• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Mémoire de Maîtrise
DOI
10.11606/D.3.2014.tde-21052015-165852
Document
Auteur
Nom complet
Frederico Abdo de Vilhena
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2014
Directeur
Jury
Barros, Mario Thadeu Leme de (Président)
Francato, Alberto Luiz
Porto, Monica Ferreira do Amaral
Titre en portugais
Análise de processos de cenarização na geração hidroenergética.
Mots-clés en portugais
Algoritmos
Ferramenta de redução de árvores de cenários
Otimização estocástica
Usinas hidrelétricas
Resumé en portugais
O planejamento de médio e longo prazo da operação hidrelétrica brasileira consiste em um problema de grande porte e que envolve muitas variáveis, onde, dentre estas, se destacam as vazões afluentes aos reservatórios. Estas vazões devem assim ser estimadas, com o objetivo de caracterizar a oferta futura de eletricidade em um horizonte de planejamento. Dentre as possíveis abordagens existentes para estimar estas vazões, se destaca a abordagem estocástica, que permite considerar variáveis em função de sua distribuição probabilística, e busca considerar o universo mais provável de manifestações. A abordagem estocástica pode se utilizar de modelos estocásticos, que costumam ser caracterizados através de árvores de cenários, que representam o universo de possibilidades de ocorrências. No entanto, devido à elevada dimensionalidade que o processo estocástico pode resultar ao se considerar árvores muito grandes, torna-se necessária a utilização de técnicas complementares, que visem a redução do número de cenários. Com base nesta contextualização, esta dissertação aborda de modo geral o processo de otimização estocástica do planejamento da geração hidrelétrica, considerando árvores de cenários e técnicas de redução de cenários, e utilizando como meio a modelagem de otimização da geração desenvolvida no SSD HIDROTERM, em linguagem GAMS. Como estudo de caso, foram desenvolvidos e adaptados algoritmos de otimização estocástica que consideram árvores com elevado número de cenários, gerados por meio de modelos estocásticos autorregressivos do tipo PAR e, sobre estas árvores, foi ainda aplicada a ferramenta de redução de cenários por agrupamento - SCENRED, desenvolvida em GAMS. As análises de sensibilidade realizadas visaram: validar o processo proposto de otimização estocástica; analisar os efeitos da utilização de diferentes árvores reduzidas de cenários de vazões, o impacto da consideração de diferentes horizontes de planejamento e a influência do regime hidrológico nos principais resultados do processo de otimização; além de estudar as vantagens e desvantagens deste processo para o planejamento da operação hidrelétrica. Os resultados indicam que o processo de otimização estocástica é eficaz ao considerar as aleatoriedades envolvidas na previsão de vazões afluentes. Estes também confirmaram tendências já esperadas no processo de otimização estocástica, como o fato de que quanto maior a árvore de cenários, mais precisos e estáveis tendem os resultados; assim como que quanto mais cenários envolvidos, maior o tempo de processamento requerido. Neste contexto, a utilização da ferramenta de redução SCENRED permitiu reduções significativas no tamanho da árvore de cenários, sem, contudo, ocasionar em perdas na qualidade e estabilidade da solução, além de viabilizar a aplicação do algoritmo de otimização estocástica proposto.
Titre en anglais
Analysis of scenario processes in hydropower generation.
Mots-clés en anglais
Algorithms
Hydroelectric plants
Reduction of trees tool scenarios
Stochastic optimization
Resumé en anglais
The medium and long-term planning of the Brazilian electric system consists of a complex problem with many uncertainties and variables, where, among these the inflows to the reservoirs highlight. These inflows need to be estimated in order to characterize the future availability of electricity in a planning horizon. Among the existing approaches to estimate these inflows, highlights the stochastic approach, which consider these variables according to their probability distribution, and aims to consider the most likely universe of manifestations. The stochastic approach can be developed through stochastic models, which are often characterized by scenarios trees that represent the possible universe. However, due to the high dimensionality that stochastic analyses can result when considering very large trees, it becomes necessary to use complementary tools, aimed at reducing the number of scenarios. Based on this context, this dissertation discusses in general the process of stochastic optimization of the hydroelectric generation planning, considering scenarios trees and scenario reduction tools, through the optimization modeling developed in the DSS HIDROTERM, developed in GAMS language. As a case study, it was generated and adapted stochastic optimization algorithms that consider trees with large number of scenarios, generated by autoregressive stochastic models PAR. Based on these trees it was applied the scenario reduction tool SCENRED, developed in GAMS language. The sensitivity analyzes developed intended to: validate the stochastic optimization process; analyze the effects of using different reduced scenarios trees of inflows; analyze the impacts of considering different planning horizons, analyze the hydrological influence on the main results of the optimization process, and the benefits and disadvantages of this process in the hydroelectric operation planning. The results indicate that the stochastic optimization process is effective to consider the randomness involved in the prediction of inflow to the reservoirs. These results have also confirmed some well-known trends in the stochastic optimization process, such as the fact that the larger the tree scenarios, more accurate and stable tend the results but also greater the processing time required. In this context, the use of the reduction tool SCENRED allowed significant reductions in the size of scenarios tree, without causing losses in quality and solution stability, enabling the application of the stochastic optimization algorithm proposed.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2015-05-27
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2020. Tous droits réservés.