• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
Document
Author
Full name
Vanderley Moacyr John
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 1995
Supervisor
Committee
Agopyan, Vahan
Cincotto, Maria Alba
Helene, Paulo Roberto do Lago
Kihara, Yushiro
Paulon, Vladimir Antonio
Title in Portuguese
Cimentos de escória ativada com silicatos de sódio.
Keywords in Portuguese
Cimentos
Escória de alto forno
Abstract in Portuguese
Os cimentos de escória apresentam boas possibilidades de mercado, especialmente em aplicações em que o cimento Portland não possa ser utilizado ou onde o seu uso provoque uma elevação dos custos. A confecção de matrizes para fibras sensíveis aos álcalis e a produção de cimentos com baixo calor de hidratação são exemplos. Neste trabalho, a escória foi ativada com silicato de sódio e cal hidratada. O ativador foi formulado de maneira a proporcionar teores de Na2O de 2,5% e 5%, SiO2 de 0% a 14,8% e Ca(OH)2 de 0%, 2,5% e 5%. O aumento dos teores de Na2O e de SiO2, dentro de determinados limites, propicia um notável crescimento da resistência à compressão. Este crescimento da resistência está associado a uma diminuição da porosidade, para um mesmo fator/água aglomerante. Certamente a diminuição da porosidade é devida a um menor grau de organização cristalina dos produtos hidratados, decorrente do aumento da velocidade de precipitação de hidratados e de gel de N-C-S-H. A adição de Ca(OH)2 diminui a velocidade de perda da trabalhabilidade. Os cimentos de escória ativada com silicatos de sódio podem apresentar resistência à compressão de até 100 MPa, superior à dos cimentos Portland, com calor de hidratação da mesma ordem de grandeza. A velocidade de carbonatação destes cimentos é equivalente a dos cimentos Portland de mesma resistência. No entanto, estes cimentos apresentam maior retração hidráulica.
Title in English
Sodium silicate activated blast furnance slag cements.
Keywords in English
Blast furnace slag
Cement
Abstract in English
Binders based on ground granulated blast furnace slag (BFS) are suitable for the building industry, mainly if the use of Portland cement is expensive or may cause problems, such as: alkali sensitive fibre-reinforced cement and concretes and low heat-hydration concretes. BFS is activated by sodium silicates and hydrated lime. The compound's proportions are: Na2O - 2.5 and 5.0%; SiO2 from 0 to 14.8%; CaOH2 - 0, 2.5 and 5%. The increase of Na2O and SiO2 amounts allows a considerable improvement of binder strength, with values up to 100 MPa. This increase of the strength is related to the decrease of the porosity for a constant water-binder ratio. The porosity is affected certainly by the reduction of the degree of cristalynity of the hydrated compounds, due to the increase of the speed of precipitation of the hydrates or the N-C-S-H gel. It is possible to obtain BFS binders stronger than the Portland cement, with similar hydration heat. The carbonation rate of these new binders is equivalent to those of Portland cement specimens with similar strength. However these BFS binders have higher drying shrinkage.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2014-10-21
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.