu comparar a resistência ao cisalhamento de um corpo de prova que perdeu umidade ao ar logo após compactação, com um segundo corpo de prova onde a secagem foi evitada. O método de ensaio utilizado está exposto na figura 19.

Os resultados obtidos para uma areia argilosa laterítica, solo TIPO B, e para uma areia argilosa saprolítica de Sienito, solo TIPO A, estão apresentados na figura 20.

A areia argilosa saprolítica perdeu resistência quando tratada com a secagem após compactação. A areia argilosa laterítica, pelo contrário, apresentou uma melhoria de resistência. A "sobreconsolidação" adquirida durante a secagem não é inteiramente perdida durante a infiltração d'água para o solo laterítico. Ocorre uma espécie de "histerese".
FIGURA 19: Efeito da secagem na resistência ao cisalhamento

1 - Compactação estática de corpos de prova com 3.5 cm de diâmetro e 7.0 cm de altura na umidade ótima e densidade seca máxima da energia normal.

2 - Secagem ao ar somente de um dos corpos de prova até a umidade na qual a contração cesse.

3 - Infiltração d'água pela base do corpo de prova por 24 horas com confinamento lateral de 10 KN/m² aplicado por uma coluna d'água que está em contato com o corpo de prova através de uma membrana que o envolve (equipamento de dimensão reduzida do tipo Texas).

4 - Ruptura ao cisalhamento dos corpos de prova através da aplicação de tensão axial distribuída em toda superfície, mantendo-se o mesmo confinamento lateral aplicado durante infiltração.
amostra 40183 - areia argilosa saprolítica

amostra 40182 - areia argilosa laterítica

FIGURA 20: Efeito da secagem na resistência ao cisalhamento.
C.3.3 - EFEITO DA SECAGEM NA EXPANSÃO E NA RESISTÊNCIA À PENETRAÇÃO.

Na continuação da pesquisa, procurou-se um método de ensaio onde fosse possível comparar a expansão e a resistência para amostras compactadas submetidas a diferentes graus de secagem.

Utilizou-se o método de compactação de solos proposto por Villibor, 1981, exposto no item D do Capítulo II. Os corpos de prova têm dimensão de 5,0 cm de diâmetro e 5,0 cm de altura.

Estabeleceu-se o seguinte procedimento de ensaio:

1 - compactação de corpos de prova na umidade ótima e densidade aparente seca máxima da energia normal.

2 - a umidade de compactação é mantida para um dos corpos de prova, ou seja, a secagem é totalmente evitada.

3 - os corpos de prova restantes são expostos ao ar, permitindo-se porém que cada corpo de prova perca diferentes quantidades em peso d'água. A saturação de cada corpo de prova após secagem será portanto diferente.

4 - infiltração d'água pela base de todos os corpos de prova, durante 24 horas com uma tensão confinante lateral aplicada de 10KN/m**2 (figura 21).

5 - a expansão axial é medida com auxílio de um extensômetro acoplado ao topo de cada corpo de prova.
6 - determina-se a resistência à penetração do pistão CBR 16,0 mm de diâmetro, com velocidade CBR (1,27 mm/min) a cada 0,5 mm de penetração, até a penetração máxima de 5,0 mm.

FIGURA 21: equipamento utilizado para aplicação de tensão de confinamento lateral.

A figura 22 mostra os resultados de ensaios de expansão para cinco solos: uma areia siltosa com argila sedimentar e uma areia argilosa saprolítica de Sienito, ambos solos TIPO A - Clássico; duas areias argilosas lateríticas, solos TIPO B; e um silte micáceo com caulinita saprolítica de Filito, solo TIPO C. Para o último solo, aplicou-se uma tensão de confinamento lateral de 1,5 KN/m².

Para os solos TIPO A e TIPO C, curvas 1, 2 e 3, é bastante claro o efeito prejudicial da secagem após compactação. O potencial de expansão destes solos aumentou com a diminuição do grau de saturação antes da infiltração d'água.

Não se podem tirar conclusões a respeito do efeito da secagem na expansibilidade de solos TIPO B pelas curvas 4
e 5. A expansão dos solos ensaiados é relativamente pequena e o grau de precisão do ensaio utilizado é menor que as diferenças entre os totais de expansão encontrados. No entanto, há pelo menos indícios que a secaçem não é desvantajosa.

FIGURA 22: Efeito da secaçem no total de expansão
Acredita-se que os solos que apresentam maior expansão ao reumidecer, mostram maior tendência à perda de resistência em presença d'água. Infelizmente, os resultados de ensaios de resistência executados com a areia arqilosa saprolítica e com o silte saprolítico, solos TIPO A e TIPO C respectivamente, pouco ajudam no esclarecimento desta questão. Devido à grande expansibilidade das amostras 40814 e 40183 e à baixa tensão de confinamento lateral aplicada, as resistências medidas são bastante baixas e as diferenças detectadas são inferiores ao erro inerente ao próprio ensaio.

Para a amostra 40903, solo sedimentar do TIPO A, os resultados da resistência à penetração obtidos para a penetração de 2,0 mm, indicam que a resistência é máxima para graus de saturação correspondentes a umidades próximas à ótima de compactação (figura 23). Com a diminuição do grau de saturação antes da infiltração, a resistência diminui. A secaem após a compactação é, portanto, prejudicial para este solo.

FIGURA 23: Efeito da secaem na resistência de uma areia siltosa com argila sedimentar.
Por outro lado, o solo 40182, solo TIPO B, apresentou aumento de resistência à penetração, medida para a penetração de 2,0 mm, após um certo teor de perda de umidade (figura 24). A resistência obtida implica em valores mini-CBR pequenos, porém a tensão de confinamento aplicada durante o ensaio é bastante baixa (10 KN/m²), não tendo sentido portanto ser expressa em termos de CBR. As maiores resistências foram obtidas para os corpos de prova secos até umidades próximas àquela onde a contração axial cessa. A secagem após compactação é benéfica para este solo.

![Gráfico](image)

FIGURA 24: Efeito da secagem na resistência de uma areia argilosa laterítica.

Para qualquer solo, a diminuição de umidade causa uma aproximação das partículas e a sução aumenta. Porém a relação entre umidade e sução não é bidimensional. Para a mesma tensão de sução, a umidade de um solo ao secar é maior que ao umidificar. Ou ainda, para a mesma umidade, a sução na secagem é maior que no umidificação (figura 25).
menor, já que a sucção é uma parcela da tensão efetiva. Se em seguida ambas forem colocadas em contato com a água, a segunda mostrará maior tendência à expansão e menor resistência, uma vez que a tensão efetiva exerce esforços contrários ao afastamento das partículas.

Figura 25: Histerese na relação entre teor de umidade e sucção durante o umidecimento e a secagem de dois solos no campo: (a) argila e (b) areia fina. (Marshall and Holmes, 1979).

A diferença no estado de tensões causada pela secagem e reumidecimento pode ser explicada pelo fato de muitos poros serem maior que suas aberturas (Marshall and
Holmes, 1979). O poro ilustrado na figura 26-a permanece repleto de água enquanto o solo perde umidade, até que a tensão de sucção exceda K/rt, onde K é uma constante e rt é o raio do tubo da abertura. Ao reumidecer, o poro ilustrado na figura 26-b só poderá ser novamente preenchido por água quando a tensão de sucção for inferior a K/rt, onde Rt é o raio do poro.

(a)secajem (b)umidecimento

FIGURA 26: Histerese na quantidade de água contida em um poro de um solo a uma dada sucção. (Marshall and Holmes, 1979).

Baseado neste modelo, para uma dada tensão de sucção K/rt, o teor de umidade ao secar é maior que ao reumidecer. O efeito que causa esta histerese está presente na maioria dos materiais porosos. Acredita-se que os solos TIPO A e TIPO C se enquadram neste tipo de modelo de comportamento.

Para alguns solos lateríticos, solos TIPO B, deve ocorrer fenômeno inverso ao anteriormente descrito. Acredita-se que somente com uma mudança de estrutura,
Para alguns solos lateríticos, solos TIPO B, deve ocorrer fenômeno inverso ao anteriormente descrito. Acredita-se que somente com uma mudança de estrutura, modificando a distribuição dos poros, é que um solo pode ser beneficiado pela secagem. A formação de nova estrutura está associada provavelmente a mudanças no estado dos óxidos hidratados de ferro, passando do estado de óxido ferroso hidratado para o estado de óxido férrico desidratado.

Os materiais que possuem o óxido ferroso hidratado mantêm sua capacidade auto-cimentante (Grant, 1974); são os materiais que provavelmente possuem a propriedade de se "auto-estabilizarem". Evidências químicas tem mostrado que a desidratação destes óxidos é praticamente irreversível, sendo um fator importante na formação de agregados estáveis de certos solos lateríticos (Baver et al, 1972).

Acredita-se que a cimentação de partículas e formação de agregados por desidratação, aumente ainda mais a quantidade de microporos muito pequenos em alguns solos lateríticos. Estes microporos são responsáveis pela mobilização de altas tensões de sucção durante a secagem. Durante o reumidecimento, somente parte destas tensões de sucção são perdidas. A secagem é, portanto, responsável pela melhoria de propriedades destes solos.

A figura 24 mostra o desenvolvimento da resistência conforme o grau de saturação para um solo laterítico TIPO B. Observe que com a secagem excessiva a resistência após imersão diminui novamente de valor, embora ainda conserve certo efeito benéfico. A secagem excessiva elimina parte das finas películas d'água e a tensão de sucção então volta a diminuir de valor. Parece ser esta uma das evidências de que a sucção é um dos fatores responsáveis pelo aumento de resistência e diminuição da expansão após secagem.
C.3.4 - EFEITO DA SECAGEM EM FUNÇÃO DA ENERGIA DE COMPACTAÇÃO.

Os solos compactados sofrem mudanças dependendo da energia de compactação. Podem estas mudanças afetar o efeito benéfico da secagem constatado em alguns solos lateríticos?

Estabeleceu-se o seguinte procedimento de ensaio a fim de se estudar a influência da energia de compactação nas propriedades de um solo submetido à secagem:

1 - Compactação de diversos pares de corpos de prova de 5,0 cm de diâmetro e 5,0 cm de altura. Cada par é compactado na umidade ótima e densidade aparente seca máxima de uma determinada energia de compactação.

2 - Para cada energia de compactação, tem-se um par de corpos de prova correspondente. A umidade do primeiro corpo de prova é mantida e o segundo corpo de prova é exposto ao ar para perda de umidade até que a contração cesse.

3 - Infiltração d'água pela base de todos os corpos de prova, durante 24 horas, com confinamento lateral de 10KN/m². Montagem idêntica à utilizada no procedimento do item C.3.3 deste capítulo (figura 21).

4 - Determinação da resistência à penetração para a penetração de 2,0 mm do pistão CBR de 16,0 mm de diâmetro, imediatamente após a infiltração, com velocidade CBR (1,27 mm/min).

A figura 27 ilustra os resultados de ensaio para a amostra 40182, areia argilosa laterítica, solo TIPO B.
So = grau de saturação antes da infiltração.

FIGURA 27: Efeito da secagem na resistência de uma areia argilosa laterítica em função da energia de compactação.

O aumento de resistência proveniente da secagem do corpo de prova após compactação, parece ser praticamente constante e independente da energia de compactação. A secagem equivale a uma aplicação complementar de energia. Deve-se realçar que o resultado obtido é particular a um determinado solo ensaiado. A generalização merece estudos mais aprofundados.

Pode-se encarar este benefício como um acréscimo na margem de segurança da resistência de projeto. A vantagem em se determinar em laboratório e controlar no campo o efeito deste "tratamento natural" depende dos níveis de resistência de projeto. Há solos, como aqueles citados por Netterberg, 1975, onde o aumento de resistência é bastante significativo. Nestes casos, a melhoria obtida
pela secagem pode implicar na diminuição da espessura de projeto das camadas compactadas.
C.3.5 - VERIFICAÇÃO DA ESTABILIDADE DE SOLOS COMPACTADOS. ENSAIO CICLICO DE SECAGEM-INIFILAÇÃO.

Os agricultores gostam de ter suas terras argilosas secas totalmente e depois lentamente reumidecidas para aumentar a porosidade do solo, a fim de produzir uma boa lavoura. A secagem causa contração da massa do solo, aproximando suas partículas umas das outras.

A desidratação do solo não é um processo uniforme, especialmente na secagem rápida. Tensões desiguais se desenvolvem, responsáveis pela tendência à formação de agregação (Baver et al., 1972).

Agregados não resistentes, como aqueles de solos TIPO A ou C, desagregam-se, diminuindo cada vez mais de tamanho, com a alternância de ciclos de secagem-umidecimento. Como foi visto no sub-item C.3.3, solos TIPO A ou C ao reumidecerem, tornam-se mais expansivos. Estes solos apresentam um aumento de volume permanente em relação ao original, depois de um ciclo completo de secagem-umidecimento.

Os agregados formados durante a secagem de alguns solos lateríticos TIPO B, parecem ser mais resistentes à ação da água. Conforme observou-se no sub-item C.3.3, alguns solos deste tipo apresentam melhorias pela secagem, no sentido geotécnico, diminuindo a expansibilidade e aumentando a resistência. Estes solos, ao contrário dos anteriores, não apresentam aumento de volume após um ciclo completo de secagem-umidecimento.

Solos que exibem este comportamento, possuem agentes cimentantes, que ao serem desidratados, agregam suas partículas formando agregados estáveis. Agregados realmente
estáveis são aqueles que suportam ciclos de secagem-umidecimento, sem se desagregarem.

Deve ser portanto verificado se o aumento de resistência de alguns solos lateríticos, constatado no sub-item C.3.3, é estável ao longo do tempo.

Há um método de ensaio utilizado para a verificação da estabilidade de solos estabilizados com cimento, que recomenda a execução de 12 ciclos alternados de gelo-degelo. Neste método, não se determina a resistência após os ciclos, nem tão pouco a perda em peso (material que se desprende). Verifica-se se a mistura é ou não estável pela variação volumétrica de um corpo de prova avaliada pela contração e expansão axiais medidas com auxílio de um extensômetro (Sommer, 1970).

O congelamento também favorece a formação de agregados. Os agregados produzidos pelo gelo-degelo são similares àqueles formados pela alternância de secagem-umidecimento (Baver et al., 1972). Estes agregados são temporários na natureza e não são tão estáveis, a menos que agentes cimentantes estejam presentes no solo ou sejam a eles adicionados para estabilizá-los.

Baseado nesse método de ensaio e no efeito similar causado por ciclos de gelo-degelo e secagem-umidecimento na produção de agregados, estabeleceu-se um procedimento de ensaio fundamentado na alternância de ciclos de secagem-umidecimento, para a verificação da estabilidade dos solos compactados, sem adição de agentes estabilizantes ou realização de misturas granulométricas ou ainda de compactação complementar.
O procedimento de ensaio utilizado é o seguinte:

1 - Compacta-se um corpo de prova de 5,0 cm de diâmetro e 5,0 cm de altura na umidade ótima e densidade aparente seca máxima da energia desejada (Villibor, 1981).

2 - Retira-se o corpo de prova do cilindro de compactação.

3 - Expõe-se o corpo de prova ao ar para perda de umidade até que a contração axial cesse. Mede-se a contração axial com auxílio de um extensômetro (figura 28-a).

4 - Coloca-se a base do corpo de prova em contato com a água permanentemente por 24 horas, sem qualquer confinamento lateral ou sobrecarga (infiltração livre). Mede-se a expansão axial com auxílio de um extensômetro (figura 28-b).

5 - Repete-se consecutivamente os ítems 3 e 4 até completar 12 ciclos se possível.

6 - Faz-se um gráfico da variação da altura em relação à altura inicial do corpo de prova em porcentagem ($\Delta h/hi$), em função do número de ciclos.

![Figura 28: Equipamentos e montagem para o ensaio cíclico de seca-gem-infiltração.](image-url)
Alguns resultados de ensaios encontram-se na figura 29.

FIGURA 29: Ensaios cíclicos de secagem-infiltração com algumas amostras compactadas de solos tropicais.

Considerou-se o "solo compactado estável" aquele que apresenta uma diminuição relativa de volume, ou pelo menos nenhum aumento, após cada ciclo de secagem-infiltração, até que se estabeleça um equilíbrio onde a expansão e a contração se processam entre limites constantes.

A areia argilosa saprolítica, solo TIPO A, e a argila de alteração parcialmente laterizada pertencente à camada de transição entre os horizontes laterítico e saprolítico, apresentam aumento relativo de volume a cada ciclo de secagem-infiltração. Considerou-se, portanto, que estes solos são instáveis segundo conceituação de "estabilidade" citada acima, e devem ser estabilizados com aditivos para se tornarem estáveis.
O silte micáceo com caulinita saprolítico tem um potencial de expansão tão elevado que durante o primeiro ciclo de infiltração, ele perde a capacidade auto-portante por expansão, deformando o corpo de prova. Quando as proporções iniciais (diâmetro/altura) do corpo de prova não mais se mantêm, não faz sentido a medida da expansão ou contração axiais. Nesta situação, o solo já demonstrou suas características instáveis.

A areia argilosa laterítica, solo TIPO B, exibiu uma reversibilidade na mudança de volume, sempre se conservando entre limites. Este solo se mostrou estável em relação às mudanças no teor de umidade. Caso se queira aumentar a resistência destes solos, é possível tratá-los ao cimento, à cal, com compactação adicional, etc. Porém, este tratamento não deve ser encarado como uma "estabilização" no senso próprio da palavra, pois se trata de um solo já estável (Fetz, 1976).

Nem todos solos lateríticos compactados apresentam tal comportamento com a ação de ciclos de secagem-infiltração. Eles devem manifestar uma tendência à mudança de estrutura resultante da desidratação, desenvolvendo "agregados" estáveis à desagregação em presença d'água. Os solos lateríticos que se petrificam na secagem, contêm um "ligante" ou "agente estabilizante" natural. Este "agente" natural é o óxido ferroso hidratado, capaz de cimentação por desidratação.

As areias com pouca ou nenhuma fração argila laterítica, apesar de resistentes e pouco ou não expansivas, quando constituem camada de base, não favorecem a aderência do revestimento que se depreende com a ação do tráfego. Estes solos são frequentemente carreados pela ação das águas nas bordas do pavimento (sub-item C.2).
O solo laterítico coesivo compactado que se agrega na secagem e mantém a agregação estável, deve apresentar uma mudança permanente na estrutura. A adição de agentes estabilizantes a um solo qualquer compactado produz agregação e formação de uma estrutura secundária com uma mudança em sua distribuição granulométrica (Caprez, 1982). Se alguns solos lateríticos compactados se agregam na secagem, deve também se manifestar a formação de estrutura secundária.

Foram executadas análises granulométricas do solo 40182, areia argilosa laterítica, em amostra no estado natural e amostras compactadas na umidade ótima e densidade seca máxima da energia normal após 1 ciclo de secagem e após 12 ciclos de secagem-infiltração (figura 30). A intensidade e a duração do destorramento, tal como a intensidade vibratória e a duração do peneiramento, são automáticas e idênticas para os três casos em questão. Utilizou-se na análise granulométrica por sedimentação, hexametafosfato por 24 horas como defloculante. Outras alternativas foram testadas: o uso do mesmo defloculante por 4 dias e a não adição de qualquer defloculante. A tendência das curvas de distribuição granulométrica das três amostras se mostrou a mesma à apresentada na figura 30.

A porcentagem da fração argila praticamente não mudou. A porcentagem em silte diminui e a porcentagem em areia (principalmente fina e média) aumentou com o número de ciclos de secagem-infiltração nas amostras compactadas. O solo se tornou mais granular, ou seja, há uma mudança estrutural do solo compactado com a desidratação que causa a formação de novos "agregados" ou ainda o "crescimento" dos agregados já existentes (outras partículas ou agregados se unem aos agregados já existentes).
A variação da intensidade e da duração do destorramento e do peneiramento modificam a distribuição granulométrica resultante das amostras que foram compactadas. Porém, a tendência destes tipos de solos compactados se tornarem mais granulares com o efeito de ciclos de secagem-infiltração deve apresentar-se sempre.

A diferença entre as curvas granulométricas da amostra no estado natural e da amostra previamente compactada sob efeito de 1 ciclo de secagem e em seguida destorreada é resultante do efeito da compactação e da secagem. Fica difícil mostrar qual é o efeito da ação exclusiva da secagem neste caso. Porém pode-se observar que os ciclos de secagem-infiltração modificam a granulometria desses solos através da diferença entre as curvas compactadas submetidas a 1 e 12 ciclos. O destorramento

![Diagrama de granulometria](image)

FIGURA 30: Análise granulométrica de uma areia argilosa laterítica no estado natural e após 1 e 12 ciclos de secagem-infiltração em amostras compactadas.
utilizado para as amostras compactadas foi muito intenso. O uso de menor intensidade nesta operação levaria a uma melhor distinção das curvas de distribuição granulométrica.

Testou-se a estabilidade a variações volumétricas de solos compactados com as mudanças no teor de umidade. Resta saber se o ensaio de ciclos secagem-infiltração pode ser utilizado para se afirmar que a estabilidade volumétrica reflete a estabilidade à resistência quando um solo compactado está sujeito a mudanças no teor de umidade.

Duas séries de ensaio de resistência foram efetuadas com corpos de prova compactados e submetidos a ciclos de secagem-infiltração.

A metodologia de ensaio adotada foi a seguinte:

1 - Resistência à Compressão Diametral:

1.1 - Compactam-se diversos corpos de prova com 5,0 cm de diâmetro e 5,0 cm de altura na umidade ótima e densidade seca máxima da energia desejada (Villibor, 1981).

1.2 - Retiram-se os corpos de prova de dentro dos cilindros de compactação.

1.3 - Efetua-se o ensaio normal de ciclos de secagem-infiltração descrito no início deste sub-ítem C.3.5. A resistência à compressão diametral do "ciclo n" (n por exemplo igual a 1, 3, 6, 9 ou 12) é obtida pelo ensaio de compressão diametral - ANEXO 2, após o "ciclo n" de secagem, com o corpo de prova no teor de umidade higroscópica (quando não se observa mais variações no peso do corpo de prova exposto ao ar para contração).
Os resultados obtidos com corpos de prova do solo 40182 areia argilosa laterítica, estão representados no gráfico 1 da figura 31.

2 - Resistência à Penetração:

2.1 - idem ao item 1.1 anterior.

2.2 - idem ao item 1.2 anterior.

2.3 - Submete-se um dos corpos de prova à infiltração d'água pela base por 24 horas, sujeito a um confinamento lateral de 10 KN/m² dado pelo equipamento já apresentado na figura 21. Mede-se a resistência à penetração do pistão CBR \(\phi = 16,0 \) mm, para a penetração de 2,0 mm com a velocidade CBR. A resistência obtida corresponde à resistência do "ciclo 0" (sem secagem).

2.4 - Os demais corpos de prova são expostos ao ar para perda de umidade. Efetua-se o ensaio normal de ciclos de secagem-infiltração. Para se obter a resistência à penetração do "ciclo n" (n por exemplo igual a 1, 3, 6, 9 ou 12), faz-se o ensaio normal de ciclos e, somente durante a infiltração d'água por 24 horas do "ciclo n", aplica-se uma tensão de confinamento lateral de 10 KN/m². Em seguida, mede-se a resistência à penetração do pistão CBR \(\phi = 16,0 \) mm para a penetração de 2,0 mm com a velocidade CBR.
Os resultados obtidos com corpos de prova do solo 40182, areia argilosa laterítica, estão representados no gráfico 2 da figura 31.

FIGURA 31: Gráfico 1: Resistência à compressão diametral \(X \) ciclos de secagem.

Gráfico 2: Resistência à penetração do pistão CBR de 16.0 mm de diâmetro para a penetração de 2.0 mm com confinamento lateral de 10 KN/m² X ciclos de infiltração.
Há uma pequena diminuição da resistência à compressão diametral com o aumento do número de ciclos. A coesão do solos sofre, portanto, uma pequena diminuição. Com a desidratação, em parte irreversível, a coesão aumenta dentro do agregado pela cimentação de partículas. Porém, com a formação de novos agregados, o solo se torna mais granular e sua coesão diminui.

A resistência à penetração aumenta após o primeiro ciclo de secagem-infiltração e, em seguida, ela é praticamente constante, apresentando pequenos aumentos de resistência nos ciclos subsequentes.

A figura 30 mostrou a diferença de distribuição granulométrica entre o solo no estado natural e o solo compactado após um ciclo de secagem. Restava a dúvida se as mudanças granulométricas não seriam provenientes do efeito da compactação. Através do ensaio de resistência à penetração, dois corpos de prova no estado compactado foram comparados. A constatação do aumento de resistência apresentado pelo solo tratado pela secagem, nos induz à hipótese de mudança estrutural, e consequentemente granulométrica, inferida pela secagem. Assim, a diferença de distribuição granulométrica entre o estado natural e após um ciclo de secagem, é proveniente em parte pela secagem.

Após diversos ciclos de secagem-infiltração, a distribuição granulométrica, a resistência à compressão diametral e a resistência à penetração devem apresentar somente pequenas mudanças. Os resultados de ensaio levam a crer que a transformação mais importante se processa durante o primeiro ciclo de secagem após compactação, e durante os ciclos de secagem-infiltração subsequentes, o solo ainda sofre rearranjos, cada vez menores, até o equilíbrio.
O ensaio de ciclos de secagem-infiltração com a medida da expansão e da contração axiais é assim um indicador da estabilidade do solo compactado em relação à resistência quando ele está sujeito à mudanças no teor de umidade. O ensaio cíclico pode portanto ser utilizado para verificar se um solo compactado apresenta ou não tendência à "agregação" estável pelo efeito da secagem.
IV - CLASSIFICAÇÃO DE SOLOS TROPICAIS

COM BASE NA EXPANSÃO E NA CONTRAÇÃO
A - INTRODUÇÃO

A classificação de solos é um dos assuntos mais controvertidos da Mecânica dos Solos. Não é possível classificar todos os solos em um número relativamente pequeno de grupos (Casagrande, 1947). Assim, todas as classificações de solos para fins gêntécnicos, mesmo as mais difundidas como a Classificação Unificada e a da AASHO, são susceptíveis a não classificar corretamente todos os solos.

Um sistema de classificação de solos que se propunha a ser geral e subdividir os solos em um grande número de grupos, necessitaria estar baseado em um grande número de características e propriedades, o que o tornaria nem prático, nem econômico. Assim, uma boa classificação de solos incluiria poucas e diferenciadoras características, capazes de agrupar os solos em classes segundo propriedades ou comportamentos similares (Liu, 1967).

Dada a complexidade e extensão do problema, diversos órgãos e pesquisadores têm se empenhado em criar suas próprias classificações para fins mais específicos, reduzindo-as para um número limitado de tipos de solos encontrados em uma determinada região.

Este capítulo não se propõe a revisões bibliográficas e análises que abordem toda extensão do assunto. O tema é tão vasto e importante que mereceria uma tese exclusiva para desenvolvê-lo adequadamente. Este capítulo dedica-se ao tratamento específico da classificação de solos tropicais para fins viários.
3 - CLASSIFICAÇÃO DE SOLOS TROPICAIS

O famoso caso da barragem de Sasumua no Quênia (Terzaghi, 1958), já citado no item B-3 do capítulo II, trouxe à tona as dificuldades em se prever propriedades de engenharia tais como resistência, permeabilidade e compressibilidade de solos tropicais pelos índices classificatórios baseados na granulometria e plasticidade utilizados pela Classificação Unificada.

Desde então, tem se procurado consistentemente adaptações das classificações existentes ou o estabelecimento de novos indicadores para diferenciar os solos tropicais.

Little (1969) sugere uma classificação de solos tropicais residuais baseada no grau de intemperização, indicando sempre a rocha de origem.

Lohnes e Demirel (1973), observando as diferenças essenciais entre solos de clima temperado e solos tropicais, proponem para os últimos uma classificação baseada num modelo estrutural resultante da cimentação de partículas. Com o aumento do grau de intemperismo, há um aumento da desidratação e recristalização, aumentando o peso específico, diminuindo a porosidade e aumentando a coesão.

Diversas tentativas de classificar os solos tropicais foram propostas baseadas na gênese, na mineralogia, na composição química, etc. Índices classificatórios como Relação Sílica-Sesquióxidos, Reação ao Azul de Metileno ou conhecimentos geológicos e pedológicos foram aplicados. Não há dúvidas que o reconhecimento dos diversos perfis no campo ou a determinação em laboratório de propriedades químicas e mineralógicas são bastante úteis na...
resolução dos problemas geotécnico. Porém, acredita-se que seja importante que uma classificação geotécnica utilize índices que refletem características e propriedades de engenharia dos solos, de maneira a auxiliar o geotécnico a visualizar um determinado comportamento "in situ" do material.

Os índices baseados na granulometria e plasticidade se relacionam diretamente com propriedades geotécnicas dos solos. Vargas (1982) discute o uso dos limites de Atterberg na classificação de solos tropicais. Segundo ele, a classificação deve ser baseada na "natureza" dos solos, e não no "estado" em que se encontram. Valendo-se das diferentes naturezas dos argilo-minerais presentes nos solos tropicais, complementa a classificação de Casagrande propondo para solos finos a utilização conjunta do valor da atividade, segundo conceito de Skempton. Já em 1948, sugeriu a Casagrande a adoção das subdivisões de solos finos ainda em KL e KH para caracterizar os grupos de argilas caolínicas de baixa e alta plasticidade. Mas, dadas as peculiaridades principalmente de composição e estruturais dos solos tropicais, o comportamento geotécnico de solos finos não se relaciona biunivocamente com os índices classificatórios decorrentes da granulometria e plasticidade.

Nogami e Villibor (1982), apresentam inúmeros pares de solos tropicais que se classificam igualmente segundo a Unificada e/ou AASHO (HRB), mas que se comportam de forma diferenciada no campo.

Uma classificação adequada de solos tropicais é portanto aquela que utiliza índices que estejam relacionados às características e propriedades peculiares dos solos tropicais responsáveis por sua diferenciação de comportamento.
Dentro deste contexto, Nogami e Villibor (1981) propôe para finalidades rodoviárias uma nova classificação de solos tropicais. A classificação é composta por 7 grupos de solos, subdivididos em duas grandes classes: solos de comportamento “laterítico” e solos de comportamento “não laterítico”. A classificação é baseada principalmente em fatores extraídos de ensaio baseado no método MCV de Parsons, 1976, com amostras de dimensões reduzidas (5.0 cm de diâmetro e 5.0 cm de altura) e em um ensaio de perda de material por imersão em água do corpo de prova compactado por 24 horas. O corpo de prova está neste ensaio na posição horizontal com 1 cm de extrusão relativa à base do cilindro de compactação; o peso desprendido durante o ensaio e então seco é comparado com o peso seco da parcela extrudada. Este ensaio avalia entre outras propriedades, a permanência da coesão do solo compactado e então imerso em água.

Esta nova classificação já vem sendo aplicada com sucesso há anos na construção de rodovias secundárias de baixo custo principalmente no estado de São Paulo. A introdução desta nova classificação vem de encontro à proposta de se proceder a escolha correta de materiais tropicais locais para pavimentação econômica. A classificação de solos é uma etapa importante e necessária para a construção viária econômica. Dada a extensão destas obras, tem-se um grande volume de solo a ser movimentado, com uma grande variabilidade de suas propriedades.

Recentemente, Nogami e Cozzolino (1985) publicaram um ensaio expedito para identificação de solos tropicais. Moldam-se corpos de prova em anéis de PVC de 20 mm de diâmetro interno e 5 mm de altura com solo passado na peneira 0.42 mm preparado um pouco acima do limite de plasticidade. Deixa-os secarem em estufa a 50-60 °C até constância de peso e em seguida executa-se ensaio de reabsorção d’água pela base destas pastilhas secas. Para
identificação dos 13 grupos de solos tropicais lateríticos e não lateríticos avaliam-se propriedades de plasticidade na moldagem, contração na secagem, trincamento e inchamento na reabsorção d'água, tempo para frente de infiltração alcançar e preencher a superfície superior da pastilha, e "consistência" da pastilha após reabsorção.

Arnold estudando solos tropicais do Brasil e da África Oeste, apresentou em 1985 uma nova proposta de classificação de solos tropicais baseada na contração e na resistência a seco. Voltar-se-á a tratar desta classificação no item D deste capítulo.
C - IDENTIFICAÇÃO DE SOLOS BENEFICIADOS PELA SECAGEM AP65 COMPACTAÇÃO (1)

C.1 - EFEITOS DA DESIDRATAÇÃO DE ALGUNS SOLOS LATERÍTICOS

Mudanças irreversíveis de propriedades dos solos lateríticos causadas pela desidratação, foram um dos primeiros aspectos relevantes observados já em 1807 por Buchanan (2).

Muitos pesquisadores estudaram a influência do pré-tratamento das amostras (como secagem, tempo de manipulação, etc.) na variação da granulometria e plasticidade (ver por exemplo, Mitchell and Sitar, 1982; Vargas, 1982; Gidigasu, 1973).

Como foi visto no item C do capítulo anterior, há solos que compactados, ao perderem umidade, apresentam mudanças de comportamento benéficas como aumento de resistência e diminuição da expansão quando novamente em contacto com a água. Constatou-se este efeito entre alguns solos lateríticos tropicais.

Estes solos são importantes do ponto de vista geotécnico pois podem ser capazes de desenvolver "agregações" provenientes da desidratação após compactação. A fim de se identificar os solos que apresentam benefícios imprimidos pela secagem, desenvolveu-se uma metodologia de ensaios capaz de separá-los em um grupo distinto (Bernucci, 1985). Utilizou-se pastilhas com o solo moldado no Limite de liquidez com baixa intensidade de espátulação.

(1). O termo "beneficiado" é utilizado neste texto no sentido de melhoramento nas propriedades de resistência e de expansão obtidos por secagem de solos compactados.
Esta metodologia se baseia principalmente em duas propriedades: 1) capacidade de reabsorção d’água de uma pastilha de solo moldada no Limite de liqueidez e então submetida à secagem, e 2) resistência à penetração após reabsorção.

C.2 - REABSORÇÃO D’ÁGUA

Um solo seco reabsorverá água por capilaridade e/ou hidratação. Solos inerres reabsorrem água principalmente por capilaridade até que seus vazios estejam preenchidos por água. Solos não inertes, ao reabsorverem água, expandem a camada dupla difusa de seus argilo-minerais, afastando-os um dos outros, ou seja, causando expansão da massa do solo.

Solos sensíveis à secagem, quando desidratados, podem apresentar irreversibilidade, pelo menos em parte, no processo de desidratação. Dentre os solos tropicais, aqueles que ainda possuem óxidos de ferro na forma hidratada, e não só no estado férrico, retêm as propriedades de auto-cimentação (Grant, 1974). Se a desidratação é pelo menos em parte irreversível, estes solos não devem ser capazes de reabsorver água na mesma quantidade caso este efeito não ocorresse. Assim, estes solos reabsorvem menos água; portanto, não reexpandem como seria de se esperar.

Pichler, 1953, utilizando resultados de ensaios de adsorção d’água em diversas misturas de areia quartzosa com argila, observou que a adsorção das misturas era variável e dependente da natureza mineralógica dos argilo-minerais. Encontrou a seguinte sequência crescente em adsorção das misturas: a) com caolinita; b) com haloisita; c) com illita e d) com bentonita cálcica.
Schweitzer, 1981, utilizando o ensaio Enslin de absorção d'água, conclui que este ensaio é capaz de distinguir lateritas "normais" daquelas "problemáticas" (Gidigasu, 1973) através da velocidade de absorção - as primeiras absorvem água rapidamente.

O Laboratório Nacional de Engenharia Civil de Portugal, observou a tendência de alguns solos lateríticos de se "petrificarem" através da secagem (Nascimento et al, 1964). Algumas pastas de solos lateríticos que foram ensaiadas para a determinação do limite de contração, não se desagregaram depois de secas ao serem submersas em água.

A partir deste fato, o LNEC estabeleceu as seguintes relações para identificar os solos que se petrificam:

\[
\text{Grau de Petrificação} = \frac{\text{LC}}{\text{LA}} \quad (\%) \\
\text{Grau de Absorção} = \frac{\text{LA}}{\text{LC}} \quad (\%)
\]

onde $\text{LC} =$ limite de contração
$\text{LA} =$ limite de absorção (umidade atingida após absorção d'água por capilaridade de pastilhas do ensaio de contração).

Diz-se que a petrificação é completa quando o grau de petrificação é igual a 1.

Nogami e Cozzolino, 1985, utilizam ensaio similar ao de reabsorção d'água do LNEC com pastilhas moldadas um pouco acima do limite de plasticidade e então secas em estufa a 50-60 °C para a identificação expedita de solos tropicais. Avaliam indiretamente a capacidade de reabsorção
d'água das pastilhas através de análises qualitativas de propriedades como "consistência", trincamento e inchamento após reabsorção.

Com o intuito de comparar quanto à capacidade de reabsorção d'água os solos tropicais lateríticos dos saprolíticos, e ainda solos lateríticos de diferentes plasticidades e granulometrias, definiu-se neste trabalho o grau de absorção como sendo:

\[
A = \frac{LA - LC}{LL - LC} \quad (\%)
\]

\[0 < A < 1\]

onde \(A \) = grau de absorção (\%)

\(LA \) = limite de absorção (\%) (Nascimento et al., 1964)

\(LC \) = limite de contração (\%)

\(LL \) = limite de liquidez (\%)

O "grau de petrificação" (P) é neste texto então redefinido como sendo:

\[
P = \frac{LL - LA}{LL - LC} \quad (\%)
\]

\[0 < P < 1\]

Teoricamente, um solo seco reabsorveria água sem mudança de volume até que a umidade corresponda ao limite de contração LC, ou seja, o volume de água absorvido é igual ao volume de vazios (Castro, 1974). Isto seria possível, se a água pudesse entrar nos vazios sem mudança na
estrutura do solo, sem mobilizar a hidratação das camadas duplas difusas dos argilo-minerais presentes.

Em seguida, a absorção pode continuar, dependendo dos constituintes mineralógicos do solo. Argilas plásticas, sob confinamento zero, reabsorvem água até atingirem valores de umidade (limite de absorção LA) muito próximos ao limite de liquidez LL (Ladd, 1960). Desta forma, pode-se dizer que um solo seco que foi moldado no Limite de Liquidez, ao reabsorver água atinge umidades que variam entre o limite de contração e o limite de liquidez.

Quando o limite de absorção é igual ao limite de contração, a desidratação do solo é um fenômeno totalmente irreversível (A=0 ou P=1). Quando o limite de absorção é igual ao limite de liquidez, o solo fino possui argilo-minerais ativos e o processo de desidratação é totalmente reversível (A=1 ou P=0).

C.3 - RESISTÊNCIA A PENETRAÇÃO APÓS REABSORÇÃO D'ÁGUA

A metodologia envolve ainda outra propriedade: a resistência à penetração após reabsorção d'água. As propriedades de resistência e de absorção estão diretamente relacionadas. O solo que sofre desidratação irreversível ou parcialmente reversível, reabsorve menor quantidade de água, gerando menor expansão. Se a expansibilidade do solo é diminuída, a perda de resistência do solo após reabsorção é menor, ou seja, ele se apresenta mais resistente que os solos com o grau de absorção A igual a 1.

A resistência à penetração é medida pela profundidade penetrada pelo cone na pastilha após reabsorção d'água, sem qualquer confinamento lateral. Isto é, o anel é
retirado antes da reabsorção por dois motivos principalmente: 1) segundo Ladd, 1980, argilas expansivas secas reabsorveram água sob CONFINAMENTO ZERO até atingirem umidades próximas ao limite de liquidez, e 2) deve-se comparar as resistências à penetração dos diversos tipos de solos sob MESMA CONDIÇÃO DE CONFINAMENTO - há solos que ao re absorverem água reexpandem e tocam novamente o anel que exerce certo confinamento, e há solos que não chegam a retomar o volume inicial na expansão, impossibilitando o contato com as paredes do anel.

C.4 - ENSAIOS

A sistemática de ensaio adotado é a seguinte:

1 - Moldagem (idem à apresentada para determinação do limite de contração segundo Arnold, 1985-b).

1.1 - Prepara-se o solo passado na peneira No. 40 no limite de liquidez, pelo menos 12 horas antes da moldagem, mantendo-o em câmara úmida durante este período. A espátulação usada é a mínima necessária para obter uma pasta relativamente homogênea.

1.2 - Molda-se o solo em um anel metálico com 45,0 mm de diâmetro e 20,0 mm de altura.

1.3 - Com uma porção em excesso, determina-se o teor de umidade de moldagem, colocando-a na estufa a 105 °C.

1.4 - Por diferença em pesos, calcula-se o peso úmido do corpo de prova. Com a umidade determinada no item anterior, tem-se o peso seco.
2 - Limite de contração (item C.2, cap. II)

2.1 - Expõe-se o corpo de prova ao ar para secar.

2.2 - Quando o corpo de prova se desprender do anel, efetua-se periodicamente pares de medidas de peso e volume do corpo de prova. Calcula-se para cada medida a umidade do solo e a massa específica aparente seca. Traça-se a curva de contração do solo num gráfico de umidade x inverso da densidade específica aparente seca (figura 10). Obtém-se então o limite de contração.

3 - Reabsorção d'água:

3.1 - Quando o peso da pastilha seca de solo não mais variar, coloca-se sua base em contato permanente com a água por 24 horas (figura 32-a) - sem presença do anel.

3.2 - Observa-se visualmente: a) tipo de fissuração superficial e lateral do corpo de prova; b) expansão e deformação do corpo de prova; e c) perda de material pela base (ANEXO 3).

4 - Resistência à Penetração:

4.1 - Executa-se a penetração do cone (cone g-200 Geonor - Noruega) (figura 32-b).

4.2 - Determina-se a resistência à penetração do cone através das correlações existentes entre profundidade penetração e resistência (ANEXO 4).
FIGURA 32: Ensaios para identificação de solos que se agregam por secagem.

5 - Limite de Absorção:

5.1 - Determina-se a umidade do corpo de prova imediatamente após a penetração do cone (limite de absorção) por pesagem direta ou secando-o em estufa a 105 °C.

C.5 - RESULTADOS E COMENTÁRIOS

Analisando os resultados obtidos com quarenta amostras de solos tropicais de diversos tipos e proveniências (ANEXOS 5 e 6), agrupou-se os solos segundo seu grau de absorção e sua resistência à penetração do cone (figura 33).

Os resultados obtidos estão na figura 34.
Os solos lateríticos TIPO B (definição dada no item A do Cap.II) que apresentam irreversibilidade ou reversibilidade parcial da desidratação, são solos com tendência à petrificação (Nascimento et al, 1963). A desidratação da fração argila laterítica é responsável pela petrificação destes solos. Portanto, os solos lateríticos que se petrifiquem por secagem são coesivos, ou seja, a matriz não é arenosa, a argila é um meio contínuo.

A metodologia de ensaios apresentada separa em um grupo especial solos que quando compactados podem se "agregar" por secagem. A estabilidade dos "agregados" em relação às mudanças no teor de umidade destes solos compactados pode ser verificada, por exemplo, pelo ensaio cíclico de secagem-infiltração proposto no item C do Cap. III.
Sois saprolíticos: argilas, siltes e areias
+ Argilas ou areias argilosas lateríticas
Δ Areias lateríticas com pouca ou nenhuma fração argila

FIGURA 34: Resultados de ensaios de identificação de solos tropicais que se "agremam" por secagem.

Netterberg, 1975, acredita que o "grau de petrificação" do LNEC (Nascimento et al., 1964), sugira que certos materiais possuam a propriedade auto-estabilizante. No entanto, não encontrou nenhuma correlação boa entre o grau de petrificação e seus resultados de CBR após ciclos de secagem-molhagem.

Acredita-se, porém, que haja correlação entre o aumento de resistência após ciclos (medido em ensaio penetrométrico, seja pelo cone ou pelo CBR) dos materiais
auto-cimentantes e a potencialidade à petrificação (ou dificuldade à reabsorção d’água), porém esta última quantificada de outra forma que aquela definida pelo LNEC. O LNEC não leva em conta a plasticidade dos solos no grau de petrificação. Assim, diferentes solos com semelhantes limites de contração e de absorção, porém com diferentes limites de liquidez, dão o mesmo grau de petrificação, o que pode não refletir a condição real de petrificação.

As areias lateríticas compactadas são solos bastante estáveis, porém não apresetam poder auto-cimentante e auto-agregante quando não são pelo menos um pouco coesivas, ou seja, quando a fração argila é inexistente ou não significativa. A reabsorção não é acompanhada por expansão pois ela se dá principalmente por capilaridade. O grau de absorção é próximo a 1 justamente porque por capilaridade, a água volta a preencher os vazios, com a tendência à resaturação, retornando ao estado e à umidade em que se encontravam antes de se iniciar a secagem.

As argilas ou solos argilosos saprolíticos do TIPO A (item A, Cap.II) apresentam maior grau de absorção quanto maior forem a atividade e a quantidade em peso de sua fração argila. A resistência à penetração depende da coesão que se mantém após absorção e portanto da natureza da fração argila.

Os siltes ou solos siltosos micáceos e/ou caulínicos saprolíticos TIPO C (item A, cap.II) em geral apresentam grau de absorção igual ou muito próximo a 1. Expandem muito, deformando-se e perdendo grande capacidade de suporte.

A determinação do limite de contração é delicada e lenta. Infelizmente, não foram encontradas boas correlações entre este limite e propriedades mais simples de se
determinar em laboratório (Autret, 1982). Pesquisas futuras devem ser feitas para se estudar a possibilidade de secar os corpos de prova em estufa para maior rapidez do ensaio.

O ensaio de resistência à penetração é simples e rápido. Existem boas correlações entre a profundidade penetrada pelos diferentes cones normalizados e a resistência ao cisalhamento não drenada (Hansbo, 1957). Pode-se substituir este ensaio por qualquer outro tipo de ensaio penetrométrico compactível com as dimensões da pastilha.

O tipo fissuração apesar de ser um critério subjetivo, ajuda na identificação dos diferentes grupos de solos tropicais. Corpos de prova de solos lateríticos coesivos foram submetidos a ciclos de secagem-infiltração. Após cada ciclo, uma nova rede de fissuras secundárias, terciárias e assim por diante, pode se desenvolver. Este comportamento não ocorre com os demais grupos de solos tropicais.

C.6 - APLICAÇÕES

Arnold, 1985-b, descreve dois exemplos típicos que demonstram como é importante diferenciar solos tropicais lateríticos finos que formam "agregados" daqueles que não formam. Dois trechos experimentais foram construídos ao norte da Costa do Marfim, ambos com bases de solos lateríticos, sem revestimento, sujeitos ao mesmo tráfego. Trata-se dos solos 41006, areia argilosa laterítica, e 41016, areia laterítica.

O comportamento do solo 41006 foi excelente. A superfície de rolamento se conservou plana, densa, homogênea e resistente à abrasão. DE outro lado, a superfície da
pista construída com o material 41016 não foi durável e apresentou ondulação no sentido perpendicular ao tráfego. As cristas das ondulações eram duras e densas, enquanto houve segregação de material arenoso siltoso entre elas.

Ensaios porosimétricos indicaram a presença marcante de microporos muito finos na amostra 41006. A amostra 41016 é mais granular e a 41006 é mais coesiva. Veja resultados de ensaios na figura 34.

A areia argilosa laterítica exibe dificuldades de rehidratação ($A=0.41\%$) e é muito resistente. É um solo auto-agregante, e pelo comportamento observado em campo, constatar-se-ia provavelmente agregação estável nos ensaios de durabilidade - ciclos de secagem-infilação. A areia laterítica reabsorve água principalmente por capilaridade, sem expansão, até atingir grau de absorção igual a 1.

Assim, solos lateríticos compactados coesivos, apesar de CBR menor, podem apresentar melhor desempenho no campo que alguns solos granulares com maior CBR (Nogami e Villibor, 1983).
D - CLASSIFICAÇÃO DE SOLOS TROPICAIS COM BASE NA EXPANSÃO E NA CONTRAÇÃO

Arnold, 1985-b, através de ensaios porosimétricos, estudou a distribuição dos microporos de vários tipos de solos tropicais africanos e brasileiros. Com base nos modelos estruturais então admitidos, estabeleceu parâmetros que usados conjuntamente podem separar em diferentes grupos os solos tropicais. Os parâmetros adotados são: 1) inverso da densidade específica aparente seca \((1/\gamma_s)\) de pastilhas de solo moldadas no limite de liquidez e então secas ao ar; e 2) resistência a seco \((R_t)\) destas pastilhas.

Com a ação do intemperismo, o solo saprolítico se decompõe, transformando alguns de seus minerais e aumentando consequentemente a estabilidade físico-química dos mesmos. Admitindo um perfil ideal de solo residual composto de baixo para cima de horizonte de solo saprolítico, horizonte de alteração e horizonte superficial laterítico, com o aumento do grau de intemperismo e atuação do processo de laterização, há uma mudança na distribuição porosa do solo e os microporos diminuem ainda mais de tamanho (figura 7, pag 36).

Moldando pastilhas destes solos no limite de liquidez e deixando-as seca ao ar, observa-se que a densidade aparente seca aumenta no perfil "ideal" de baixo para cima.

A coesão de pastas secas ao ar do horizonte "ideal" de solo saprolítico aumenta de baixo para cima graças à decomposição química e desintegração física de seus minerais. A coesão atinge valores máximos nas argilas saprolíticas e argilas lateríticas. Ela volta a diminuir de baixo para cima no perfil "ideal" de solo laterítico com o
aumento da existência de agregados naturais cada vez mais resistentes, ou seja, a coesão diminui à se passar de argila laterítica até o cascalho laterítico.

Os diversos grupos de solos estudados se distribuem da seguinte forma num gráfico de βf ($1/KN/m^3$) X Rt (KN/m^2) (figura 35).

FIGURA 35: Classificação de solos tropicais segundo Arnold, 1985-b.

A metodologia de ensaio estabelecida é a seguinte:

1 - Moldagem do corpo de prova (idem ao item 1 apresentado no sub-item C deste capítulo).
2 - Contração:

Expõe-se o solo ao ar para seca até que o peso não varie mais. Determina-se seu peso seco P_s e o volume V nesta situação, e calcula-se o valor f:

$$f = \frac{1}{\gamma_s} = \frac{1}{P_s / V} \quad (m^2 \times 3/KN)$$

3 - Resistência a seco:

Efetua-se o ensaio de compressão diametral do corpo de prova (ANEXO 2) e calcula-se sua resistência à tração R_t.

Os resultados obtidos seguindo esta sistemática de ensaios se encontram na figura 36.

Colocou-se o gráfico de "Grau de Absorção x Resistência à Penetração do Cone" utilizado para a identificação de solos tropicais que melhoram suas propriedades com a secagem (item C deste Capítulo), principalmente com o intuito de complementar a classificação proposta por Arnold.

Argilas saprolíticas e argilas lateríticas podem apresentar valores muito próximos do inverso da densidade aparente seca e da resistência a seco na classificação de Arnold. Utilizando o gráfico de "A x Rp", estes solos podem ser distinguidos. Ambos são contráteis, porém a argila saprolítica reexpande e perde muita resistência em presença d'água, enquanto a argila laterítica apresenta grau de absorção geralmente menor que 1, reexpandindo-se pouco e mantendo-se resistente. Compare, por exemplo, o par de
FIGURA 36: Resultados de ensaios classificatórios de solos tropicais segundo Arnold, 1985-b.
solos: 40794 (argila saprolítica de basalto) e 40795 (argila laterítica de basalto).

Cuidados especiais devem ser tomados com solos lateríticos com estruturas muito porosas. Apesar da fração fina desidratada apresentar tendências à petrificação, estes solos quando compactados no ramo seco podem se apresentar colapsíveis. Note-se que nestes casos o valor β_f é bastante alto. Comportamento desta natureza foram encontrados com as amostras 40181 (argila laterítica de Sienito) e 40997 (argila laterítica de Xisto).
V - CONSIDERAÇÕES FINAIS
CONSIDERAÇÕES FINAIS

1 - Nas regiões tropicais há solos, como as argilas e solos argilosos transportados e argilas e solos argilosos saprolíticos que, quando expansivos em contato com a água, são contrácteis por perda de umidade. Este é o comportamento à expansão e à contração normalmente admitido em Mecânica dos Solos. Chamamos estes solos de TIPO A, - CLASSICO (Nogami et al, 1985).

Há solos, como as argilas e solos argilosos lateríticos, que são geralmente pouco expansivos, embora contrácteis e, ainda, há solos, como os siltes e solos siltosos micáceos elou caulínicos saprolíticos que são frequentemente expansivos e pouco ou não contrácteis. Chamamos estes solos de TIPO B e TIPO C, respectivamente (Nogami et al, 1985).

Tem-se como hipóteses para a baixa expansibilidade dos solos TIPO B: a) estabilidade e baixa atividade de seus argilo-minerais; b) eventual neutralização das cargas negativas das superfícies dos argilo-minerais pelas cargas positivas dos sesquióxidos; c) cimentação de partículas pelos sesquióxidos e produção de agregados resistentes à desintegração pela ação da água, tornando o solo mais granular; d) porosidade particular resultante da agregação, caracterizada por macroporos interligados que agem como condutos capilares de absorção d'água e por microporos extremamente pequenos responsáveis pelo desenvolvimento de altas pressões de sucção nas interfaces água-ar dos solos parcialmente saturados; e e) em particular no estado compactado, atingem graus de saturação bastante elevados na umidade ótima. Acredita-se que uma das razões destes solos serem contrácteis ao perderem umidade, seja o
desenvolvimento de elevadas pressões de sucção que aproximam as partículas da fração argila ou do interior dos agregados. Parte da contração pode ser explicada caso admitamos a existência de sesquióxidos finamente divididos sob a forma de microagregados compostos por cristalitos (Casanova, 1986). Estes cristalitos possuem superfície específica comparáveis às de ilitas ou mesmo de montmorilonitas. A expansão, no entanto, obedece mecanismos diferentes já que não se trata de partículas carregadas negativamente como os argilo-minerais.

A elevada expansão dos solos TIPO C tem origem na fração silte, que neste caso em especial, não é inerte. Supõe-se que a fração silte micácea expanda por causa da natureza elástica das partículas de mica que, em presença d'água, tendem a desfazer os dobramentos de suas placas, retonmando rapidamente a forma original (Sowers, 1963). Acredita-se na hipótese de que a expansão da fração silte caulínica se dé pela ação conjunta de deformações elásticas (Pastore, 1982) e de ligações com a água dos macrocristais caulínicos (Balduzzi, 1984) sob a forma de "sanfonas" (placas de caulinita superpostas e interligadas). Os cristais de mica podem ainda existir na dimensão areia. Ambos tipos de siltes saprolíticos mobilizam baixas pressões de expansão. A ausência ou pequena porcentagem da fração argila nestes solos explica sua baixa contração.

2 - A secagem das camadas compactadas da estrutura do pavimento é um fenômeno frequente nas regiões tropicais, seja logo após a compactação, como já na fase de operação da rodovia.

As camadas compactadas com solos finos estão, portanto, sujeitas à perda de umidade, propiciando o aparecimento
de fissuras e/ou trincas que, quando excessivas, são indesejáveis. A contração é portanto uma propriedade que deve ser medida ou avaliada como auxílio para controlar a fissuração e o trincamento excessivo. Dada as "anomalias" de comportamento expostas no item 1 anterior, a contração não pode ser prevista pela expansão. Dentro de uma determinada classe de solo tropical, quanto mais plástico for o solo, maior a contração. Porém não se pode prever a contração pela plasticidade pois não se pode generalizar certos limites para toda gama de solos tropicais. Eles podem apresentar os mesmos índices plásticos, mas comportamento bastante diferenciado em campo. A plasticidade, no caso de solos tropicais, não é capaz de agrupar solos de comportamento ou propriedades similares numa mesma classe.

Os ensaios de Nogami\Villibor (Cap.II, item D) em corpos de prova compactados de dimensões reduzidas parecem ser apropriados para a medida direta da expansão e da contração. Villibor, 1981, fixa certos limites que dependem da natureza do solo para sua utilização em bases e sub-bases.. No caso específico da contração, acredita-se que se deva examinar a interferência das condições ambientais de temperatura e umidade relativa do ar no total de contração medida.

3 - Há anos tem-se observado que certos solos lateríticos submetidos à secagem após compactação, têm apresentado melhor desempenho que aqueles onde a perda de umidade foi evitada.

Crê-se que a desidratação dos óxidos hidratados de ferro seja em parte irreversível, proporcionando a cimentação de partículas e petrificação desses solos. Além disso,
a secagem aumenta as forças coesivas entre partículas, graças às elevadas pressões de sucção desenvolvidas nas interfaces água-ar dos microporos e que parecem ser não totalmente perdidas em presença d'água.

Efeitos benéficos no comportamento, como diminuição da expansão e da perda da capacidade de suporte quando em contato com a água, são obtidos em solos susceptíveis à "agregação" por secagem quando compactados.

Este trabalho propõe ensaio de reexpansão em pastilhas de solos moldados no limite de liquidez e submetidas à secagem ao ar, com medida da capacidade de reabsorção d'água e da resistência à penetração do cone após reabsorção, para identificar os solos que possam apresentar melhoramentos em algumas de suas propriedades pela secagem (Cap. IV, item C).

4 - Observou-se que os solos lateríticos que apresentam o poder auto-cimentante por secagem são também coesivos. Nem todos solos coesivos são auto-cimentantes. A cimentação por secagem, que proporciona formação de "agregados" nesse tipo de solo no estado compactado, é proveniente do "Bom ligante" laterítico. O aparecimento de fissuras de contração após algumas horas de secagem da camada compactada de solo laterítico é um indício da coesão do solo.

A fissuração e o trincamento excessivos são indesejáveis pois formam caminhos preferenciais de entrada d'água na estrutura compactada, causando por vezes o desprendimento de material na vizinhança da trinca pela ação das águas. O preenchimento das trincas frequentemente não resolve o problema. Elas se reproduzem ou aparecem em outros lugares (Autret, 1982).
O trincamento exagerado pode-se refletir na superfície de rolamento, causando desconforto ao usuário e o aparecimento de "panelas" pela ação do tráfego e das águas nestas descontinuidades.

As bases muito trincadas devem ser tratadas antes de receber o revestimento. A coesão excessiva pode ser diminuída misturando-se areia inerte ou areia laterítica. A falta de coesão, principalmente das areias tem causado a falta de aderência entre a base e o revestimento, gerando desprendimento e ruptura da capa, além de erosão da base nas bordas desprotegidas dos acostamentos pela ação das águas. Desta forma, solos lateríticos coesivos, apesar de CBR menor, podem apresentar melhor desempenho em campo que alguns solos granulares com maior CBR (Nogami e Villibor, 1983). Pode-se fornecer coesão ao material granular misturando argilas lateríticas. A dosagem das misturas deve ser feita de forma controlada.

5 - Verificou-se a durabilidade em relação às mudanças no teor de umidade dos solos compactados "tratados" pela secagem através de ensaios cíclicos de secagem-infiltração em corpos de prova compactados com medida da expansão e da contração axiais (Cap. III, item C.3.5). Considerou-se o solo "auto-estável" quando no estado compactado (sem qualquer adição de agentes estabilizantes, sem execução de misturas e sem compactação complementar) apresentar uma diminuição relativa de volume, ou pelo menos nenhum aumento, após cada ciclo de secagem-infiltração, até que se estabeleça um equilíbrio onde a expansão e a contração se processam entre limites constantes.
VI - AGRADECIMENTOS
AGRADECIMENTOS

Agradeço:

Ao Prof. Dr. Franco Balduzzi pela orientação e apoio à minha pesquisa e pela oportunidade a mim oferecida de trabalhar junto ao Instituto de Mecânica dos Solos e Fundações da Escola Politécnica federal Zurique, Suíça, no período de dezembro de 1983 a março de 1986; ao Prof. Dr. Job S. Nogami pela orientação e fornecimento de dados complementares à pesquisa; a Profa. Dra. Vera M. Cozzolino pela orientação; aos engenheiros Dr. Douglas Villibor, Celso Carvalho, Maria Eugénia Boscov, Christophe Beurret e Dr. Walter Arnold pelas discussões e sugestões dadas à pesquisa; ao engenheiro Paulo Serra pelas visitas a trechos experimentais no Estado de São Paulo e aos engenheiros Peter Iaegler e Paulo C. de Almeida pelas visitas a trechos experimentais na Costa do Marfim; ao geólogo Eraldo Pastore pelo fornecimento de dados complementares à pesquisa; aos técnicos Sra. H. Ciceri e Sr. W. Berger pelo auxílio prestado nos ensaios de laboratório; a E. Honegger e A. Zweigler pelos projetos de equipamentos utilizados na pesquisa; ao Sr. D. Belfanti pela confecção dos equipamentos; à Barbara Sutter e Ubaldo Fusco pelos gráficos e desenhos; e à Kimico Sasaki pela valiosa ajuda na datilografia desta dissertação.
VII - BIBLIOGRAFÍA
VII - BIBLIOGRAFIA

ABNT. "Determinação do Limite e da Relação de Contração de Solos". Método Brasileiro MB - 55.

COLLINS, K. (1985). "Towards Characterizations of Tropical Soil Microstructure". First Int. Conf. on Geomechanics in Tropical Lateritic and Saprolitic Soils. Session 1, Brasilia, Brasil. ABMS.

VIII - ANEXOS
ANEXO 1

TABELA PARA A DETERMINAÇÃO DO MINI-CBR

<table>
<thead>
<tr>
<th>CARGA (Kq)</th>
<th>Mini-CBR 2.0</th>
<th>Mini-CBR 2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>2</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>1.2</td>
</tr>
<tr>
<td>4</td>
<td>1.9</td>
<td>1.6</td>
</tr>
<tr>
<td>5</td>
<td>2.4</td>
<td>2.0</td>
</tr>
<tr>
<td>6</td>
<td>2.8</td>
<td>2.3</td>
</tr>
<tr>
<td>7</td>
<td>3.2</td>
<td>2.7</td>
</tr>
<tr>
<td>8</td>
<td>3.6</td>
<td>3.1</td>
</tr>
<tr>
<td>9</td>
<td>4.0</td>
<td>3.4</td>
</tr>
<tr>
<td>10</td>
<td>4.4</td>
<td>3.8</td>
</tr>
<tr>
<td>11</td>
<td>4.7</td>
<td>4.1</td>
</tr>
<tr>
<td>12</td>
<td>5.1</td>
<td>4.5</td>
</tr>
<tr>
<td>13</td>
<td>5.5</td>
<td>4.8</td>
</tr>
<tr>
<td>14</td>
<td>5.9</td>
<td>5.2</td>
</tr>
<tr>
<td>15</td>
<td>6.3</td>
<td>5.5</td>
</tr>
<tr>
<td>16</td>
<td>6.7</td>
<td>5.9</td>
</tr>
<tr>
<td>17</td>
<td>7.0</td>
<td>6.2</td>
</tr>
<tr>
<td>18</td>
<td>7.4</td>
<td>6.6</td>
</tr>
<tr>
<td>19</td>
<td>7.8</td>
<td>6.9</td>
</tr>
<tr>
<td>20</td>
<td>8.2</td>
<td>7.3</td>
</tr>
<tr>
<td>21</td>
<td>8.5</td>
<td>7.6</td>
</tr>
<tr>
<td>22</td>
<td>8.9</td>
<td>8.0</td>
</tr>
<tr>
<td>23</td>
<td>9.2</td>
<td>8.3</td>
</tr>
<tr>
<td>24</td>
<td>9.6</td>
<td>8.6</td>
</tr>
<tr>
<td>25</td>
<td>10.0</td>
<td>8.9</td>
</tr>
</tbody>
</table>
ANEXO 1

TABELA PARA A DETERMINAÇÃO DO MINI-CBR

<table>
<thead>
<tr>
<th>CARGA (Kq)</th>
<th>Mini-CBR 2.0</th>
<th>Mini-CBR 2.5</th>
<th>CARGA (Kq)</th>
<th>Mini-CBR 2.0</th>
<th>Mini-CBR 2.5</th>
<th>CARGA (kg)</th>
<th>Mini-CBR 2.0</th>
<th>Mini-CBR 2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>26.9</td>
<td>25.4</td>
<td>150</td>
<td>49.1</td>
<td>48.2</td>
<td>300</td>
<td>92</td>
<td>92</td>
</tr>
<tr>
<td>77</td>
<td>27.2</td>
<td>25.7</td>
<td>155</td>
<td>50.8</td>
<td>49.7</td>
<td>310</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>78</td>
<td>27.6</td>
<td>25.9</td>
<td>160</td>
<td>52.0</td>
<td>51.2</td>
<td>320</td>
<td>97</td>
<td>98</td>
</tr>
<tr>
<td>79</td>
<td>27.9</td>
<td>26.2</td>
<td>165</td>
<td>53.6</td>
<td>52.7</td>
<td>330</td>
<td>100</td>
<td>101</td>
</tr>
<tr>
<td>80</td>
<td>28.3</td>
<td>26.4</td>
<td>170</td>
<td>55.1</td>
<td>54.2</td>
<td>340</td>
<td>103</td>
<td>104</td>
</tr>
<tr>
<td>82</td>
<td>28.6</td>
<td>27.4</td>
<td>175</td>
<td>57.0</td>
<td>55.7</td>
<td>350</td>
<td>106</td>
<td>107</td>
</tr>
<tr>
<td>84</td>
<td>29.4</td>
<td>28.1</td>
<td>180</td>
<td>58.3</td>
<td>57.1</td>
<td>360</td>
<td>109</td>
<td>109</td>
</tr>
<tr>
<td>86</td>
<td>30.0</td>
<td>28.7</td>
<td>185</td>
<td>59.7</td>
<td>58.6</td>
<td>370</td>
<td>111</td>
<td>112</td>
</tr>
<tr>
<td>88</td>
<td>30.6</td>
<td>29.2</td>
<td>190</td>
<td>61.1</td>
<td>60.1</td>
<td>380</td>
<td>114</td>
<td>115</td>
</tr>
<tr>
<td>90</td>
<td>31.3</td>
<td>29.8</td>
<td>195</td>
<td>62.5</td>
<td>61.7</td>
<td>390</td>
<td>117</td>
<td>118</td>
</tr>
<tr>
<td>92</td>
<td>31.9</td>
<td>30.5</td>
<td>200</td>
<td>64.0</td>
<td>63.1</td>
<td>400</td>
<td>119</td>
<td>121</td>
</tr>
<tr>
<td>94</td>
<td>32.5</td>
<td>31.1</td>
<td>205</td>
<td>65.5</td>
<td>64.6</td>
<td>410</td>
<td>122</td>
<td>124</td>
</tr>
<tr>
<td>96</td>
<td>33.0</td>
<td>31.7</td>
<td>210</td>
<td>67.0</td>
<td>66.4</td>
<td>420</td>
<td>125</td>
<td>127</td>
</tr>
<tr>
<td>98</td>
<td>33.7</td>
<td>32.4</td>
<td>215</td>
<td>68.6</td>
<td>67.6</td>
<td>430</td>
<td>127</td>
<td>129</td>
</tr>
<tr>
<td>100</td>
<td>34.3</td>
<td>33.0</td>
<td>220</td>
<td>70.1</td>
<td>69.0</td>
<td>440</td>
<td>130</td>
<td>132</td>
</tr>
<tr>
<td>105</td>
<td>36.0</td>
<td>34.5</td>
<td>225</td>
<td>71.3</td>
<td>70.5</td>
<td>450</td>
<td>133</td>
<td>135</td>
</tr>
<tr>
<td>110</td>
<td>37.2</td>
<td>36.1</td>
<td>230</td>
<td>72.6</td>
<td>71.9</td>
<td>460</td>
<td>136</td>
<td>138</td>
</tr>
<tr>
<td>115</td>
<td>39.0</td>
<td>37.6</td>
<td>235</td>
<td>73.8</td>
<td>73.5</td>
<td>470</td>
<td>138</td>
<td>141</td>
</tr>
<tr>
<td>120</td>
<td>40.4</td>
<td>39.1</td>
<td>240</td>
<td>75.2</td>
<td>74.8</td>
<td>480</td>
<td>141</td>
<td>143</td>
</tr>
<tr>
<td>125</td>
<td>41.8</td>
<td>40.6</td>
<td>245</td>
<td>76.9</td>
<td>76.4</td>
<td>490</td>
<td>143</td>
<td>146</td>
</tr>
<tr>
<td>130</td>
<td>42.9</td>
<td>42.9</td>
<td>250</td>
<td>79</td>
<td>78</td>
<td>500</td>
<td>146</td>
<td>149</td>
</tr>
<tr>
<td>135</td>
<td>44.8</td>
<td>43.7</td>
<td>260</td>
<td>82</td>
<td>81</td>
<td>510</td>
<td>149</td>
<td>152</td>
</tr>
<tr>
<td>140</td>
<td>46.3</td>
<td>45.2</td>
<td>270</td>
<td>84</td>
<td>83</td>
<td>520</td>
<td>151</td>
<td>155</td>
</tr>
<tr>
<td>145</td>
<td>47.4</td>
<td>46.7</td>
<td>280</td>
<td>87</td>
<td>86</td>
<td>530</td>
<td>154</td>
<td>157</td>
</tr>
<tr>
<td>150</td>
<td>49.1</td>
<td>48.2</td>
<td>290</td>
<td>89</td>
<td>89</td>
<td>540</td>
<td>156</td>
<td>160</td>
</tr>
<tr>
<td>CARGA (Kq)</td>
<td>Mini-CBR</td>
<td>CARGA (Kq)</td>
<td>Mini-CBR</td>
<td>CARGA (Kq)</td>
<td>Mini-CBR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td>------------</td>
<td>----------</td>
<td>------------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>2.5</td>
<td>2.0</td>
<td>2.5</td>
<td>2.0</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>550</td>
<td>159</td>
<td>163</td>
<td>670</td>
<td>190</td>
<td>196</td>
<td>790</td>
<td>220</td>
<td>229</td>
</tr>
<tr>
<td>560</td>
<td>161</td>
<td>166</td>
<td>680</td>
<td>192</td>
<td>199</td>
<td>800</td>
<td>222</td>
<td>231</td>
</tr>
<tr>
<td>570</td>
<td>164</td>
<td>168</td>
<td>690</td>
<td>195</td>
<td>201</td>
<td>820</td>
<td>228</td>
<td>237</td>
</tr>
<tr>
<td>580</td>
<td>167</td>
<td>171</td>
<td>700</td>
<td>197</td>
<td>204</td>
<td>840</td>
<td>232</td>
<td>242</td>
</tr>
<tr>
<td>590</td>
<td>169</td>
<td>174</td>
<td>710</td>
<td>200</td>
<td>207</td>
<td>860</td>
<td>237</td>
<td>247</td>
</tr>
<tr>
<td>600</td>
<td>172</td>
<td>177</td>
<td>720</td>
<td>202</td>
<td>210</td>
<td>880</td>
<td>242</td>
<td>253</td>
</tr>
<tr>
<td>610</td>
<td>174</td>
<td>180</td>
<td>730</td>
<td>205</td>
<td>212</td>
<td>900</td>
<td>247</td>
<td>256</td>
</tr>
<tr>
<td>620</td>
<td>177</td>
<td>182</td>
<td>740</td>
<td>207</td>
<td>215</td>
<td>920</td>
<td>252</td>
<td>264</td>
</tr>
<tr>
<td>630</td>
<td>180</td>
<td>185</td>
<td>750</td>
<td>210</td>
<td>218</td>
<td>940</td>
<td>257</td>
<td>269</td>
</tr>
<tr>
<td>640</td>
<td>182</td>
<td>188</td>
<td>760</td>
<td>212</td>
<td>220</td>
<td>960</td>
<td>262</td>
<td>274</td>
</tr>
<tr>
<td>650</td>
<td>185</td>
<td>191</td>
<td>770</td>
<td>215</td>
<td>223</td>
<td>980</td>
<td>267</td>
<td>280</td>
</tr>
<tr>
<td>660</td>
<td>187</td>
<td>193</td>
<td>780</td>
<td>217</td>
<td>226</td>
<td>1000</td>
<td>272</td>
<td>285</td>
</tr>
</tbody>
</table>
ANEXO 2

ENSAIO DE COMPRESSÃO DIAMETRAL

P = força máxima aplicada para ruptura do corpo de prova

D = diâmetro do corpo de prova

l = altura do corpo de prova

A resistência à compressão diametral R_t é dada pela relação:

$$R_t = \frac{2P}{\pi \cdot D \cdot l}$$
ANEXO 3

TIPOS DE FISSURAS

<table>
<thead>
<tr>
<th>TIPO</th>
<th>DESCRIÇÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIPO</td>
<td>DESCRIÇÃO</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
</tr>
</tbody>
</table>
| 3 | Fissuras preferenciais abertas com fissuras secundárias entre elas.
Resistência: média à grande
Contração: em geral grande
Expansão: pequena
Deformação: cônica
Perda: pequena à média |
| 4 | Fissuras bem distribuídas, formando pequenos quadrados
Solos não coesivos.
Resistência: em geral pequena
Contração: pequena
Expansão: pequena
Deformação: nenhuma ou pequena
Perda: pequena à média |
| 5 | Fissuras Preferenciais.
Resistência: média
Contração: média à grande
Expansão: média
Deformação: nenhuma
Perda: pequena |
<table>
<thead>
<tr>
<th>TIPO</th>
<th>DESCRIÇÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Micro-fissuras. As fissuras laterais podem ser folheadas</td>
</tr>
<tr>
<td></td>
<td>Resistência: pequena à média</td>
</tr>
<tr>
<td></td>
<td>Contração: média à grande</td>
</tr>
<tr>
<td></td>
<td>Expansão: média à grande</td>
</tr>
<tr>
<td></td>
<td>Deformação: média à grande</td>
</tr>
<tr>
<td></td>
<td>Perda: média à grande</td>
</tr>
<tr>
<td>7</td>
<td>Fissuras aleatórias, sem uma clara distribuição, geralmente grandes ao centro e micro-fissuras nas bordas.</td>
</tr>
<tr>
<td></td>
<td>Resistência: pequena</td>
</tr>
<tr>
<td></td>
<td>Contração: pequena</td>
</tr>
<tr>
<td></td>
<td>Expansão: grande</td>
</tr>
<tr>
<td></td>
<td>Deformação: grande</td>
</tr>
<tr>
<td></td>
<td>Perda: média à grande</td>
</tr>
<tr>
<td>8</td>
<td>Fissuras sem clara distribuição, formando às vezes fissuras paralelas.</td>
</tr>
<tr>
<td></td>
<td>Resistência: média à pequena</td>
</tr>
<tr>
<td></td>
<td>Contração: média</td>
</tr>
<tr>
<td></td>
<td>Expansão: média à grande</td>
</tr>
<tr>
<td></td>
<td>Deformação: grande</td>
</tr>
<tr>
<td></td>
<td>Perda: geralmente grande</td>
</tr>
</tbody>
</table>
DETERMINAÇÃO DA RESISTÊNCIA À PENETRAÇÃO DO CONE

Relação entre a resistência à penetração R_p (t/m^2) e a profundidade penetrada p (mm) pelo cone de 60g/60º.

<table>
<thead>
<tr>
<th>p (mm)</th>
<th>R_p (t/m^2)</th>
<th>p (mm)</th>
<th>R_p (t/m^2)</th>
<th>p (mm)</th>
<th>R_p (t/m^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>1.13</td>
<td>9.0</td>
<td>0.22</td>
<td>14.0</td>
<td>0.092</td>
</tr>
<tr>
<td>4.1</td>
<td>1.07</td>
<td>9.1</td>
<td>0.22</td>
<td>14.1</td>
<td>0.089</td>
</tr>
<tr>
<td>4.2</td>
<td>1.02</td>
<td>9.2</td>
<td>0.21</td>
<td>14.2</td>
<td>0.087</td>
</tr>
<tr>
<td>4.3</td>
<td>0.97</td>
<td>9.3</td>
<td>0.21</td>
<td>14.3</td>
<td>0.084</td>
</tr>
<tr>
<td>4.4</td>
<td>0.93</td>
<td>9.4</td>
<td>0.20</td>
<td>14.4</td>
<td>0.082</td>
</tr>
<tr>
<td>4.5</td>
<td>0.89</td>
<td>9.5</td>
<td>0.20</td>
<td>14.5</td>
<td>0.080</td>
</tr>
<tr>
<td>4.6</td>
<td>0.85</td>
<td>9.6</td>
<td>0.19</td>
<td>14.6</td>
<td>0.078</td>
</tr>
<tr>
<td>4.7</td>
<td>0.81</td>
<td>9.7</td>
<td>0.19</td>
<td>14.7</td>
<td>0.076</td>
</tr>
<tr>
<td>4.8</td>
<td>0.78</td>
<td>9.8</td>
<td>0.19</td>
<td>14.8</td>
<td>0.074</td>
</tr>
<tr>
<td>4.9</td>
<td>0.75</td>
<td>9.9</td>
<td>0.18</td>
<td>14.9</td>
<td>0.072</td>
</tr>
<tr>
<td>5.0</td>
<td>0.72</td>
<td>10.0</td>
<td>0.18</td>
<td>15.0</td>
<td>0.070</td>
</tr>
<tr>
<td>5.1</td>
<td>0.69</td>
<td>10.1</td>
<td>0.18</td>
<td>15.1</td>
<td>0.068</td>
</tr>
<tr>
<td>5.2</td>
<td>0.66</td>
<td>10.2</td>
<td>0.17</td>
<td>15.2</td>
<td>0.067</td>
</tr>
<tr>
<td>5.3</td>
<td>0.64</td>
<td>10.3</td>
<td>0.17</td>
<td>15.3</td>
<td>0.065</td>
</tr>
<tr>
<td>5.4</td>
<td>0.62</td>
<td>10.4</td>
<td>0.17</td>
<td>15.4</td>
<td>0.063</td>
</tr>
<tr>
<td>5.5</td>
<td>0.60</td>
<td>10.5</td>
<td>0.16</td>
<td>15.5</td>
<td>0.062</td>
</tr>
<tr>
<td>5.6</td>
<td>0.57</td>
<td>10.6</td>
<td>0.16</td>
<td>15.6</td>
<td>0.061</td>
</tr>
<tr>
<td>5.7</td>
<td>0.55</td>
<td>10.7</td>
<td>0.16</td>
<td>15.7</td>
<td>0.059</td>
</tr>
<tr>
<td>5.8</td>
<td>0.53</td>
<td>10.8</td>
<td>0.15</td>
<td>15.8</td>
<td>0.057</td>
</tr>
<tr>
<td>5.9</td>
<td>0.51</td>
<td>10.9</td>
<td>0.15</td>
<td>15.9</td>
<td>0.055</td>
</tr>
<tr>
<td>6.0</td>
<td>0.50</td>
<td>11.0</td>
<td>0.15</td>
<td>16.0</td>
<td>0.053</td>
</tr>
<tr>
<td>6.1</td>
<td>0.48</td>
<td>11.1</td>
<td>0.14</td>
<td>16.1</td>
<td>0.050</td>
</tr>
<tr>
<td>6.2</td>
<td>0.47</td>
<td>11.2</td>
<td>0.14</td>
<td>16.2</td>
<td>0.047</td>
</tr>
<tr>
<td>6.3</td>
<td>0.45</td>
<td>11.3</td>
<td>0.14</td>
<td>16.3</td>
<td>0.045</td>
</tr>
<tr>
<td>6.4</td>
<td>0.44</td>
<td>11.4</td>
<td>0.14</td>
<td>16.4</td>
<td>0.043</td>
</tr>
<tr>
<td>6.5</td>
<td>0.43</td>
<td>11.5</td>
<td>0.14</td>
<td>16.5</td>
<td>0.041</td>
</tr>
<tr>
<td>6.6</td>
<td>0.41</td>
<td>11.6</td>
<td>0.13</td>
<td>16.6</td>
<td>0.039</td>
</tr>
<tr>
<td>6.7</td>
<td>0.40</td>
<td>11.7</td>
<td>0.13</td>
<td>16.7</td>
<td>0.037</td>
</tr>
<tr>
<td>6.8</td>
<td>0.39</td>
<td>11.8</td>
<td>0.13</td>
<td>16.8</td>
<td>0.035</td>
</tr>
<tr>
<td>6.9</td>
<td>0.38</td>
<td>11.9</td>
<td>0.13</td>
<td>16.9</td>
<td>0.033</td>
</tr>
<tr>
<td>7.0</td>
<td>0.37</td>
<td>12.0</td>
<td>0.13</td>
<td>17.0</td>
<td>0.031</td>
</tr>
<tr>
<td>7.1</td>
<td>0.36</td>
<td>12.1</td>
<td>0.13</td>
<td>17.1</td>
<td>0.029</td>
</tr>
<tr>
<td>7.2</td>
<td>0.35</td>
<td>12.2</td>
<td>0.13</td>
<td>17.2</td>
<td>0.027</td>
</tr>
<tr>
<td>7.3</td>
<td>0.34</td>
<td>12.3</td>
<td>0.12</td>
<td>17.3</td>
<td>0.025</td>
</tr>
<tr>
<td>7.4</td>
<td>0.33</td>
<td>12.4</td>
<td>0.12</td>
<td>17.4</td>
<td>0.023</td>
</tr>
<tr>
<td>7.5</td>
<td>0.32</td>
<td>12.5</td>
<td>0.12</td>
<td>17.5</td>
<td>0.021</td>
</tr>
<tr>
<td>7.6</td>
<td>0.31</td>
<td>12.6</td>
<td>0.12</td>
<td>17.6</td>
<td>0.019</td>
</tr>
<tr>
<td>7.7</td>
<td>0.30</td>
<td>12.7</td>
<td>0.12</td>
<td>17.7</td>
<td>0.017</td>
</tr>
<tr>
<td>7.8</td>
<td>0.29</td>
<td>12.8</td>
<td>0.12</td>
<td>17.8</td>
<td>0.015</td>
</tr>
<tr>
<td>7.9</td>
<td>0.28</td>
<td>12.9</td>
<td>0.12</td>
<td>17.9</td>
<td>0.013</td>
</tr>
<tr>
<td>8.0</td>
<td>0.28</td>
<td>13.0</td>
<td>0.12</td>
<td>18.0</td>
<td>0.011</td>
</tr>
<tr>
<td>8.1</td>
<td>0.27</td>
<td>13.1</td>
<td>0.12</td>
<td>18.1</td>
<td>0.009</td>
</tr>
<tr>
<td>8.2</td>
<td>0.27</td>
<td>13.2</td>
<td>0.12</td>
<td>18.2</td>
<td>0.007</td>
</tr>
<tr>
<td>8.3</td>
<td>0.26</td>
<td>13.3</td>
<td>0.12</td>
<td>18.3</td>
<td>0.005</td>
</tr>
<tr>
<td>8.4</td>
<td>0.26</td>
<td>13.4</td>
<td>0.12</td>
<td>18.4</td>
<td>0.003</td>
</tr>
<tr>
<td>8.5</td>
<td>0.25</td>
<td>13.5</td>
<td>0.12</td>
<td>18.5</td>
<td>0.001</td>
</tr>
<tr>
<td>8.6</td>
<td>0.25</td>
<td>13.6</td>
<td>0.12</td>
<td>18.6</td>
<td>0.000</td>
</tr>
<tr>
<td>8.7</td>
<td>0.24</td>
<td>13.7</td>
<td>0.12</td>
<td>18.7</td>
<td>0.000</td>
</tr>
<tr>
<td>8.8</td>
<td>0.23</td>
<td>13.8</td>
<td>0.12</td>
<td>18.8</td>
<td>0.000</td>
</tr>
<tr>
<td>8.9</td>
<td>0.23</td>
<td>13.9</td>
<td>0.12</td>
<td>18.9</td>
<td>0.000</td>
</tr>
</tbody>
</table>

$k = 0.401$
Determinação da resistência à penetração do cone - cont.

Relação entre a resistência à penetração Rp (t/m^2) e a profundidade penetrada p (mm) pelo cone de 10g/60°.

<table>
<thead>
<tr>
<th>p (mm)</th>
<th>Rp (t/m^2)</th>
<th>p (mm)</th>
<th>Rp (t/m^2)</th>
<th>p (mm)</th>
<th>Rp (t/m^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>0.19</td>
<td>9.0</td>
<td>0.037</td>
<td>14.0</td>
<td>0.015</td>
</tr>
<tr>
<td>4.1</td>
<td>0.18</td>
<td>9.1</td>
<td>0.036</td>
<td>14.2</td>
<td>0.015</td>
</tr>
<tr>
<td>4.2</td>
<td>0.17</td>
<td>9.2</td>
<td>0.035</td>
<td>14.4</td>
<td>0.014</td>
</tr>
<tr>
<td>4.3</td>
<td>0.16</td>
<td>9.3</td>
<td>0.035</td>
<td>14.6</td>
<td>0.014</td>
</tr>
<tr>
<td>4.4</td>
<td>0.15</td>
<td>9.4</td>
<td>0.034</td>
<td>14.8</td>
<td>0.014</td>
</tr>
<tr>
<td>4.5</td>
<td>0.15</td>
<td>9.5</td>
<td>0.033</td>
<td>15.0</td>
<td>0.013</td>
</tr>
<tr>
<td>4.6</td>
<td>0.14</td>
<td>9.6</td>
<td>0.033</td>
<td>15.2</td>
<td>0.013</td>
</tr>
<tr>
<td>4.7</td>
<td>0.14</td>
<td>9.7</td>
<td>0.032</td>
<td>15.4</td>
<td>0.013</td>
</tr>
<tr>
<td>4.8</td>
<td>0.13</td>
<td>9.8</td>
<td>0.031</td>
<td>15.6</td>
<td>0.012</td>
</tr>
<tr>
<td>4.9</td>
<td>0.12</td>
<td>9.9</td>
<td>0.031</td>
<td>15.8</td>
<td>0.012</td>
</tr>
<tr>
<td>5.0</td>
<td>0.12</td>
<td>10.0</td>
<td>0.030</td>
<td>16.0</td>
<td>0.012</td>
</tr>
<tr>
<td>5.1</td>
<td>0.11</td>
<td>10.1</td>
<td>0.029</td>
<td>16.2</td>
<td>0.011</td>
</tr>
<tr>
<td>5.2</td>
<td>0.11</td>
<td>10.2</td>
<td>0.029</td>
<td>16.4</td>
<td>0.011</td>
</tr>
<tr>
<td>5.3</td>
<td>0.11</td>
<td>10.3</td>
<td>0.028</td>
<td>16.6</td>
<td>0.011</td>
</tr>
<tr>
<td>5.4</td>
<td>0.10</td>
<td>10.4</td>
<td>0.028</td>
<td>16.8</td>
<td>0.011</td>
</tr>
<tr>
<td>5.5</td>
<td>0.099</td>
<td>10.5</td>
<td>0.027</td>
<td>17.0</td>
<td>0.010</td>
</tr>
<tr>
<td>5.6</td>
<td>0.096</td>
<td>10.6</td>
<td>0.027</td>
<td>17.2</td>
<td>0.010</td>
</tr>
<tr>
<td>5.7</td>
<td>0.092</td>
<td>10.7</td>
<td>0.026</td>
<td>17.4</td>
<td>0.0099</td>
</tr>
<tr>
<td>5.8</td>
<td>0.089</td>
<td>10.8</td>
<td>0.026</td>
<td>17.6</td>
<td>0.0097</td>
</tr>
<tr>
<td>5.9</td>
<td>0.086</td>
<td>10.9</td>
<td>0.025</td>
<td>17.8</td>
<td>0.0095</td>
</tr>
<tr>
<td>6.0</td>
<td>0.083</td>
<td>11.0</td>
<td>0.025</td>
<td>18.0</td>
<td>0.0093</td>
</tr>
<tr>
<td>6.1</td>
<td>0.081</td>
<td>11.1</td>
<td>0.024</td>
<td>18.5</td>
<td>0.0088</td>
</tr>
<tr>
<td>6.2</td>
<td>0.078</td>
<td>11.2</td>
<td>0.024</td>
<td>19.0</td>
<td>0.0083</td>
</tr>
<tr>
<td>6.3</td>
<td>0.076</td>
<td>11.3</td>
<td>0.023</td>
<td>19.5</td>
<td>0.0079</td>
</tr>
<tr>
<td>6.4</td>
<td>0.073</td>
<td>11.4</td>
<td>0.023</td>
<td>20.0</td>
<td>0.0075</td>
</tr>
<tr>
<td>6.5</td>
<td>0.071</td>
<td>11.5</td>
<td>0.023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.6</td>
<td>0.069</td>
<td>11.6</td>
<td>0.022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.7</td>
<td>0.067</td>
<td>11.7</td>
<td>0.022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.8</td>
<td>0.065</td>
<td>11.8</td>
<td>0.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.9</td>
<td>0.063</td>
<td>11.9</td>
<td>0.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.0</td>
<td>0.061</td>
<td>12.0</td>
<td>0.021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>0.060</td>
<td>12.1</td>
<td>0.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>0.058</td>
<td>12.2</td>
<td>0.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.3</td>
<td>0.056</td>
<td>12.3</td>
<td>0.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.4</td>
<td>0.055</td>
<td>12.4</td>
<td>0.019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.5</td>
<td>0.053</td>
<td>12.5</td>
<td>0.019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.6</td>
<td>0.052</td>
<td>12.6</td>
<td>0.019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.7</td>
<td>0.051</td>
<td>12.7</td>
<td>0.019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.8</td>
<td>0.049</td>
<td>12.8</td>
<td>0.018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.9</td>
<td>0.048</td>
<td>12.9</td>
<td>0.018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.0</td>
<td>0.047</td>
<td>13.0</td>
<td>0.018</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>0.046</td>
<td>13.1</td>
<td>0.017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.2</td>
<td>0.045</td>
<td>13.2</td>
<td>0.017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.3</td>
<td>0.044</td>
<td>13.3</td>
<td>0.017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.4</td>
<td>0.042</td>
<td>13.4</td>
<td>0.017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.5</td>
<td>0.041</td>
<td>13.5</td>
<td>0.016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.6</td>
<td>0.040</td>
<td>13.6</td>
<td>0.016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.7</td>
<td>0.039</td>
<td>13.7</td>
<td>0.016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.8</td>
<td>0.038</td>
<td>13.8</td>
<td>0.016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.9</td>
<td>0.038</td>
<td>13.9</td>
<td>0.015</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ANEXO 5
LISTA DOS SOLOS ENSAIADOS

39526 cascalho laterítico - Campina Grande, Brasil
39589 areia argilosa laterítica - Ciliman, Indonésia
40181 argila laterítica de Sienito - R.J., Brasil
40182 areia argilosa laterítica - Carapebus, R.J., Brasil
40183 areia argilosa saprolítica de Sienito - R.J., Brasil
40794 argila saprolítica de Basalto - BR 158/RG, Brasil
40795 argila laterítica de Basalto - BR 158/RG, Brasil
40814 silte saprolítico de Filito-A.Sikensi, C. do Marfim
40903 areia siltosa - Weiniger-Kreuz, ZH, Suíça
40992 argila laterítica de Xisto-Dimbokro, Costa do Marfim
40993 areia pisolítica de Xisto - Dimbokro, Costa do Marfim
40994 silte saprolítico de Xisto-Dimbokro, Costa do Marfim
40995 argila laterítica - ARN, Costa do Marfim
40997 argila laterítica de Xisto - ARN, Costa do Marfim
40999 silte saprolítico de Xisto - ARN, Costa do Marfim
41004 areia laterítica de Anfibolito-Korogho, C. do Marfim
41005 cascalho laterítico (carapaça)-Korogho, C. do Marfim
41006 areia argilosa laterítica - Korogho, Costa do Marfim
41007 argila laterítica - Kowi, Costa do Marfim
41008 cascalho laterítico - Kowi, Costa do Marfim
41011 argila laterítica (carapaça)-Katiola, C. do Marfim
41012 silte saprolítico de Gnaisse-Katiola, C. do Marfim
41013 areia argilosa de granito-Katiola, Costa do Marfim
41016 areia laterítica - Koubala, Costa do Marfim
41018 cascalho pisolítico - Katiola, Costa do Marfim
41020 argila de alteração - Katiola, Costa do Marfim
41021 cascalho laterítico - Katiola, Costa do marfim
41024 areia laterítica - Route Bingerville, C. do Marfim
41032 areia argilosa laterizada - R.J., Brasil
41038 argila saprolítica de Gnaisse - Porto velho, Brasil
41040 cascalho laterítico de Gnaisse - Porto Velho, Brasil
41042 areia argilosa saprolítica de Granito-P. Velho, Br.
41044 cascalho laterítico de Granito - Porto Velho, Brasil
<table>
<thead>
<tr>
<th>Código</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>41226</td>
<td>areia argilosa laterítica - Sadofor, Costa do Marfim</td>
</tr>
<tr>
<td>41772</td>
<td>arqila laterítica - SP 310, Brasil</td>
</tr>
<tr>
<td>41773</td>
<td>arqila saprolítica de Basalto - SP 255, Brasil</td>
</tr>
<tr>
<td>41774</td>
<td>areia laterítica - SPV São Lourenço, SP, Brasil</td>
</tr>
<tr>
<td>41775</td>
<td>areia argilosa de alteração - Trevo do Cambuí, SP, Br.</td>
</tr>
<tr>
<td>41777</td>
<td>arqila saprolítica de Basalto - SP 225, Km 87, Br.</td>
</tr>
<tr>
<td>41778</td>
<td>areia laterítica - SP 310, Km 222, Brasil</td>
</tr>
<tr>
<td>F5</td>
<td>silte saprolítico de Filito-D.Preto-Itabirito, MG, Br.</td>
</tr>
<tr>
<td></td>
<td>silte de Caulim Perus - Perus, SP, Brasil</td>
</tr>
<tr>
<td>LR-7</td>
<td>silte argiloso Laterítico - Ribeirão Preto, SP, Br.</td>
</tr>
<tr>
<td></td>
<td>arqila aluvial - Taquaritinga, SP, Brasil</td>
</tr>
<tr>
<td></td>
<td>arqila siltosa sapr. de Folhelho, Sta Gertrudes, SP, BR</td>
</tr>
</tbody>
</table>
ANEXO 6

\[B_f = \frac{1}{\gamma_s} \]

\[\Delta V = \text{contração volumétrica} \]

\[\frac{\Delta V}{V} \]

\[A = \text{grau de absorção} \]

\[R_{te} = \text{resistência à compressão diametral} \]

\[R_p = \text{resistência à penetração do cone} \]

<table>
<thead>
<tr>
<th>solo</th>
<th>(B_f) (KN/m²)</th>
<th>(\Delta V) (%)</th>
<th>A</th>
<th>(R_{te}) (KN/m²)</th>
<th>(R_p) (KN/m²)</th>
<th>tipo de fissura</th>
<th>solo</th>
<th>(B_f) (KN/m²)</th>
<th>(\Delta V) (%)</th>
<th>A</th>
<th>(R_{te}) (KN/m²)</th>
<th>(R_p) (KN/m²)</th>
<th>tipo de fissura</th>
</tr>
</thead>
<tbody>
<tr>
<td>39'526</td>
<td>6.66</td>
<td>12</td>
<td>1</td>
<td>2.1</td>
<td>0.13</td>
<td>8.4</td>
<td>41'012</td>
<td>7.67</td>
<td>18</td>
<td>1</td>
<td>0.7</td>
<td>0.066</td>
<td>7</td>
</tr>
<tr>
<td>39'589</td>
<td>6.18</td>
<td>39</td>
<td>0.43</td>
<td>5.0</td>
<td>1.13</td>
<td>2</td>
<td>41'013</td>
<td>6.98</td>
<td>13</td>
<td>1</td>
<td>1.2</td>
<td>0.17</td>
<td>4</td>
</tr>
<tr>
<td>40'181</td>
<td>7.09</td>
<td>37</td>
<td>0.25</td>
<td>4.1</td>
<td>1.13</td>
<td>1</td>
<td>41'016</td>
<td>5.23</td>
<td>13</td>
<td>1</td>
<td>2.8</td>
<td>0.39</td>
<td>4</td>
</tr>
<tr>
<td>40'182</td>
<td>5.31</td>
<td>20</td>
<td>0.67</td>
<td>4.0</td>
<td>1.13</td>
<td>1</td>
<td>41'018</td>
<td>5.94</td>
<td>13</td>
<td>1</td>
<td>0.7</td>
<td>0.40</td>
<td>4</td>
</tr>
<tr>
<td>40'183</td>
<td>6.92</td>
<td>30</td>
<td>0.21</td>
<td>4.2</td>
<td>0.50</td>
<td>6</td>
<td>41'020</td>
<td>6.82</td>
<td>10</td>
<td>1</td>
<td>0.7</td>
<td>0.31</td>
<td>6</td>
</tr>
<tr>
<td>40'184</td>
<td>5.47</td>
<td>25</td>
<td>1</td>
<td>6.2</td>
<td>1.13</td>
<td>1</td>
<td>41'021</td>
<td>5.42</td>
<td>13</td>
<td>1</td>
<td>3.1</td>
<td>0.40</td>
<td>4</td>
</tr>
<tr>
<td>40'185</td>
<td>5.97</td>
<td>33</td>
<td>0.57</td>
<td>7.2</td>
<td>1.13</td>
<td>3</td>
<td>41'032</td>
<td>6.38</td>
<td>29</td>
<td>0.46</td>
<td>1.13</td>
<td>0.9</td>
<td>5</td>
</tr>
<tr>
<td>40'186</td>
<td>7.36</td>
<td>24</td>
<td>0.1</td>
<td>0.5</td>
<td>0.06</td>
<td>7</td>
<td>41'036</td>
<td>6.53</td>
<td>18</td>
<td>0.37</td>
<td>1.13</td>
<td>0.5</td>
<td>5</td>
</tr>
<tr>
<td>40'187</td>
<td>6.13</td>
<td>27</td>
<td>1.3</td>
<td>3.6</td>
<td>0.5</td>
<td>8</td>
<td>41'038</td>
<td>7.47</td>
<td>20</td>
<td>0.74</td>
<td>0.5</td>
<td>0.7</td>
<td>5</td>
</tr>
<tr>
<td>40'188</td>
<td>6.15</td>
<td>20</td>
<td>0.5</td>
<td>1.7</td>
<td>0.7</td>
<td>8</td>
<td>41'039</td>
<td>7.47</td>
<td>25</td>
<td>0.44</td>
<td>0.5</td>
<td>0.7</td>
<td>5</td>
</tr>
<tr>
<td>40'189</td>
<td>7.57</td>
<td>10</td>
<td>1</td>
<td>0.1</td>
<td>0.03</td>
<td>7</td>
<td>41'040</td>
<td>5.77</td>
<td>16</td>
<td>0.63</td>
<td>1.13</td>
<td>0.5</td>
<td>5</td>
</tr>
<tr>
<td>40'190</td>
<td>6.51</td>
<td>19</td>
<td>1</td>
<td>0.12</td>
<td>0.03</td>
<td>7</td>
<td>41'042</td>
<td>7.14</td>
<td>26</td>
<td>0.61</td>
<td>0.5</td>
<td>0.6</td>
<td>5</td>
</tr>
<tr>
<td>40'191</td>
<td>7.12</td>
<td>36</td>
<td>0.52</td>
<td>2.4</td>
<td>1.13</td>
<td>1</td>
<td>41'044</td>
<td>5.53</td>
<td>15</td>
<td>0.56</td>
<td>1.13</td>
<td>1.5</td>
<td>5</td>
</tr>
<tr>
<td>40'192</td>
<td>7.85</td>
<td>16</td>
<td>1.3</td>
<td>3.6</td>
<td>0.5</td>
<td>8</td>
<td>41'076</td>
<td>6.82</td>
<td>22</td>
<td>0.44</td>
<td>1.13</td>
<td>1.5</td>
<td>5</td>
</tr>
<tr>
<td>40'193</td>
<td>5.65</td>
<td>21</td>
<td>0.59</td>
<td>3.6</td>
<td>0.5</td>
<td>2</td>
<td>41'722</td>
<td>6.20</td>
<td>22</td>
<td>0.44</td>
<td>1.13</td>
<td>1.5</td>
<td>5</td>
</tr>
<tr>
<td>40'194</td>
<td>5.50</td>
<td>17</td>
<td>0.64</td>
<td>2.8</td>
<td>0.5</td>
<td>8</td>
<td>41'773</td>
<td>6.47</td>
<td>29</td>
<td>0.97</td>
<td>5.6</td>
<td>0.22</td>
<td>6</td>
</tr>
<tr>
<td>40'195</td>
<td>5.92</td>
<td>27</td>
<td>0.41</td>
<td>4.8</td>
<td>1.13</td>
<td>0.1</td>
<td>41'774</td>
<td>5.87</td>
<td>17</td>
<td>0.90</td>
<td>1.6</td>
<td>0.54</td>
<td>2</td>
</tr>
<tr>
<td>40'196</td>
<td>5.43</td>
<td>20</td>
<td>0.23</td>
<td>4.5</td>
<td>1.13</td>
<td>0</td>
<td>41'775</td>
<td>6.06</td>
<td>23</td>
<td>0.50</td>
<td>0.8</td>
<td>0.50</td>
<td>5</td>
</tr>
<tr>
<td>40'197</td>
<td>5.44</td>
<td>21</td>
<td>0.77</td>
<td>1.8</td>
<td>0.45</td>
<td>2</td>
<td>41'777</td>
<td>6.41</td>
<td>31</td>
<td>0.87</td>
<td>5.6</td>
<td>0.36</td>
<td>6</td>
</tr>
<tr>
<td>41'001</td>
<td>6.88</td>
<td>5</td>
<td>1</td>
<td>0.2</td>
<td>0.16</td>
<td>4</td>
<td>41'778</td>
<td>5.63</td>
<td>7</td>
<td>1</td>
<td>0.9</td>
<td>0.21</td>
<td>6</td>
</tr>
</tbody>
</table>