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Abstract 

 

RAPP, R. M. Grid search approach to select and calibrate exponential 

smoothing, SARIMA and LSTM models for demand forecasting. 2023. 

Dissertação (Mestre em Ciências) - Escola Politécnica, Universidade de São Paulo, 

São Paulo, 2023. 

 

Demand forecasting accuracy allows the possibility to better allocate and plan 

resources improving sales and operations planning (S&OP). This work proposes a 

process to calibrate and select models for time series forecasting. Exponential 

smoothing, SARIMA and deep learning LSTM forecasting models were selected 

based on its wide use in the scientific community. First these models are defined based 

on their hyperparameters. The domain of a hyperparameter can be real-valued, 

integer valued, binary or categorical. Which values to choose is critical since it will 

define the final functional form of the forecasting equations, including the final number 

of parameters that needs to be determined. Then, for each model, the 

hyperparameters bounded domain are defined and a list of vectors is built. Each vector 

is applied to the models to find the one with best performance, what is defined as a 

grid search process. Before the process is deployed, a discussion of pre-processing 

the data is presented which includes fill in missing values, defining time series 

periodicity and decomposition of the time series in trend/seasonality to be use as 

additional regressor for the models. To defined how each hyperparameter vector 

performed and how each model compares, a multi-criteria performance index is 

proposed. Finally, the results are discussed comparing all three models and what were 

the best results found. The diagnostic of the fitted model shows opportunities to 

address data pre-processing not here considered such as, transformation and/or a 

robust outlier’s treatment for the time series. Nevertheless, the out of sample results 

shows the gain in prediction performance comparing to previous methods used and 

the process here proposed could help practitioners reduce complexity when 

implementing such models in a business environment. 

 

Keywords: Time series analysis; demand forecast; neural network; ARIMA; LSTM, 

time series forecasting performance, error metrics. 
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Resumo 

 

RAPP, R. M. Seleção e calibração dos modelos de suavização 

exponencial, SARIMA e LSTM para previsão de demanda através de busca em 

rede. 2023. Dissertação (Mestre em Ciências) - Escola Politécnica, Universidade de 

São Paulo, São Paulo, 2023. 

 

A precisão das previsões de demanda permite alocar e planejar melhor os recursos, 

melhorando o planejamento de vendas e operações. Este trabalho propõe um 

processo de calibração e seleção de modelos para previsão de séries temporais 

aplicados em uma empresa de eletroeletrônicos. Os modelos de previsão de 

suavização exponencial, SARIMA e aprendizagem profunda LSTM foram 

selecionados com base em sua ampla utilização na comunidade científica. Primeiro, 

esses modelos são definidos com base em seus hiperparâmetros. O domínio de um 

hiperparâmetro pode ser de valor real, de valor inteiro, binário ou categórico. Quais 

valores escolher é crítico, pois definirão a forma funcional final das equações de 

previsão, incluindo o número final de parâmetros que precisam ser determinados. Em 

seguida, os domínios limitados dos hiperparâmetros são definidos e uma lista de 

vetores são construídos. Cada vetor é aplicado aos modelos para encontrar aquele 

com melhor desempenho, um processo definido por busca em rede. Antes do 

processo ser implantado, é apresentada uma discussão sobre o pré-processamento 

dos dados. As etapas utilizadas neste trabalho incluem preenchimento de valores 

faltantes, definição de periodicidade da série temporal, decomposição da série 

temporal em tendência/sazonalidade para ser usada como um regressor adidiconal 

aos modelos. Para definir o desempenho de cada vetor de hiperparâmetros e como 

cada modelo se compara, métricas de erro são definidas, e um índice de desempenho 

multicritério é proposto. Por fim, os resultados são discutidos comparando os três 

modelos com os melhores resultados encontrado. O diagnóstico do modelo ajustado 

mostra oportunidades no pré-processamento dos dados aqui não considerados, como 

transformação e/ou tratamento robusto de outliers para a série temporal. No entanto, 

os resultados das previsões mostram o ganho no desempenho em comparação com 

os métodos utilizados anteriormente e o processo aqui proposto pode ajudar os 

profissionais a reduzir a complexidade ao implementar tais modelos num ambiente de 

negócios. 

 

 

Palavras-chave: Análise de séries temporais; previsão de demanda; rede neurais; 

ARIMA; LSTM, desempenho de previsão em serie temporal, métrica de erro.  
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1. Introduction 

 Traditionally, the demand forecasting has served as one important foundation 

for the production planning and supply chain. It interferes directly in activities such as 

sourcing, manufacturing and distribution. Besides being a technique widely used its 

accuracy remains a challenge for many companies due to uncertainty present in the 

customer behavior either in B2C and B2B environment (Syntetos et al. 2016; 

Narayanan; Sahin; Robinson, 2016; Abolghasemi et al., 2020). Demand forecast 

predicts two vital information for a business: (1) the expected demand at a given 

period, and (2) how much uncertainty is associated with a prediction. 

According to Boone et al. (2019) and Kumar, Shankar and Aljohani (2020), 

along last years, the advances in technology and data collection systems have 

resulted in a huge amount of data on a wide variety of topics, incredibly fast, and at 

great speed, those characteristics are reported in the literature as the 4V of big data 

(Anagnostopoulos; Exposito, 2017) : velocity, variety, volume, and veracity. Of course, 

the forecast practitioners have found many benefits on this “data era” we live recently. 

They use data gathered from Internet of things, smart devices, many sensors 

managed not only by computers, but also by processing units built-in many machines, 

equipment, and devices. If one side of the coin such reality indicates an ocean of 

opportunity in terms of having data to feed forecasting mathematical models, on the 

other side, to reach success in a forecasting effort is at essence, the proper 

understanding of data used to feed the models. 

Once the data handling challenge is accopmplished, the next challenge is the 

model selection. There are several quantitative models available in the literature to 

address the forecasting problems. They range from the simple (and very useful) 

moving average (Mentzer; Cox, 1984), passing by the exponential smoothing 

(considering or not trends and/or seasonality) (Holt, 1957; Winters, 196; Gardner, 

1985; Taylor, 2003), the autoregressive moving average models (Box; Jenkins, 1976), 

until modern machine learning such as the neural networks. (Tealab, 2018; Chu; 

Zhang, 2003; Zhang et al., 2021). One question remains: what is the best technique 

to use to have the predictions that are more accurate and feasible to maintain?  

Forecasting is often modelled in the context of time series data, which consists 

of values observed at discrete points in time. The available methods today for 

modelling time series forecasting provide an increasing complexity if one wants to 
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extract all the potential from the most recent research (Parmezan; Souza; Batista, 

2019).  The consequence is difficulty in a business environment in deciding which 

forecasting model to apply and how to adopt a process to maintain it (Hlupić; 

Oreščanin; Petricet, 2020). 

In the era of big data (Boone et al. (2019)) powered by the computing 

processing, there has been a shift in applying not only the traditional forecasting 

techniques but also the machine learning algorithms such as the Neural Networks 

(NN). Neural Networks, motivated by their data driven approximation of any linear or 

nonlinear function, contributed to an increased number of publications of any area in 

operational research according to Fildes et al. (2008). They formed one of the top four 

areas of growth in the forecasting journals in 2006 according to Crone, Hibon and 

Nikolopoulos (2011).  

To quantify how NN models perform better in the forecasting is a discussion 

introduced by Crone, Hibon and Nikolopoulos (2011) and later in Makridakis, Spiliotis 

and Assimakopouloset (2018), through a series of competitions known as the 

Makridakis Competitions. The Makridakis (M) Competitions are a series of open 

competitions to evaluate and compare the accuracy of different forecasting models 

including NN. Professor Spyros Makridakis from University of Nicosia (UNIC) started 

these competitions to evaluate the performance of existing and new forecasting 

models (Makridakis; Hyndman; Petropoulos, 2020). There have been six M 

Competitions since 1982 (M6 started in 2022), each differing in the number of time 

series used, the forecasting methods experimented with and other features regarding 

the structure of data. 

Each competition introduces new datasets and explore different forecasting 

techniques, so the practitioners can compare results with the pre-defined benchmarks. 

As computer processors became faster and inexpensive, the forecasting field 

expanded to include machine learning forecasting models. (Makridakis; Hyndman; 

Petropoulos, 2020). 

In those competitions as well in the context of this work, the traditional 

forecasting models are referred to the exponential smoothing (ES) methods and the 

autoregressive moving average (ARIMA) models. These models have a pre-defined 

functional form with parameters that govern the predictions. For this reason, they are 

also called the parametric models. Machine learning methods does not have a pre-
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defined functional form as this will change according to different learning features 

specific for each type of algorithm. Thus, they are referred to as non-parametric. How 

well these machine learning models perform comparing against traditional models is 

what these competitions explores. 

An initial criticism of the results provided by the neural networks was addressed 

by M3 competition (Crone; Hibon; Nikolopoulos, 2011; Makridakis; Spiliotis; 

Assimakopouloset, 2018). The argument was lacking convincing empirical evaluations 

against the simpler univariate statistical methods such as the exponential smoothing 

methods and the auto regressive integrated moving average models. The M4 

competition extended and replicated the results of the previous three competitions to 

identify the most accurate forecasting methods, including those based on NN as well 

as traditional statistical ones. According to Makridakis, Spiliotis and Assimakopouloset 

(2018), one of the main drivers for organizing the M4 competition is that Neural 

Networks forecasting are not typically evaluated rigorously against the statistical 

benchmarks.  

The M3 and M4 Competitions identified two major faults from the assumption 

that the more complex the model, the better the outcome’s accuracy. First, a model 

that best fits the data does not necessarily produce the most accurate results, a 

behavior known as overfitting. Sometimes overfitting the model can prevent the 

detection of dominant features or critical patterns in the data needed for accurate 

forecasts. Second, the traditional forecasting methods have a greater tolerance to 

overfitting the data. 

On the other hand, a possible explanation for not observe better performances 

from neural networks is the use of univariate datasets that may not contain enough 

relevant data to fit, if the characteristics of time series have changed over time. Having 

an adequate length and additional features (multivariate), neural network models allow 

to capture non linearities. 

A particular case of a Recurrent Neural Network (RNN) called Long Short-Term 

Memory (LSTM) allows to model complex sequences of data providing them with 

adequate length to capture long-term information relationships. Nevertheless, the 

neural networks in general can be criticized for their black-box nature (Makridakis; 

Spiliotis; Assimakopouloset, 2018). 
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Table 1 is an extract from Makridakis; Spiliotis; Assimakopoulos (2020) which 

provides a summary of the ten benchmarks as well as two additional models used as 

standards for comparison used in the M4 competition: the ETS or the exponential 

smoothing methods and the autoregressive moving average (ARIMA) models. The 

goal in Table 1 is to select forecasting models for this study that is being used in the 

scientific community. 

 

Table 1 - The benchmarks and standards for comparison of the M4 Competition. 

Methods Description 

Naïve 1 
A random walk model, assuming that future values will be the same as that of the 

last known observation. 

Naïve S Forecasts are equal to the last known observation of the same period. 

Naïve 2 
Like Naïve 1 but the data are seasonally adjusted, if needed, by applying a 

classical multiplicative decomposition. 

SES 
Exponentially smoothing the data and extrapolating assuming no trend. Seasonal 

adjustments are considered as per Naïve 2. 

Holt 
Exponentially smoothing the data and extrapolating assuming a linear trend. 

Seasonal adjustments are considered as per Naïve 2. 

Damped 
Exponentially smoothing the data and extrapolating assuming a damped trend. 

Seasonal adjustments are considered as per Naïve 2. 

Theta 

The Theta method works by fitting two lines to the time series. A trend line, which 

captures the long-term direction of the series and a seasonal line, which captures 

the short-term fluctuations of the series. In M3 Competition first line being 

extrapolated using linear regression and the second one using SES. The forecasts 

are then combined using equal weights. Seasonal adjustments are considered as 

per Naïve 2. 

Comb 
The simple arithmetic average of SES, Holt and Damped exponential smoothing 

(used as the single benchmark for evaluating all other methods). 

MLP 

Multilayer Perceptron. A perceptron of a very basic architecture and 

parameterization. Some preprocessing like detrending and deseasonalization is 

applied beforehand to facilitate extrapolation. 

RNN 

A recurrent network of a very basic architecture and parameterization. Some 

preprocessing like detrending and deseasonalization is applied beforehand to 

facilitate extrapolation. 
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Cont’d Table 1 - The benchmarks and standards for comparison of the M4 Competition. 

Methods Description 

ETS 
Exponential smoothing. Automatically provides the best exponential smoothing 

model, indicated through information criteria. 

ARIMA 
An automatic selection of possible ARIMA models is performed and the best one 

is chosen using appropriate selection criteria. 

Source: Makridakis; Spiliotis; Assimakopoulos, 2020 

  

From Table 1, Naïve 1, Naïve S, Naïve 2, SES, Holt, Damped, Theta and Comb 

represents models for Statistical benchmark. MLP and RNN are the neural network 

models representing the machine learning benchmarks and finally the standard for 

comparison are the Exponential smoothing (ETS) and ARIMA. 

Although the results from the M4 forecasting competition have clearly shown 

the potential of NNs and RNNs (Makridakis; Spiliotis; Assimakopoulos, 2020), the 

exponential smoothing and ARIMA have traditionally supported forecasting in a 

univariate context not only from their accuracy but also being relatively simple to 

implement comparing to complex RNN models. Regardless of the recent successes 

of RNNs in forecasting, the practitioner may still be reluctant to try RNNs as an 

alternative since they may not have the expert knowledge to achieve satisfactory 

accuracy. Additionally, no established guidelines exist as to when traditional statistical 

methods will outperform RNNs, which architecture should be used or how their 

parameters should be tuned for improving the forecasting accuracy.  

Even for traditional forecasting methods, the implementation does become a 

challenge when involves multiple time series. Export knowledge is key, starting with 

the identification of potential issues with the series (data preprocessing), moving to 

which model to choose, how to calibrate its parameters and finally how to the measure 

performance, making this whole process lengthy and complex.  

Therefore, adopting an optimized processual approach that can be 

implemented and measure performance between forecasting methods can help 

companies and practitioners explore the different type of models available in the 

literature and easy scale across different product lineups. 

This work is based on a database of consumer and corporate electronics 

products for Latin America, representing over 700 B2C and B2B clients in the past 5 

years. This database forms a time series of daily sales observations and other time 
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dependent variables. This multivariate database with such length presents a natural 

choice to apply a Recurrent Neural Network (RNN) model to evaluate how well can 

this model capture long-term information relationships. Also, according to Table 1, 

models such as Exponential smoothing methods - ETS from Table 1 which is referred 

as ES) and the autoregressive integrated moving average ARIMA are used in those 

competition as benchmarks to evaluate other methods. These 3 models are therefore 

here implemented following an optimized process that pre-process the data, calibrate 

the models and measure performance. The model with best performance is chosen to 

forecast the future sales. 

After choosing the models, the next step is understanding how to calibrate it. 

According to Bisch et al. (2021) and Yang and Shami (2020) the model 

parametrization is challenging and search algorithms for model calibration has 

attracted the attention of the scientific community. To review these algorithms, the 

difference between parameters and hyperparameters of a forecasting model is 

introduced. Searching algorithms works to select the hyperparameters first, so the 

resulting functional form of the prediction equation can be defined. After, the 

parameters of this function are found by minimizing an objective function. This 

definition is explained in Chapter 2. 

The idea of optimizing models by an automatically searching the best 

hyperparameters was shared by Bergstra and Bengio (2012) who introduced the 

Random Search algorithm to compare with the Grid Search, then a more complex 

iterative procedure called Bayesian search was discussed by Gelbart, Snoek and 

Adams (2014) and Bischl et al. (2017). In addition, Luo (2016) gave an overview of the 

search strategies and Probst, Boulesteix and Bischl (2019) who compared the impact 

of choosing the hyperparameters (which he refers as tuning) either jointly, tuning 

individual parameters or combinations. 

This study is different from Thuyen et al. (2021), ArunKuma et al. (2020), 

Abbasimehr, Shabani and Yousefi (2020), Hewamalage, Bergmeir and Bandara 

(2021) studies which used the grid search technique without defining optimal 

boundaries for the hyperparameters search and Parmesan, Souza and Batista (2019), 

in how to define the hyperparameters for the LSTM case. 

To conclude, the objective of this work is to propose a process to calibrate and 

select models for time series forecasting using grid search of the hyperparameters. 



20 

 

 

 

 

This method aims to be applied in two different forecasting model types: (1) parametric 

statistical forecasting (Exponential smoothing and SARIMA); and (2) non-parametric 

(LSTM model), using data resampling and error performance techniques. Based on 

the calibration delivered by the method, the forecast practitioners should be able to 

select the most suitable model to be used in the demand context where the observed 

values are discrete absolute values in time. It is also observed the gains obtained with 

this methodology base on previous methods used. 
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2. Literature Review 

 This chapter introduces a brief review of the fundamentals involved in 

modelling observations collected at fixed time intervals. It includes: 

 

a) The dataset definition; 

b) The modelling of the function form of the prediction; 

c) How to partition the dataset into fitting and evaluation; 

d) Time Series characteristics; 

e) The summarized fundamentals of the three forecasting models chosen; 

f) The search algorithm to find and evaluate the final functional form. 

 

 Forecasting in general is concerned in estimating the future values based on 

historical data. Inside a company it provides basis to coordinate numerous activities 

such as short-term daily operations planning and long-term strategic decision making, 

seeking to minimize risks and maximize utilities. Examples includes sales forecasting 

that drive the production planning, the raw material sourcing, the production capacity 

planning, the equipment failure prediction by looking past data behavior, the product 

use data that can forecast new trends, develop new products and/or enhanced 

software interfaces, etc. 

 To address real-life challenges, forecasting has been evolving in last 20 years 

by leveraging advances in computing and data availability, enabling the analysis of 

larger and more complex datasets in analytics and data science. 

 Forecasting methods can be divided in two groups. Qualitative Methods are 

based on emotions, intuitions, judgments, personal experiences, and opinions. There 

is no mathematical modelling involved and some examples of this includes Delphi 

Method (process framework wherein the main objective is to arrive at a group 

consensus), Market Survey, Executive Opinion, Sales Force expectation to be able to 

sell, etc. Quantitative Methods depend on defining a functional form with parameters 

that, when calibrated, can be used to forecast the future values. This functional form 

is defined by variables that are measured sequentially in time, at a fixed interval, 

known as the sampling interval. The resulting data form a time series. 

 The main characteristics of many time series are the trends and seasonal 

variations that can be modelled deterministically with mathematical functions of time. 
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Another important feature is that observations which are close together in time tend to 

be correlated (serially dependent). Much of the methodology in a time series analysis 

is aimed at explaining this correlation through statistical models, descriptive methods 

and more recent non-linear data driven models. Once a model is fitted to data and the 

model shows goodness of fit, it can be used to forecast the future values to guide the 

planning decisions. If a desirable goodness of fit is not obtained, another model could 

be evaluated until a satisfactory result is reached. 

 The time steps are the main regressor used to fit the forecasting models. When 

additional variables are presented in the dataset that follows the same time steps, 

those variables can also be used as additional regressors to the model and observe if 

the goodness of fit is improved. The latter has been more the case recently due to the 

growth of data availability. For instance, the forecasting variable could be correlated 

with other macro-economic variables, the weather temperature, costumer behavior, 

company financials, etc. 

 When considering additional regressors to the model, it is crucial to answer 

one question: Will this series be available for the forecasting period? to answer this 

let´s define: 

a. Target variable: the time series to forecast. In data science models this is also 

known as response. 

b. Features: time series from other sources that can be used to improve the 

forecasting model. 

 

Table 2 - Time series dataset with multiple features  

Time Feature1 Feature2 Target Variable 

T1 𝑋1
1 𝑋1

2 𝑌1 

T2 𝑋2
1 𝑋2

2 𝑌2 

T3 𝑋3
1 𝑋3

2 𝑌3 

T4 𝑋4
1 𝑋4

2 ? 

Source: Elaborated by the author 
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 In Table 2 there is a representation of the multivariate case. The goal is to 

forecast target variable at T4. When modelling with multivariate series, it will be 

required to know what those values are when predicting the target variable. Defining 

𝑋𝑡 
𝑖  as t the regressor time step and i-th regressor, in the example above, 𝑋4 

1  and 𝑋4
2 

must be known. Different values at T4 for feature 1 and 2 could be used if the objective 

is to simulate different forecasting scenarios. The time and features columns can also 

be called as auxiliary variables.  

 

 Figure 1 - Example extracted from the time series dataset. 

Source: Elaborated by the Author 

 

 Figure 1 shows graphically the time series plot of the target variable, features 

1 and 2. Selecting a model that can capture the behavior of feature 1 and feature 2 

through time could improve the prediction results of the target variable. This is an 

extract from the dataset from this work, and it is not limited to two features.  

 Prior to applying a forecasting method, the data may require pre-processing 

such as checking for outlier and missing values. Other manipulations might precede 

the application of the forecasting method or be incorporated into the models 

themselves. Some forecasting methods require de-seasonalized the time series, while 

others address seasonality within the method. Assumptions of normality and non-

constant variance could trigger transformations of the target variable which may 

improve forecasting results in statistical models (James et al., 2013). 

 With the dataset ready, it is time to choose the models. Relationships among 

features and target variable could be linear or involve nonlinear structures. When an 
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explicit functional form is not available, methodologies such as simulations, ensemble 

learning techniques or artificial neural networks might be employed.  

 Finally, it is important to evaluate the effectiveness of a forecasting method. A 

set of performance measures was used in this work that measure the absolute error, 

relative error to a benchmark and if the increase and/or decrease in the forecast levels 

has been captured. Later a combination of those metrics is done to choose the best 

model. 

 

2.1. Modelling the functional form of the predictions 

The goal in Table 2 is to find the quantitative response of 𝑌𝑡 for the predictors time 

and features. Assuming 𝑋𝑡 
𝑖  represent the time series of feature “i” out of n total features 

and total time steps T, a function 𝑓 that represent the relationship between 𝑌 and X is 

given by: 

 𝑋𝑡
𝑖 = (𝑋1

𝑖 ,  𝑋2
𝑖 , … , 𝑋𝑡

𝑖) 1 

 𝑌𝑡 = 𝑓(𝑋𝑡
𝑖 , 𝑌𝑡−𝑗) + 𝜀 2 

where i = 1,…n, t = 1,…T, 𝜀 is a random error term associated with 𝑓 and 𝑗 < 𝑡 ≤ 𝑇. 

To predict new values of 𝑌̂𝑡, 𝑓 is estimated such that: 

 

 𝑌̂𝑡 = 𝑓(𝑋𝑡
𝑖 , 𝑌𝑡−𝑗) 3 

where 𝑓 represents the estimate for 𝑓 that minimize the error 𝜀 and 𝑌̂ represents the 

resulting prediction for 𝑌.  

The accuracy of 𝑌̂ as a prediction for 𝑌 depends on two quantities, which is 

defined as reducible and irreducible error (James et al., 2013). Accuracy of 𝑓 can be 

improved by using the most appropriate statistical learning technique to estimate 𝑓 

and that is the reducible error. However, the variability associated with it also affects 

the accuracy of the predictions from the fact that 𝑿𝒕
𝒊 and 𝒀𝒕−𝒋 doesn’t completely 

determine 𝒀𝒕 and that is the irreducible error. There are variables outside of 𝑿𝒕
𝒊 and 

𝒀𝒕−𝒋 and independent of them that still have effect on 𝒀𝒕. The only way to improve 

irreducible error is to identify these outside influences and incorporate them as 

predictors. 
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So, by selecting the best modelling technique to estimate 𝑓 among several 

candidates available, the reducible error can be improved and by finding additional 

features 𝑿𝒕
𝒊  that has effects on 𝒀𝒕−𝒋, the irreducible error can also be improved. 

Nevertheless, only the reducible error can be measured. 

The functional form 𝑓 can be estimated through parametric and non-parametric 

models. Parametric Models reduces the problem of estimating 𝑓 down to estimating a 

set of parameters. Taking for example the parameters such as 𝛽0, 𝛽1, … . , 𝛽𝑛 of a linear 

model: 

 𝑌̂𝑡 = 𝛽0 + 𝛽1𝑥1,𝑡 + 𝛽2𝑥2,𝑡 + ⋯ + 𝛽𝑘𝑥𝑘,𝑡 4 

 Exponential smoothing methods and ARIMA are classified as parametric 

models because assumes 𝑓 as a model composed by a combination of parameters 

such as in (4). 

After the final functional form is defined, the parameters that follows the 

regressors (in the example of a multiple leaner regression this would be the 

𝛽0, 𝛽1, … . , 𝛽𝑛) needs to be determined. The most common approach to fit the model is 

referred to as least squares. This approach minimizes the least squares errors (LSE) 

that is obtained by (Cowpertwait; Metcalfe, 2009): 

 𝑒𝑖 = 𝑦𝑖 − 𝑦̂𝑖  5 

 
𝐿𝑆𝐸 =  ∑ 𝑒𝑖

2

𝑖

 
6 

The potential disadvantage of a parametric approach is that choosing a model 

that is too far from the true 𝑓, will lead to a poor estimation. Choosing a flexible model 

that can fit many different possible functional forms can address this but that will 

require estimating a greater number of parameters. In this process of estimation, these 

more complex models, could lead to a phenomenon known as overfitting the data, 

which lead to a poor performance when predicting 𝑌̂𝑡, if a validation process is not 

adopted.  

According to James et al. (2013), non-parametric methods do not make explicit 

assumptions about the functional form of 𝑓. Instead, they seek to estimate a 𝑓 that 

gets as close to the data points as possible. Such approach can have a major 

advantage over parametric approaches: by avoiding the assumption of a particular 

functional form for 𝑓, they have the potential to fit a wider range of possible shapes for 
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𝑓. For that, defining the characteristics that will govern these possible shapes is crucial 

for a good generalization. This is called the hyperparameters selection and usually 

they require many observations (far more than is typically needed for a parametric 

approach) to obtain an accurate estimate for 𝑓. 

The hyperparameters concept can also be extended to the parametric models. 

In the example of a multivariate linear regression in (4), a hyperparameter 𝐻𝑘 = 𝛽𝑘𝑥𝑘,𝑡 

can be defined and select only the components that have more statistical significance. 

The same applies for time series parametric models such as exponential smoothing 

and ARIMA. For the context of this work, the parameters and the hyperparameters 

are: 

a) model Hyperparameter: properties that govern the entire model training 

process. It determines how should a function form of 𝑓 be and how the learning 

algorithm will execute. These hyperparameters need to be initialized before 

training a model. In ARIMA this is often called order of autoregressive and 

moving average terms (p and q) or in exponential smoothing, this will be the 

seasonality/trend behavior (additive or Multiplicative). For neural network 

models this refers to architecture network like the number of neurons, hidden 

layers and how the algorithm learns from the training data such as batch size, 

epoch size and learning rate; 

b) model parameters: variable who follow the hyperparameters which a value will 

be assigned after the model fit, which is achieved after the optimum value of 

the objective function is found. 
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Figure 2 - Possible shapes of f. 

Source: Elaborated by the author 

 

In Figure 2, 𝑓1 represent a less flexible model, usually a result obtaining from 

models with fewer hyperparameters. Although parametric models can be flexible 

enough to capture the behavior of the time series like 𝑓2, usually nonparametric models 

could learn non linearities and generalize better the behavior of the data. This will then 

be observed when evaluating the effectiveness of a forecasting method. 

Non-parametric, nonetheless can also suffer from overfitting if the 

hyperparameters are not carefully defined. This idea is discussed next by splitting the 

data into a training and validation partition. 

 

2.2. Resampling data 

When deploying a forecasting model, the data needs to be separated in a 

training set and an evaluation set. According to Berk (2016) and James et al. (2013), 

the evaluation set is used to obtain additional information about the performance of 

the fitted model in the training set. Such an approach may allow us to obtain 

information that would not be available from fitting the model using the original training 

sample. This splitting can be done more than once (also known as cross-validation 

process). 

Resampling data involves repeatedly drawing samples from a training set and 

refitting the model of interest, evaluating its errors on each sample. Resampling 

approaches can be computationally expensive, because they involve fitting the same 
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statistical method multiple times using different subsets of the training data. However, 

due to recent advances in computing power, the computational requirements of 

resampling methods generally are not prohibitive. 

For time series, resampling the data needs to follow the chronological order 

that the dataset is constructed, avoiding losing its characteristics as serial correlation, 

trend and seasonality which forecasting models are based on. 

 

Figure 3 - Representation of cross validation for time series dataset 

Source: Elaborated by the author 

 

Figure 3 represents the cross validation in the context of time series. The 

training is used to fit the model, i.e., find the parameters of the final functional form. 

Then the Evaluation partition, also known as out of sample or test partition, is used to 

measure the performance of the predictions from the fitted model. Some variations of 

this approach exist (Faraway, 2014), as the focus now shifts to improve the evaluation 

partition performance.  

Overfitting is when a model performs very well for training data but has a poor 

performance with evaluation data. This means that the training partition used contain 

a level of noise that fails the model in generalize the behavior of the data. Using a 

cross validation approach helps mitigate this issue. Other cause, as pointed out in 

previous section, the model is too complex (a high number of parameters) that only 

generalize well in the data that is being trained on. 

According to Faraway (2014), when enough data is available, the problems of 

overfitting and model selection sometimes can be effectively addressed by the 
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evaluation partition. The results from the training data can be used to predict the 

response in the evaluation data. 

For that, the evaluation partition can be further split in two, a validation and a 

test partition. Using the results from the training data to predict the response in the 

validation data. How well the predicted values correspond to the actual validation data 

provides feedback on performance. Finally, the test dataset is used to obtain an 

“honest” assessment of the whole procedure’s performance. Once a statistical 

learning procedure has been satisfactorily tuned using the validation dataset, there 

can be a proper measure of the performance in the test dataset, when comparing with 

more than one forecasting model. 

 

Figure 4 - Representation of cross validation for time series including an additional split to 

the validation partition to improve model selection. 

Source: Elaborated by the author 

 

In the methodology Chapter 3.5, the details of data resampling process seen in 

Figure 4 will be described. The validation partition (out of sample) will be used to select 

the best hyperparameters in each model. Then each models performance will be 

compared using the test partition. 

Faraway (2014) details how data splitting provides a good option to validate a 

chosen model. In addition, the data split approach is only justified asymptotically, and 

it is not clear how large a sample has to be. In this work the approach chosen is that 

the test partition sizes define the size splitting definition. The less the forward-looking 
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prediction size, higher the opportunity to increase the cross-validation process. 

Section 3.5 defines how the splitting was done. 

The modelling of the functional form 𝑓 and data resampling procedures direct 

correlates with how accurate and precise the predictions will be. This is known to be 

the result of two competing properties in statistical learning methods called the bias 

and variance. James et all (2013) and Berk (2016) brilliant discuss how the expect 

error term in a validation dataset can be described as the sum of three fundamental 

quantities (given that the prediction using 𝑓 at point 𝑥0 and the true value 𝑦0):  

 

 
𝐸 (𝑦0 − 𝑓(𝑥0))

2
= 𝑉𝑎𝑟 (𝑓(𝑥0)) + [𝐵𝑖𝑎𝑠 (𝑓(𝑥0))]

2
+ 𝑉𝑎𝑟(∈) 

7 

 

The term 𝐸(𝑦0 − 𝑓(𝑥0)2) defines the expected validation error that is obtained 

if many trainings sets are drawn and tested each at 𝑥0. 𝑉𝑎𝑟(∈) is the irreducible error 

previously defined and the expected validation error will never lie below this. 

 Var (f̂(x0)) refers to the amount by which 𝑓 changes if it is estimated using 

different training data set. According to James et al. (2013), ideally the estimate for 𝑓 

should not vary too much between the training sets, but if the method is too sensitive 

it will capture noise that doesn’t generalize beyond the training set (overfitting). In 

general, more flexible statistical methods have higher variance. 

On the other hand, the bias refers to the error that is introduced by 

approximating a real-life problem. The true function form of 𝑓 is substantially non-

linear, so no matter how many training observations are given, it will not be possible 

to produce an equal estimate of the problem. 

 The Bias-Variance trade-off is the relative rate of change of these two 

quantities. It involves making accurate assumptions about the phenomenon under 

consideration and take them in consideration into the model. This will determine 

whether if the validation partition error increases or decreases. As the flexibility of the 

model is increased, the bias tends to initially decrease faster than the variance 

increases. Consequently, the expected validation error declines. However, at some 

point increasing flexibility has little impact on the bias but starts to significantly increase 

the variance. When this happens the validation error increases. 
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  Figure 5 - The Bias-Variance trade-off representation 

Source: adapted from James et al. (2013) and Berk (2016) 

 

This trade-of is represented graphically in Figure 5. On the left shows the 

optimal point by modelling the functional form of 𝑓. The training error and validation 

error can be seen on the right as the complexity of the model increase. To find the 

optimal point, this work proposes the use a resampling process using cross validation 

with training, validation, and test partition. The selection of the best hyperparameters 

will be done on the out of sample performance from the validation partition in oppose 

of selecting the best hyperparameters from the training partition. 

 

2.3. Time series decomposition 

A general approach to time series modelling is to plot the series and examine 

the main features such as: 

 

a. Trend behaviors 

b. Seasonal behaviors 

c. Sharp changes in trend or seasonal behaviors 

d. Any outlying observations 

 

These characteristics are used to define the time series decomposition and the 

autocorrelation functions. For instance, the exponential smoothing models are a set of 

equations that combine linearly level, trend and seasonal components while the 
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autoregressive moving average model uses the autocorrelation in different time steps 

of the series to define the final functional form. 

Exponential smoothing methods were originated in the 1950s and 1960s with 

the work of Brown (1959, 1963), Holt (1957) and Winters (1960). Pegels (1969) 

provided a simple but useful classification of the trend and the seasonal patterns 

depending on whether they are additive (linear) or multiplicative (nonlinear). Further 

steps towards putting exponential smoothing within a statistical framework were 

provided by Box and Jenkins (1976). However, these results did not extend to any 

nonlinear exponential smoothing methods. 

A simple additive decomposition model is given by: 

 𝑌𝑡 = 𝑀𝑡 + 𝑆𝑡 + 𝑍𝑡 8 

where, at time t, 𝑌𝑡 is the observed series, 𝑀𝑡 is the trend, 𝑆𝑡 is the seasonal effect, 

and 𝑍𝑡 is an error term that is, in general, a sequence of correlated random variables 

with mean zero. 

If the seasonal effect tends to increase as the trend increases, a multiplicative 

model may be more appropriate: 

 𝑌𝑡 = 𝑀𝑡𝑆𝑡 + 𝑍𝑡 9 

Trend gives you a general direction of the overall time series, whereas the 

seasonality is a regular and predictable pattern that recur at a fixed interval of time. A 

time series exhibits seasonality whenever there is a regular, periodic change in the 

mean of the series. Seasonal changes generally follow the clock and calendar -- 

repetitions over a day, a week, or a year are common, following behaviors surrounding 

dates and times. 

By decomposing, the goal is to estimate the deterministic components 𝑀𝑡 and 

𝑆𝑡 that makes the residual component 𝑍𝑡 stationary (Cowpertwait; Metcalfe, 2009). 

The statistical properties of a stationary time series like the mean and variance, do not 

change over time (for example the stochastic white noise is defined as mean zero and 

no correlation between its values at different times). 

 This decomposition can be used to find a satisfactory model for the process 

𝑍𝑡, analyses its properties, and to use it in conjunction with 𝑀𝑡 and 𝑆𝑡 for purposes of 

prediction and simulation of 𝑌𝑡. The components 𝑀𝑡 and 𝑆𝑡 can also be used as 

features to improve the accuracy in nonlinear models. 
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Decomposition requires the frequency that the seasonal pattern repeats, which 

in this work is named as periodicity. It can be assigned by choosing directly from the 

dataset (for instance a time series composed of monthly observation can be assigned 

a period of 12) or calculating using the autocorrelation measure.  

The following steps summarize the process to obtain a time series 

decomposition (Brockwell; Davis, 2016) for a stochastic seasonality i.e., the magnitude 

of the pattern can vary across the series: 

 

a. trend is first estimated by applying a moving average filter specially chosen to 

eliminate the seasonal component and to dampen the noise. If the period d is 

even (d = 2q), then: 

 
𝑚̂𝑡 =

0.5𝑦𝑡−𝑞 + 𝑦𝑡−𝑞+1 + ⋯ + 𝑦𝑡+𝑞−1 + 0.5𝑦𝑡+𝑞

𝑑
, 𝑞 < 𝑡 < 𝑛 − 𝑞 

10 

 

If the period is odd, d = 2q + 1, then: 

  
𝑚̂𝑡 =

0.5𝑦𝑡−𝑞 + 𝑦𝑡−𝑞+1 + ⋯ + 𝑦𝑡+𝑞−1 + 0.5𝑦𝑡+𝑞

𝑑
, 𝑞 + 1 ≤ 𝑡 ≤ 𝑛 − 𝑞 

11 

 

 

 

b. differencing: “de-trended” series 𝐷𝑡 is calculated as: 

  𝐷𝑘 = {(𝑦𝑘+𝑗𝑑 − 𝑚̂𝑘+𝑗𝑑), 𝑞 < 𝑘 + 𝑗𝑑 ≤ 𝑛 − 𝑞} 12 

 𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝑒𝑓𝑓𝑒𝑐𝑡: 𝐷𝑡 = 𝑌𝑡 − 𝑀̂𝑡 13 

 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒 𝑒𝑓𝑓𝑒𝑐𝑡: Dt =
Yt

M̂t

 14 

 

 

c. use the de-trended series to average it over a given periodicity, compute the 

seasonal component 𝑆𝑡 and extend 𝑆𝑡 through all the dataset: 

 

𝑆̂𝑘 = 𝐷𝑘 − 𝑑−1 ∑ 𝐷𝑖

𝑑

𝑖=1

, 𝑘 = 1, … , 𝑑 𝑎𝑛𝑑 𝑆̂𝑘 = 𝑆̂𝑘−𝑑 , 𝑘 > 𝑑 
15 

d. the “de-seasonalised” time series is found by subtracting the time series data 

with seasonal data 𝐷̂𝑡 = 𝑌𝑡 − 𝑆̂𝑡; 

e. find the final trend line 𝑀̂𝑡 that fits the “de-seasonalised” time series data using 

steps a and b; 
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f. to complete the decomposition, the remainder, 𝑍𝑡, is calculated by additive and 

multiplicate respectively as:  

 𝑎𝑑𝑑𝑖𝑡𝑖𝑣𝑒 𝑒𝑓𝑓𝑒𝑐𝑡: 𝑍𝑡 = 𝑌𝑡 − 𝑀̂𝑡 − 𝑆̂𝑡 
16 

 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒 𝑒𝑓𝑓𝑒𝑐𝑡: 𝑍𝑡 =
𝑌𝑡

𝑀̂𝑡𝑆̂𝑡

 17 

 

The centered moving averages in (10) and (11) are an example of a smoothing 

procedure that is applied retrospectively to a time series with the objective of 

identifying an underlying trend. Smoothing procedures can use points before and after 

the time at which the smoothed estimate is to be calculated. A consequence is that 

the smoothed series will have some points missing at the beginning and the end unless 

the smoothing algorithm is adapted for the end points. 

A smoothing algorithm commonly used is the nonparametric method Seasonal 

and Trend decomposition using Loess - STL (Cleveland et al., 1990). This uses a 

locally weighted regression technique known as Lowess.  

Consider 𝑦𝑡 = 𝑓(𝑥𝑡), the idea is to define a neighborhood for which a 

conditional mean 𝑦̅0 is to be computed. For each unique value of x, a nearest neighbor 

conditional mean for y is computed. This linear regression within each neighborhood 

leads to a form of smoothing based on locally weighted regressions (Lowess). 

Cleveland, who invented the procedure, although common refer to “local regression” 

and therefore the “Loess” abbreviation of locally estimated scatterplot smoothing is 

also used. 

A formulation proposed by Berk (2016) is below. Each local regression at each 

𝑥0 is constructed by minimizing the weighted sum of squares (RSS) with respect to 

the intercept and slope for the t ≤ T observations included in the window. The 

observations in the window are represented with * below: 

 

 𝑅𝑆𝑆∗(𝛽) = (𝑦∗ − 𝑿∗𝛽)𝑇𝑾∗(𝑦∗ − 𝑿∗𝛽) 18 

The regressor matrix 𝑿∗ contain polynomial terms for the predictor, 𝑾∗ is a 

diagonal matrix conforming to 𝑿∗, with diagonal elements 𝑤𝑖
∗, which are a function of 

distance from 𝑥0, where the weighting-by-distance is done. 

The overall algorithm then operates as follows: 
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a) Choose the smoothing parameter such as bandwidth f which is a proportion 

between 0 and 1, 

b) Choose a point x0 and from that the (f × t = T) nearest points on x, 

c) For these M nearest neighbor points, compute a weighted least squares 

regression line for y on x, 

d) Construct the fitted value 𝑦̂0 for that single 𝑥0, 

e) Repeat Steps 2 through 4 for each value of x. Near the boundary values of x, 

constraints are imposed to increase stability, 

f) Adjacent 𝑦̂0 are connected. 

 

After the entire fitting process is completed, residuals are computed, and 

weights are constructed from these residuals. Larger residuals are given smaller 

weights and smaller residuals larger weights. Using these weights, the fitting process 

is repeated. This can be iterated until the fitted values do not change much (Cleveland 

1979) or until some predetermined number of iterations is reached. The basic idea is 

to make observations with very large residuals less important in the fitting. 

 

 

 

Figure 6 - Nearest Neighbor Conditional Mean on the left and the Interpolation of the 

conditional means on the right. 

Source: Berk (2016) 

 

Figure 6 shows how a neighborhood is defined to measure the average all the 

data points found in that area. This algorithm is applied using R package called “STL 

plus” which uses Cleveland et al.(1990) original publication. 
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Figure 7 - Time series decomposition showing trend, seasonals and remainder.  

Source: Elaborated by the Author 

 

Figure 7 shows the resulting the decomposition resulting from R package where 

trend, seasonal and remainder are displayed graphically for the dataset of this 

research. The trend component does not show clearly signs of a increasing or 

decreasing pattern and the seasonality shows the recurring temporal pattern present 

in the data based on a specific value. This values will be defined as periodicity and for 

the dataset of this study is measured in section 3.2. Finally, the remainder terms or 

error indicate the amount of noise present and can help identify outliers in the data. 

This can be observed in Figure 7 as the errors are skewed to the positive side. 

Secondly, modeling the trend and seasonality modelled can be used as 

additional regressors as shown in Table 2, leading to more precise predictions. To use 

Loess decomposition for prediction future values of the target value, seasonality must 

be considered as deterministic otherwise the future values would be unknown. 

To overcome this, another approach to time series decomposition is a discrete 

decomposition. A linear regression can be found through the combination of trend and 

harmonics components (Morettin, 2006). These sinusoidal components are the 

discrete Fourier transform of the series and can be expanded to cover large seasonal 
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periods such as databases with daily observations. This define a pattern of 

deterministic seasonality and can be modelled using mathematical functions such as 

sine and cosine waves. Consider the model: 

 

𝑆̂𝑡 = ∑[𝛼𝑘 sin(𝜛𝑡) +

𝐾

𝑘=1

𝛽𝑘 cos(𝜛)] + 𝑍𝑡 
19 

where 𝛼  and 𝛽 are constants, 𝜔 is the frequency and 𝑍𝑡 is the random component.  

The frequency is defined as 𝜛 =
2𝜋𝑘

𝑚
, where m is the season period of the 

dataset and k is number of Fourier pairs chosen. For multiple years of daily 

observations yearly observations, possible values for 𝑚 are 𝑚𝐴 = 365 for annual 

seasonality or 𝑚𝑀 = {28,29,30,31} for monthly seasonality, while k = 12. 

To further extend the seasonality replication, the day of the week is considered 

also as a predictor using the following dummy variables (Hyndman; Athanasopoulos, 

2018): 

Table 3 - Weekly Dummy Variables 

 𝑑1,𝑡 𝑑2,𝑡 𝑑3,𝑡 𝑑4,𝑡 𝑑5,𝑡 𝑑6,𝑡 

Monday 1 0 0 0 0 0 

Tuesday 0 1 0 0 0 0 

Wednesday 0 0 1 0 0 0 

Thursday 0 0 0 1 0 0 

Friday 0 0 0 0 1 0 

Saturday 0 0 0 0 0 1 

Sunday 0 0 0 0 0 0 

Source: Hyndman; Athanasopoulos, 2018 

 

Incorporating them into (19):  

 

𝑆̂𝑡 = ∑[𝛼𝑘 sin(𝜛𝑡) +

𝐾

𝑘=1

𝛽𝑘 sin(𝜛𝑡)] + ∑ 𝛾
𝑘
𝑑𝑗,𝑡

6

𝑗=1

+ 𝑍𝑡  20 

Finally, the trend terms are incorporated using a polynomial of order p. The 

trend component of a time series represents a persistent, long-term change in the 

mean of the series. In the time series in this study, an increasing trend might be the 
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effect of a market expansion for a selected product while a decreasing trend could 

mean market contraction: 

 

𝑀̂𝑡 = 𝛿0 + 𝛿1𝑡 + 𝛿2𝑡2 + 𝛿3𝑡3 + ⋯ 𝛿𝑝𝑡𝑝 = ∑ 𝛿𝑝𝑡𝑝

𝑃

𝑝=0

 21 

Expanding the regression model to: 

 

𝑌̂𝑡 = ∑ 𝛿𝑝𝑡𝑝

𝑃

𝑝=0

+ ∑[𝛼𝑘 sin (
2𝜋𝑘𝑡

𝑚
) +

12

𝑘=1

𝛽𝑘 sin (
2𝜋𝑘𝑡

𝑚
)] + ∑ 𝛾

𝑘
𝑑𝑗,𝑡

6

𝑗=1

+ 𝑍𝑡 22 

where 𝛼𝑘, 𝛽𝑘, 𝛾𝑘, 𝛿𝑝 are obtained through least squares regression (6):  

 

𝐿𝑆𝐸(𝛼𝑘, 𝛽𝑘, 𝛾𝑘 , 𝛿𝑝) = ∑(𝑍𝑡 −

𝑁

𝑡=1

𝑀̂𝑡 − 𝑆̂𝑡) 
23 

To verify if equation (23) can replicate the entire trend and seasonality, the use 

of the correlograms is necessary. This will be explained in section 2.4.  

Additionally, the regression standard errors can also be used to perform 

hypothesis tests on the coefficients. Standard errors measure the uncertainty in the 

estimate of a regression coefficient and is calculated as the square root of the variance 

of the coefficient estimate. This test determines how far from zero the estimated 

coefficient is. For instance, the first trend parameter 𝛿1:  

 𝐻0: 𝛿1 = 0 24 

This probability p-value is given by the t-statistic (James et al., 2013): 

 
𝑡 =

𝛿1 − 0

𝑆𝐸(𝛿1)
 25 

which measures the number of standard deviations that 𝛿1 is away from 0. 

 

2.4. Autoregressive models and correlograms 

In many time series, the consecutive observations will be correlated. By 

measuring the autocorrelation of the series with its time steps (known as lags), it can 

provide an opportunity to model the trend and seasonality by adding parameters 

related to the most appropriate lag. The correlation structure of a time series model is 

defined by the correlation function, and it is estimated from the observed time series 

that is stationary in mean and variance. A correlation of a variable with itself at different 



39 

 

 

 

 

times is known as autocorrelation or serial correlation. Defining at k time unit of lags 

from the time series of size n: 

a. Sample autocovariance function ck: 

 

𝑐𝑘(𝑦𝑡 , 𝑦𝑡+𝑘) =
1

𝑛
∑(𝑦𝑡 − 𝑦̅)(𝑦𝑡+𝑘 − 𝑦̅)

𝑛−𝑘

𝑡=1

 
26 

b. Sample autocorrelation function 𝑟𝑘: 

 
𝜌𝑘 =

𝜌𝑘

𝜌0
 27 

The autocorrelation function (ACF) is a plot of 𝑟𝑘 against k which is called 

correlogram. The x-axis gives the lag k and the y-axis gives the autocorrelation 𝑟𝑘 at 

each lag. Correlation is dimensionless, so there is no unit for the y-axis. 

Observation of the ACF together with moving average has led to the creation 

of autoregressive AR(p), moving average MA(q) and a combination of both ARMA(p,q) 

models, where p and q are the orders of the autoregressive and moving average 

terms. 

 Autoregressive model (AR) is a linear combination of 𝑦𝑡 past values 

represented by: 

 𝑦𝑡 = 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + ⋯ + 𝜙𝑝𝑦𝑡−𝑝 + 𝜔𝑡 28 

The introduction of the backward shift operator B is convenient to express 

autoregressive models: 

 𝐵𝑦𝑡 = 𝑦𝑡−1 29 

 𝐵𝑛𝑦𝑡 = 𝑦𝑡−𝑛 30 

 𝜙𝑝(𝐵)𝑦𝑡 = 𝜔𝑡 31 

where p = order of the autoregressive part, 𝜙𝑝 = autoregressive parameters and 𝜔𝑡 

= white noise ~(0,𝜎2) of mean zero e variance 𝜎2. 

Rather than using the past values of the series in a regression, a Moving 

Average model uses past forecast errors in a regression-like model represented by:  

 𝑦𝑡 = 𝜇 + 𝜔𝑡 − 𝜃1𝜔𝑡−1 − 𝜃2𝜔𝑡−2 − ⋯ − 𝜙𝑞𝑦𝑡−𝑞 32 

 𝑦𝑡 = 𝜇 + 𝜃𝑞(𝐵)𝜔𝑡 33 
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Where q = order of the moving average part and 𝜃𝑞 = moving average parameters. 

Notice that each value of 𝑦𝑡  can be thought of as a weighted moving average 

of the past forecast errors. However, moving average models should not be confused 

with the moving average smoothing from section 2.3. A moving average model is used 

for forecasting future values, while moving average smoothing is used for estimating 

the trend-cycle of past values. 

The Box–Jenkins Autoregressive Moving Average (ARMA) model (Box and 

Jenkins 1976) can be represented by the autoregressive moving average (ARMA) (p, 

q) model: 

 𝑦𝑡 = 𝜙1𝑦𝑡−1 + 𝜙2𝑦𝑡−2 + ⋯ + 𝜙𝑝𝑦𝑡−𝑝 + 𝜔𝑡 + 𝜃1𝜔𝑡−1 + 𝜃2𝜔𝑡−2 + ⋯

+ 𝛽𝜃𝑞𝜔𝑡−𝑞 

34 

Applying the backward shift operator B: 

 𝜙𝑝(𝐵)𝑦𝑡 = 𝜃𝑞(𝐵)𝜔𝑡 35 

An AR(p) process has an ACF that decays as damped exponentials and/or 

sinusoids which are infinite in length, while a MA(q) process has a finite autocorrelation 

function that stops at lag “q”. For a ARMA(p,q) model, the ACF which is finite in length 

decays as damped exponentials and/or sinusoids after lag q-p. The observations are 

useful to help identify the order of “p” and “q” (Morettin, 2006). 

As second correlogram that can be drawn for the time series is the partial 

autocorrelation function (PACF). Box, Jenkins and Reinsel (1994) proposed this 

function as another instrument to determine the order for autoregressive component. 

Taking equation (28) for the autoregressive process, denoting 𝜙𝑘𝑗 the j-th coefficient 

and 𝜙𝑘𝑘 the last coefficient, from equation (27) the autocorrelations 𝜌𝑘 are: 

 𝜌𝑗 = 𝜙𝑘1𝜌𝑗−1 + 𝜙𝑘2𝜌𝑗−2 + ⋯ + 𝜙𝑘𝑘𝜌𝑗−𝑘 , 𝑗 = 1, … , 𝑘 36 

The Yule-Walker equations are used to represent the PACF as: 

 

[

1 𝜌1 𝜌2 … 𝜌𝑘−1

𝜌1 1 𝜌1 … 𝜌𝑘−2

⋮ … … … ⋮
𝜌𝑘−1 𝜌𝑘−2 𝜌𝑘−3 … 1

] [

𝜙𝑘1

𝜙𝑘2

⋮
𝜙𝑘𝑘

] = [

𝜌1

𝜌2

⋮
𝜌𝑘

] 37 

 𝚸𝑘𝝓𝑘 = 𝝆𝑘 38 
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These equations are solved recursively for k=1,2=,3… to find the partial 

autocorrelation function (PACF): 

 
𝜙𝑘𝑘 =

|𝚸𝑘
∗|

|Ρ𝑘|
 39 

where 𝚸𝑘 is the autocorrelation matrix and 𝚸𝑘
∗ is the matrix 𝚸𝑘 with the last column 

replaced by autocorrelation vectors. An efficient algorithm to solve this problem is the 

Durbin–Levinson Algorithm (Durbin, 1960). Considering the autoregressive order p: 

 𝜙̂𝑝+1,𝑗 = 𝜙̂𝑝,𝑗 − 𝜙̂𝑝+1,𝑝+1 + 𝜙̂𝑝,𝑝−𝑗+1 40 

 

𝜙̂𝑝+1,𝑝+1 = 𝜌𝑝+1 −
∑ 𝜙̂𝑝,𝑗

𝑝
𝑗=1 𝜌𝑝+1−𝑗

1 − ∑ 𝜙̂𝑝,𝑗
𝑝
𝑗=1 𝜌𝑗

 41 

 𝜙̂1,1 = 𝜌1 42 

The algorithm starts with 𝜙̂1,1 = 𝜌1, then on p stage 𝜙̂𝑝+1,𝑝+1 are calculated 

based on stage p-1. Then the other coefficients are updated in a recursive pattern. 

Box, Jenkins and Reinsel (1994) also shows that an AR(p) process has PACF 

𝜙𝑘𝑘 ≠ 0, for 𝑘 ≤ 𝑝 and 𝜙𝑘𝑘 = 0, for 𝑘 > 𝑝. For a MA(q) process the PACF has similar 

behavior of the ACF of an AR(p) process which is damped exponentials and/or 

sinusoids. Lastly for the ARMA(p,q) process the PACF behaves as MA(q) process 

The partial autocorrelation function also produces a plot of 𝜙𝑘𝑘 against k. Both 

ACF and PACF plots then provides a good way to find the moving average order MA(q) 

and autoregressive order AR(p) to model the parametric form of 𝑓 in an ARMA model 

(Morettin, 2006). 

To decide what orders are negligible, it is observed that, in AR(p) process, the 

PACF values at lags greater than “p” are approximately independent N(0,1/p) random 

variables (Brockwell; Davis, 2016). This means that with 95% confidence the PACF 

values beyond lag “p” will fall within the bonds 
±1.96

√𝑛
 . The same applies to ACF for lags 

greater than “q”. 

 

2.5. Stationarity, seasonality and serial correlation statistical tests. 

A stationary time series means that the statistical properties like the mean and 

variance do not change over time (for example the Stochastic white noise with a mean 

zero and no correlation between its values at different times). Thus, time series with 
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trends or with seasonality are not stationary and its properties will affect the value of 

the time series at different times. 

The Augmented Dickey Fuller Test for Stationarity (ADF) is a statistical 

significance test which the null hypothesis says that a unit root exists. Unit root is a 

characteristic of a time series that makes it non-stationary. Considering the AR 

process from equation (28) and rewriting as: 

 

𝑦𝑡 = 𝜃0 + ∑ 𝜙𝑖𝑦𝑡−1

𝑝

𝑖=1

+ 𝜔𝑡 
43 

 

Δ𝑦𝑡 = 𝜃0 + 𝜙1
∗𝑦𝑡−1 + ∑ 𝜙1

∗Δ𝑦𝑡−1

𝑝

𝑖=1

+ 𝜔𝑡 
44 

The null hypothesis is that Δ𝑦𝑡 = 𝜔𝑡, which means 𝑦𝑡 difference is stationary 

or 𝜙1
∗ = 0 (Morettin, 2006). Rejecting the null hypothesis (p-value < confidence level) 

indicates that the series 𝑦𝑡 is stationary and 𝜙1
∗ < 1. Indeed, the successive 

differences is one of the options to transform the series to stationary. In general, the 

n-th difference of 𝑦𝑡 is (Morettin, 2006): 

 Δ𝑛𝑦(𝑡) = Δ[Δ𝑛−1𝑦(𝑡)] 45 

 Additionally, statistical tests can be used to evaluate the presence of 

deterministic seasonality and serial correlations in the series. 

 Considering the case of equation (22) with “p” predictors and the entire dataset 

of size T, a deterministic seasonality is presented if the hypothesis that all coefficients 

are null is rejected:  

 𝐻0: 𝛿𝑝 = 𝛼𝑘 = 𝛽𝑘 = 𝛾𝑘 = 0 46 

This test if performed by computing the F-statistic (James et all, 2013): 

 
𝐹 =

(∑ (𝑦𝑡 − 𝑦̅)2𝑇
𝑡=1 − ∑ (𝑦𝑡 − 𝑦̂𝑡)2𝑇

𝑡=1 )

∑ (𝑦𝑡 − 𝑦̂𝑡)2𝑇
𝑡=1

(𝑇 − 𝑝 − 1)

𝑝
 47 

of F distribution (p,T-p-1) degrees of freedom. When there is no relationship between 

the response and predictors the F-statistic takes on a value close to 1 (James et al., 

2013). On the other hand, it is expected F to be greater than 1. 

In regarding to serial correlation, the Ljung-Box test is a statistical test that is 

used to test for autocorrelation in a time series. Autocorrelation is the correlation of a 



43 

 

 

 

 

time series with itself at different lags. In other words, it is the extent to which the 

values of a time series are related to their own past values. It was proposed by Ljung 

and Box (1978) for testing goodness of fit for ARMA models using the residuals. It is 

based on the statistic: 

 

𝑄∗ = 𝑇(𝑇 + 2) ∑(𝑇 − 𝑘)−1𝑟𝑘
2

ℎ

𝑘=1

 48 

where T is the length of the time series, 𝑟𝑘 is the k-th autocorrelation coefficient of the 

residuals and h the number of lags to test. The null hypothesis say assumes large 

values of 𝑄∗ > 𝜒1−𝛼,ℎ−𝐾
2  indicate that there are significant autocorrelations in the 

residual series and therefore lack of fit. 𝜒1−𝛼,ℎ−𝐾
2  is the Chi-squared test with h-K 

degrees of freedom where K is the number of parameters estimated in the model. 

Assuming K=0, this test can be used for checking autocorrelation of the original series. 

 

2.6. Forecasting models 

 In the age of data science, exponential smoothing and ARIMA models are still 

today valuable forecasting models capable of similar performance of machine learning 

models.   

 Exponential smoothing started in the 1950s and 1960s with the work (Holt) 

1957, Winters (1960) and McCormick (1969). They provided a simple but useful 

classification of the trend and the seasonal patterns depending on whether they are 

additive or multiplicative. Exponential smoothing methods were improved later in 1985, 

with the work of Gardner (1985), providing a thorough review and synthesis of work in 

exponential smoothing to that date and extended McCormick classification to include 

additive damped trend. Taylor (2003) included methods with a multiplicative damped 

trend forming the set of equations used to this date.  

 In 1976, Box and Jenkins integrated the existing knowledge at that time of, 

autoregressive and moving average concepts in one model and applied in a three-

stage cycle of time series identification, model estimation (parameters) and verification 

(error metrics). The Autoregressive Integrated Moving Average (ARIMA) model as it 

is known had an enormous impact on the theory and practice time series analysis and 

implementation since then. With the popularization of the computer in the 90´s it 

expanded the use of these models for both ARIMA and exponential smoothing 
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methods, evolving to improved forecasting performance by better selection and fitting 

it´s parameters (Gooijer; Hyndman 2006). 

 In the year´s 2000 advances in computer science and machine learning have 

increased the forecaster’s toolbox of methods by using data driven models such as 

neural networks, clustering-based forecasting and ensemble methods of bootstrap 

aggregating (for instance Random Forest model for regression) along with other 

ARIMA derived models (Gooijer; Hyndman 2006).  

 Despite the excitement surrounding these new developments, ARIMA and 

exponential smoothing are not as prone to overfitting as more complex methods. In 

addition to this, the idea of combining forecasts models for the same dataset has 

received increased attention in the forecasting community recently. The basic idea is 

that by combining different methods their forecast errors won´t be highly correlated, 

but also, the residuals from one model can be served as a regressor to the other. 

 As discussed in the introduction, traditional parametric models such as 

exponential smoothing and ARIMA continue to provide reliable results and it is not the 

scope of this work to review every forecasting model available but rather provide a 

mechanism to improve model calibration and selection through hyperparameters 

search and performance measure. This process can be extended to any model after 

the hyperparameters are mapped. Considering this, the approach of this work is 

summarized as follows: 

a. The dataset is composed by time series daily observations; 

b. It contains multiple features that can be used as additional regressors beyond 

the time steps; 

c. Exponential smoothing method with damped parameters, Seasonal ARIMA and 

Recurrent Neural Network LSTM are the options selected as possible 

forecasting models; 

d. To overcome issues with overfitting and search for the optimal point between 

the bias-variance trade off, a resampling process is adopted while searching 

for the best hyperparameters; 

e. The hyperparameters search space is defined for each model; 

f. A set of validation measures are chosen to select the best hyperparameters in 

each model and the best model; 
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2.7. Exponential Smoothing (ES) 

The Holt Winters method, belongs to a class of exponential smoothing methods 

(which it is referred as ES) that aims to capture the behavior of the time series, 

separating it in level, trend and season. 

Exponential smoothing arises from the fact that this method is a generalization 

of an exponentially weighted moving average 𝑎𝑡 given by: 

 𝑎𝑡 = 𝛼𝑦𝑡 + (1 − 𝛼)𝑎𝑡−1 49 

The value of 𝛼 determines the amount of smoothing, and it is referred to as the 

smoothing parameter (Cowpertwait; Metcalfe, 2009). The Holt-Winters method 

generalizes Equation (52). There are two variations to this method that differ in the 

nature of the seasonal component. The additive method is preferred when the 

seasonal variations are roughly constant through the series, while the multiplicative 

method is preferred when the seasonal variations are changing proportional to the 

level of the series. 

The equations that follow next are: one for the level 𝑙𝑡 , one for the trend 𝑏𝑡, 

and one for the seasonal component 𝑠𝑡, with corresponding smoothing parameters α, 

β, γ and the damped parameter ∅. Periodicity is denoted as s. 

A damped trend method is appropriate when there is a trend in the time series, 

but one believes that the growth rate at the end of the historical data is unlikely to 

continue more than a short time into the future. The damped parameter can then be 

applied. 

Considering forecasting equation 𝑦̂𝑡+𝑘 made after the observation at time t+k, 

the Holt-Winters additive method for trend and season with damped parameter is 

composed by the set of equations: 

 

 𝐿𝑒𝑣𝑒𝑙: 𝑙𝑡 = 𝛼(𝑦𝑡 − 𝑠𝑡−𝑠) + (1 − 𝛼)(𝑙𝑡−1 + 𝜙𝑏𝑡−1) 50 

 𝑇𝑟𝑒𝑛𝑑: 𝑏𝑡 = 𝛽(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽)𝜙𝑏𝑡−1 51 

 𝑆𝑒𝑎𝑠𝑜𝑛: 𝑠𝑡 = 𝛾(𝑦𝑡 − 𝑙𝑡−1 − 𝜙𝑏𝑡−1) + (1 − 𝛾)𝑠𝑡−𝑠 52 

 𝑦̂𝑡+𝑘 = 𝑙𝑡 + (𝜙 + 𝜙2 + ⋯ + 𝜙𝑘)𝑏𝑡 + 𝑠𝑡+𝑘−𝑠 53 
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Now the Holt-Winters Multiplicative method for trend and season with damped 

parameter changes to: 

 

 
𝐿𝑒𝑣𝑒𝑙: 𝑙𝑡 = 𝛼 (

𝑦𝑡

𝑠𝑡−𝑠
) + (1 − 𝛼)(𝑙𝑡−1 + 𝑏𝑡−1

∅) 54 

 𝑇𝑟𝑒𝑛𝑑: 𝑏𝑡 = 𝛽(𝑙𝑡 − 𝑙𝑡−1) + (1 − 𝛽)𝑏𝑡−1
∅
 55 

 
𝑆𝑒𝑎𝑠𝑜𝑛: 𝑠𝑡 = 𝛾 (

𝑦𝑡

𝑙𝑡−1 + 𝑏𝑡−1
∅

) + (1 − 𝛾)𝑠𝑡−𝑠 56 

 𝑦̂𝑡+𝑘 = 𝑙𝑡𝑏𝑡
(𝜙+𝜙2+⋯+𝜙𝑘)𝑠𝑡+𝑘−𝑝 

57 

  

Variations of additive/multiplicative trend and season are possible, and it 

creates the set of hyperparameters that can be explored to find the best fit. Makridakis, 

Wheelwright and Hyndman (1998) introduced a taxonomy that summarize 15 

exponential smoothing methods through the recursive calculation of the level, trend, 

damped trend and seasonal component if they are additive or multiplicative. Appendix 

A includes a table with all the recursive equations derived from equations (53) to (60). 

Usually, you want to smooth the data enough to reduce the noise (irregular 

fluctuations) so that the pattern is more apparent. Normally, the smoothing parameters 

are searched using the optimization of an error function such as the mean squared 

error. 

In this study the use of the trend and seasonal component as “additive”, 

“multiplicative” or “not applicable” will be the hyperparameters and in the methodology 

chapter it will be defined how to search for the best configuration. 

 

2.8. ARIMA and Seasonal ARIMA 

While exponential smoothing models are based on a description of the trend 

and seasonality in the data, ARIMA models aim to describe linearly the 

autocorrelations in the data. 

 A time series 𝑦𝑡 follows an ARMA(p,q) process if the dth differences of 𝑦𝑡 series 

are an ARIMA(p,d,q) process. Differencing has the objective to make the series 

stationary to improve predictions. Using the notation of the backward shift operation 

from equation (30): 
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 ∅𝑝(𝐵)(1 − 𝐵)𝑑𝑦𝑡 = 𝜃𝑞(𝐵)𝜔𝑡 58 

 (1 − ∅1𝐵 − ⋯ − ∅1𝐵𝑝)(1 − 𝐵)𝑑𝑦𝑡 = (1 + 𝜃1𝐵 + ⋯ + 𝜃𝑞𝐵𝑞)𝜔𝑡 59 

 

where AR(p) = (1 − ∅1𝐵 − ⋯ − ∅1𝐵𝑝), MA(q) = (1 + 𝜃1𝐵 + ⋯ + 𝜃𝑞𝐵𝑞) and dth 

differences = (1 − 𝐵)𝑑. 

 A seasonal ARIMA model (which will name as SARIMA), uses differencing at 

lag equal to the number of periodicities s to remove additional seasonal effects. 

Seasonal ARIMA (p,d,q) (P,D,Q) can be expressed using the backward shift operator: 

 

 Φ𝑝(𝐵𝑠)∅𝑝(𝐵)(1 − 𝐵𝑠)𝐷(1 − 𝐵)𝑑𝑦𝑡 = Θ𝑄(𝐵𝑠)𝜃𝑞(𝐵)𝜔𝑡 60 

 𝐴𝑅: ∅𝑝(𝐵) = (1 − ∅1𝐵 − ⋯ − ∅1𝐵𝑝)  61 

 𝑀𝐴: 𝜃𝑞(𝐵) = (1 + 𝜃1𝐵 + ⋯ + 𝜃𝑞𝐵𝑞) 62 

 Seasonal AR: Φ𝑃(𝐵𝑠) = (1 − Φ1𝐵𝑠 − ⋯ − Φ𝑃𝐵𝑃𝑆) 63 

 Seasonal MA: Θ𝑄(𝐵𝑠) = (1 + Θ1𝐵𝑠 + ⋯ + Θ𝑄𝐵𝑄𝑆) 64 

 

where ∅𝑝, 𝜃𝑞, Φ𝑃, Θ𝑄 are the polynomials for orders p,q,P,Q respectively, ‘B’ is the 

backshift operator, ‘s’ is the seasonal lag; ‘d’ and ‘D’ are non-seasonal and seasonal 

differences; ‘ϕ’ and ‘Φ’ are the non-seasonal and seasonal autoregressive parameters; 

‘θ’ and ‘Θ’ are the non-seasonal and seasonal moving average parameters 

respectively. The orders (p,d,q) (P,D,Q) are the hyperparameters for SARIMA. 

The seasonal ARIMA can be extended to incorporate additional regressors in 

its final functional form: 

 

 Φ𝑝(𝐵𝑠)∅𝑝(𝐵)(1 − 𝐵𝑠)𝐷(1 − 𝐵)𝑑𝑦𝑡 = Θ𝑄(𝐵𝑠)𝜃𝑞(𝐵)𝜔𝑡 + β𝑘𝑥𝑘,𝑡 − ∅𝑝 65 

where β𝑘 is the coefficient value of the additional k regressors 𝑥𝑘,𝑡.  

ARIMA models assume a linear relationship between past observations and 

future values. This means that changes in past data will proportionally affect future 

values. An iterative procedure can be used to choose possible candidates for the 

hyperparameters. It starts with the stationarity of the time series. To obtain a stationary 
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time series, differencing process is employed till the seasonality in data fades away. 

The AR and MA terms of stationary time series data are then obtained by examining 

the patterns of partial autocorrelation function (PACF) and autocorrelation functions 

(ACF) plots respectively. Once tentative models are identified, the next step is the 

estimation of model parameters by fitting the model against a training dataset. An 

evaluation dataset can then be used to evaluate the model goodness of fit. 

Both exponential smoothing and ARIMA belongs to a class of parametric 

forecasting models as a functional form f is predefined. Both models were identifying 

as containing hyperparameters that govern the function form of f. Finding the best 

hyperparameters is key to obtain better results in the evaluation dataset. 

 

2.9. Parameter estimation for exponential smoothing and ARIMA 

Exponential smoothing and SARIMA models are classified as parametric 

models as they can be represented by equations with independent variables. These 

independent variables are called parameters.  

These parameters are found by apply one of the two follow methods: the least 

squares estimation such as in equation 23 or the maximum likelihood estimation. The 

method of least squares has an appealing intuitive interpretation. Its application 

depends on knowledge only of the means and covariances of the observations. 

Maximum likelihood estimation depends on the assumption of a particular 

distributional form of the observations. For both models here it is assumed that the 

observations given in equation 1 are independent random variables following a normal 

distribution. 

According to the Gauss–Markov theorem the least squares estimation 

produces unbiased linear estimators with minimum variance (Cowpertwait; Metcalfe, 

2009). The Maximum likelihood estimators are not generally unbiased, but in case of 

large sample, where the observations have the same distribution, they can be shown 

to have small mean squared error relative to other competing estimators. 

Considering 𝒙 = (𝑥1, … , 𝑥𝑡) is a vector of observations of independent 

𝑁(𝜇, 𝜎2) random variables, the likelihood function is: 

 

ℒ(𝜇, 𝜎2) =
1

(2𝜋𝜎2)𝑛/2
𝑒𝑥𝑝 {−

1

2𝜎𝑎
2

∑(𝑥𝑡 − 𝜇)2

𝑇

𝑡=1

} 66 
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Maximization of ℒ with respect to 𝜇 and 𝜎 is equivalent to minimization of: 

 

−2𝑙𝑛ℒ(𝜇, 𝜎2) = 𝑛𝑙𝑛(2𝜋) + 2𝑛𝑙𝑛(𝜎) +
1

𝜎2
∑(𝑥𝑡 − 𝜇)2

𝑇

𝑡=1

 67 

 

Assuming that the model has been specified i.e., the hyperparameters were 

selected, next is to find the parameters of the final function form. This will be obtained 

by minimizing the maximum likelihood (ML) function. The objective of this function is 

to maximize the probability of observing these realizations (given a known parametric 

distribution with unknown parameters). This is provided by the joint density of the 

observations known as the likelihood function. 

According to Hyndman et al (2018), for ES, it is easier to represent and 

compute the likelihood of the state space model given by: 

 

 𝑦𝑡 = 𝜔(𝑥𝑡 − 1) + 𝑟(𝑥𝑡−1)𝜀𝑡 68 

 𝑥𝑡 = 𝒇(𝑥𝑡 − 1) + 𝒈(𝑥𝑡−1)𝜀𝑡 69 

where 𝑟(∙) and 𝜔(∙) are scalar functions, 𝒇(∙) and g(∙) are vector functions 𝑥𝑡 =

(𝑙𝑡 , 𝑏𝑡 , 𝑠𝑡 , 𝑠𝑡−1, … , 𝑠𝑡−𝑚+1), 𝜀𝑡 is the error term assuming Gaussian white noise with 

mean and variance 𝜎2. The model with additive errors has 𝑟(𝑥𝑡−1) = 1 so that 𝑦𝑡 =

𝜇𝑡 + 𝜀𝑡. The model with multiplicative errors has 𝑟(𝑥𝑡−1) = 𝜇𝑡 so that 𝑦𝑡 = 𝜇𝑡(1 +

𝜀𝑡). All methods from appendix A can be written in the form given in equation (69) and 

(70). 

From the joint density function for 𝑝(𝑦/(α, β, γ, ∅), 𝑥0, 𝜎2), the Gaussian log 

likelihood is written as: 

 

 

ℒ∗(α, β, γ, ∅, 𝑥0) = 𝑛 𝑙𝑛 (∑ 𝜀𝑡
2

𝑇

𝑡=1

) + 2 ∑ 𝑙𝑛|𝑟(𝑥𝑡−1)|

𝑇

𝑡=1

 70 

 

The maximum likelihood estimates α, β, γ, ∅ set of parameters can be obtained 

by minimizing ℒ∗ and T is the number of observations. 
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According to Morettin (2006), for ARIMA, equation (61) can be used by taking 

the differencing “d” 𝑊𝑡 = Δ𝑑𝑦𝑡 to reach to the ARMA resulting model: 

 

 𝜔𝑡 = 𝑊̃𝑡 − 𝜙1𝑊̃𝑡−1 − ⋯ − 𝜙𝑝𝑊̃𝑡−𝑝 + 𝜃1𝜔𝑡−1 + ⋯ + 𝜃𝑞𝜔𝑡−𝑞 71 

 

where  𝑊̃𝑡 = 𝑊𝑡 − 𝜇. 

 Assuming the normality of 𝜔𝑡 the joint density function: 

 

𝑓(𝜔𝑡) = 2𝜋−𝑡/2𝜎𝜔
−𝑡𝑒𝑥𝑝 {− ∑

𝜔𝑡
2

2𝜎𝜔
2

𝑇

𝑡=1

} 72 

 

The maximum value for ℒ∗ in this case is found by choosing the estimates 𝜙𝑝 and 𝜃𝑞 

in: 

 

ℒ∗(𝜙, 𝜃, 𝜎𝑎
2) = 2𝜋−𝑡𝑒𝑥𝑝 {−

1

2𝜎𝑎
2

∑(𝑊̃𝑡 − 𝜙1𝑊̃𝑡−1 − ⋯ − 𝜙𝑝𝑊̃𝑡−𝑝

𝑇

𝑡=1

+ 𝜃1𝜔𝑡−1 + ⋯ + 𝜃𝑞𝜔𝑡−𝑞} 

73 

 

For the estimators found through the maximum likelihood function, it is possible 

to construct confidence intervals. When T is large, the estimators have a normal 

asymptotic distribution with specific variances. This allows for calculating confidence 

intervals and conducting hypothesis tests on the parameter values. 

A general discussion on the convergence properties of various numerical 

algorithms for computing maximum likelihood estimates was provided by Hamilton 

(1994). 

So, by defining the hyperparameters for each model next is find the parameters 

in the final function form equations. This is given by maximum likelihood estimation 

(MLE). When one wants to focus on improving the parameters estimation, advanced 

statistical learning and/or neural network models can be found in publications as a tool 

to try to improve the results from MLE (finding a better local minimum for the objective 
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function) (Zhang et al., 2021) and improve the variance of the estimators. This was not 

the scope of this work.  

 

2.10. Recurrent Neural Network – LSTM overview 

Recurrent Neural Networks has shown superior feature extraction ability and 

has contributed to improve the accuracy of time series forecasting (Shen et al., 2020). 

Additionally, having historical time series with an adequate length and additional 

features (multivariate) presents an opportunity to explore if more complex models than 

those obtained with traditional time-series provides better performance. 

Recurrent Neural Networks can automatically handle temporal structures like 

trends and seasonality, learn arbitrary complex mappings, support multiple inputs and 

outputs and principally address long-term information preservation. One of the earliest 

approaches to address this was the Recurrent Neural Network called Long-Short term 

Memory (LSTM) defined by Hochreiter and Schmidhuber (1997). 

In a recurrent neural network, there is a one-to-one correspondence between 

the layers in the network and the specific positions in the sequence (time-stamp input). 

Instead of a variable number of inputs in a single input layer, the network contains a 

variable number of states, and each states have a single input corresponding to that 

time-stamp input dimension. The inputs can directly interact with down-stream hidden 

states depending on their positions in the sequence. In other words, the same state-

wise architecture is repeated in time, and therefore the network is referred to as 

recurrent. Recurrent neural networks are also feed-forward networks with a specific 

structure based on the notion of time layering, so that they can take a sequence of 

inputs and produce a sequence of outputs. Such models are particularly useful for 

sequence-to-sequence learning applications like machine translation or for predicting 

the next element in a sequence. 

Although any of the variants for the recurrent neural network can be used, the 

most common networks are the Long-Short term Memory (LSTM) and Gated recurrent 

units (GRU).  

From equation (1) let 𝑥𝑡 = {𝑥1
(𝑖)

, 𝑥2
(𝑖)

, … . . , 𝑥𝑡
(𝑖)

} time series with additional 

regressors at the time “t” where “i” is the number of regressors. The LSTM network is 

trained based on a defined sequence of observations 𝑥𝑁 = {𝑥1
(1)

, 𝑥2
(1)

, … . . , 𝑥𝑁
(1)

} where 

N is the number of samples. The individual observations are scaled by: 
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𝑥𝑡,𝑠𝑐𝑎𝑙𝑒𝑑
(𝑖)

=
𝑥𝑡

(𝑖)
− 𝑥𝑚𝑖𝑛

(𝑖)

𝑥𝑚𝑎𝑥
(𝑖)

− 𝑥𝑚𝑖𝑛
(𝑖)

 74 

 

LSTMs are sensitive to the scale of their inputs and normalizing all the dataset 

are required to improve the convergence of the optimization error function and prevent 

vanishing gradient problem. Standard RNN cannot bridge more than 5 to 10 time steps 

where the back-propagated error signals tend to either grow or shrink with every time 

(Bengio et al.; 1994 and Staudemeyer and Morris; 2019). Over many times steps the 

error therefore typically blows-up or vanishes. Other option is the standardization of 

the dataset, although this assumes that the data is normally distributed. 

 The training process consists in set up a sliding window of size m, m<N as the 

input size for the network 𝑥𝑡 = {𝑥1
(𝑖)

, 𝑥2
(𝑖)

, … . . , 𝑥𝑚
(𝑖)

}. Then the m*i inputs are used to 

predict the next step 𝑥̂𝑚+1
(𝑖)

. The second window 𝑥𝑡 = {𝑥2
(𝑖)

, 𝑥3
(𝑖)

, … . . , 𝑥𝑚+1
(𝑖)

} will predict 

𝑥̂𝑚+2
(𝑖)

. This process continues until the window slide to the end of the training data set. 

Regarding the structure, in LSTM, the hidden layers from a multi-layer 

perceptron are replaced for cell units and each unit contains inside four different 

interacting layers. The first step in LSTM is to decide what information is going to throw 

away from the cell state. This decision is made by a sigmoid layer called the “forget 

gate layer” (1). It looks at previous point in time (hidden state) and the new input of 

data to output a number between 0 and 1. The next step is to decide what new 

information is going to store in the cell state. First, a sigmoid layer called the “input 

gate layer” (2) decides which values to update. Next, a tanh layer (3) creates a vector 

of new candidate which will decide whether update the previous cell state. These two 

results are combined (Hadamard product) and scaled to create an updated state. 

Finally, the output gate (4) will be based on the current filtered cell state version. 

A sigmoid layer decides what parts of the cell state is going to output. Then, a tanh 

function (to push the values to be between -1 and 1) multiplies the output of the 

sigmoid gate to result only the relevant parts. 
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Figure 8 - Representation of units inside cells in LSTM network 

Source: Adapted from Zhang et al. (2020) 

 

In Figure 8: Apply the tanh function to the current cell state pointwise to obtain 

the transformed cell state, which now lies in [-1,1]. Pass the previous hidden state and 

current input data through the sigmoid activated neural network to obtain the filter 

vector. Apply this filter vector to the transformed cell state by the Hadamard product. 

Output the new hidden state. 

These gates are responsible to decide what to consider in past information 

when updating the current cell state. The sigmoid function (indicated by σ) is used as 

the activation of the hidden state, and the hyperbolic tangent function (indicated by 

tanh) as the activation of the output. These are the default activation functions based 

on the work of Hochreiter and Schmidhuber (1997). A classical LSTM cell already 

contains quite a few non-linearities: three sigmoid functions and one hyperbolic 

tangent (tanh) function and there is no need to add another activation layer after each 

the LSTM cell or before the output layer. 

Defining matrix 𝚾𝑡 𝜖 𝑅𝑛×𝑑 of real numbers with n rows and d columns as a 

batch of data. R is the space of values with the number of time steps n of the batch 

and number of inputs d. 𝚾𝑡 batch is fed to LSTM gates at current timestep t and the 

hidden state of the previous time step as matrix 𝚮𝑡−1𝜖 𝑅𝑛×ℎ (number of hidden states 

h). There are h hidden units, the batch is of size n and the number of inputs is d. The 
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input gate (2) matrix 𝑰𝑡 ∈ 𝑅𝑛×ℎ, the forget gate matrix (1) 𝑭𝑡 ∈ 𝑅𝑛×ℎ and the output 

gate (4) matrix 𝑶𝑡 ∈ 𝑅𝑛×ℎ are defined as: 

 

 𝑰𝑡 = 𝜎(𝚾𝑡𝑾𝑥𝑖 + 𝚮𝑡−1𝑾ℎ𝑖 + 𝒃𝑖) 75 

 𝑭𝑡 = 𝜎(𝚾𝑡𝑾𝑥𝑓 + 𝚮𝑡−1𝑾ℎ𝑓 + 𝒃𝑓) 76 

 𝑶𝑡 = 𝜎(𝚾𝑡𝑾𝑥𝑜 + 𝚮𝑡−1𝑾ℎ𝑜 + 𝒃𝑜) 77 

 

where 𝜎 is the sigmoid function, 𝑾𝑥𝑖, 𝑾𝑥𝑓, 𝑾𝑥𝑜 𝜖 𝑅𝑑×ℎ and 

𝑾ℎ𝑖 , 𝑾ℎ𝑓 , 𝑾ℎ𝑜 𝜖 𝑅ℎ×ℎ are the weight parameters matrices. 𝒃𝑖 , 𝒃𝑓 , 𝒃𝑜 𝜖 𝑅𝑛×ℎ are 

bias parameters vectors. 

The candidate memory gate (3) 𝐂̃𝑡𝜖 𝑅𝑛×ℎ is defined as: 

 

 𝐂̃𝑡 = 𝑡𝑎𝑛ℎ(𝚾𝑡𝑾𝑥𝑐 + 𝚮𝑡−1𝑾ℎ𝑐 + 𝒃𝑐),  78 

where tanh is the tangent hyperbolic function, 𝑾𝑥𝑐  𝜖 𝑅𝑑×ℎ and 𝑾ℎ𝑐  𝜖 𝑅ℎ×ℎ are 

weight parameters and 𝒃𝑐  𝜖 𝑅𝑛×ℎ is a bias parameter. 

 Input 𝐼𝑡 governs how much new data to consider via matrix 𝐂̃𝑡 and forgetting 

state 𝑭𝑡 addresses how much of the old memory cell content matrix 𝑪𝑡−1 𝜖 𝑅𝑛×ℎ 

should retain. Using the Hadamard product: 

 

 𝑪𝑡 = 𝑭𝑡 ⊙ 𝑪𝑡−1 + 𝑰𝑡 ⊙ 𝐂̃𝑡 79 

 

If the forget gate is always approximately 1 and the input gate is always 

approximately 0, the past memory cells 𝑪𝑡−1 will be saved over time and passed to 

the current timestep. This design was introduced to alleviate the vanishing gradient 

problem and to better capture dependencies for time series with long range 

dependencies. 

Finally, the hidden state computation matrix 𝚮𝑡𝜖 𝑅𝑛×ℎ. Whenever the output 

gate is 1, it effectively passes all memory information through to the predictor, whereas 
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for output 0, it retain all the information only within the memory cell and perform no 

further processing: 

 𝑯𝑡 = 𝑶𝑡 ⊙ tanh (𝑪𝑡) 80 

 

This representation is a recurrent neural network with a single unidirectional 

hidden layer. In search of a more flexible form for the functional function 𝑓, multiple 

layers of LSTMs can be stacked on top of each other. This results in a mechanism 

that is more flexible, due to the combination of several simple layers.  

 

Figure 9 - Architecture of a deep recurrent neural network 

Source: Zhang et al. (2020) 

 

The hidden state of hidden layer 𝑙(𝑙 = 1, … , 𝐿) is 𝜢 𝑡
(𝑙)

𝜖 𝑅𝑛×ℎ (number of 

hidden units h), computing the first hidden layer and subsequent layers (as shown in 

Figure 9): 

 𝚮 𝑡
(1)

= 𝜎 (𝚾𝑡 , 𝚮 𝑡−1
(1)

) 81 

 𝚮 𝑡
(𝑙)

= 𝜎 (𝚮 𝑡
(𝑙−1)

, 𝚮 𝑡−1
(𝑙)

) 82 

 

Finally, the output layer is based only in the state of hidden layer L: 

 

 𝐎𝑡 = 𝜎 (𝚮 𝑡
(𝐿)

) 83 
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The goal now is to choose the weights W and the bias b such that the 

predictions made at the output gate O𝑡 best fit the true observed data. This is done by 

defining a loss function and an algorithm capable of searching for the best possible 

parameters for minimizing that loss function. According to Zhang et al. (2020), the 

most popular optimization algorithms for neural networks is the gradient descent. At 

each step the gradient descent, for each parameter, evaluates which way the training 

set loss would move if that parameters were perturbed just a small amount. Then the 

parameter is updated in the direction that reduces the loss. 

The summary below shows the application of the loss function mean squared 

error for a linear case where the vectors 𝐱𝑡 𝜖 𝑅𝑑 and 𝒘 𝜖 𝑅𝑑 are: 

 

 𝑥̂ = 𝑤1𝑥1 + ⋯ + 𝑤𝑑𝑥𝑑 + 𝑏 84 

A point forecast t is 𝑥̂(𝑡) and the corresponding true label is 𝑥(𝑖), the squared 

error is given by: 

 

 𝑒𝑡(𝒘, 𝑏) = (𝑥̂(𝑡) − 𝑥(𝑡))2 85 

 

where vector weights 𝒘 and bias b are the correspondents defined for (75) to (78) and 

the prediction 𝑦̂(𝑡) = O𝑡. To average the loss of the entire dataset of n: 

 

 

𝐸(𝒘, 𝑏) =
1

𝑛
∑ 𝑙(𝑡)(𝒘, 𝑏) =

1

𝑛
∑(𝒘𝑇𝒙(𝑖) + 𝑏 − 𝑦(𝑡))

2
𝑛

𝑡=1

𝑛

𝑡=1

 86 

 

When training the model, the parameters (𝒘∗, 𝑏∗) that minimize the total loss 

E across all training batches are given by: 

 

 𝒘∗, 𝑏∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝒘,𝑏 𝐸(𝒘, 𝑏) 87 

 

The gradient descent iteratively reduces the error when updating the 

parameters in the direction that incrementally decrease the loss function. In this 
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algorithm, the parameters are initialized at random and in each iteration, a batch size 

B consisting of a fixed number of training examples, are sampled from the data 

updating the parameters in the direction of the negative gradient. Finally, a parameter 

𝜂 called learning rate, multiples the gradient value and subtract the resulting term from 

the current parameter values as follow: 

 

 
(𝒘, 𝑏) ← (𝒘, 𝑏) −

𝜂

|Β|
∑ 𝜕(𝒘,𝑏)𝑙(𝑡)(𝒘, 𝑏)

𝑖𝜖Β

 88 

 
𝒘 ← 𝒘 −

𝜂

|Β|
∑ 𝜕𝒘𝑙(𝑡)(𝒘, 𝑏) = 𝑊 −

𝜂

|Β|
∑ 𝑋(𝑡)(𝒘𝑇𝒙(𝑡) + 𝑏 − 𝑦(𝑡))

𝑖∈Β𝑖𝜖Β

 89 

 
𝑏 ← 𝑏 −

𝜂

|Β|
∑ 𝜕𝑏𝑙(𝑖)(𝒘, 𝑏) = 𝑏 −

𝜂

|Β|
∑(𝒘𝑇𝒙(𝑡) + 𝑏 − 𝑦(𝑖))

𝑖∈Β𝑖𝜖Β

 90 

 

In neural networks, backpropagation refers to the method of calculating the 

gradient of neural network parameters. The method traverses the network in reverse 

order, from the output to the input layer, according to the chain rule from calculus. 

In the case of training RNNs such as LSTM, which maintain a hidden state that 

carries information across time steps, the method is called backpropagation through 

time. It considers the dependencies between current and past inputs due to the RNN's 

internal memory and unrolls the RNN through time, treating each time step as a 

separate layer like in a feedforward network, then performs standard backpropagation 

across these unrolled layers. The gradients are accumulated across all time steps 

before updating the weights, ensuring that adjustments consider the impact of past 

inputs on current outputs. The backpropagation through time full definition can seen 

at Staudemeyer and Morris (2019) and in Zhang et al. (2020). 

 

Table 4 – LSTM Hyperparameters 

LSTM formulation hyperparameters Loss function hyperparameters 

Input sequence Batch size 

Number of layers Learning rate 

Number of hidden units Training epochs 

Source: Elaborated by the author 
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In summary, Table 4 shows the hyperparameters needed for both LSTM 

formulation and its associated gradient descent algorithm to find the weight and bias 

of the network, These are the network input sequence, the number of hidden layers 

(L), the number of cells (hidden units) h, the set cardinality |Β| batch size and learning 

rate 𝜂. After training for some predetermined number of iterations (the training epochs 

or until some other stopping criteria are met), the estimated model parameters, 

denoted 𝑊̂, 𝑏̂, are recorded. These parameters will form the function form 𝑓. Section 

3.8 discuss about these hyperparameters and how to set boundaries for the search 

space. 

 

2.11. Brief history on model calibration and selection 

This research is focus in comparing the goodness of fit for the selected models. 

For that the hyperparameters are selected, the model is fitted using an objective 

function and then compare their performance using a test dataset and error metrics.  

In the 90’s, with the expansion of the exponential smoothing methods and 

ARIMA, researchers proposed the use of meta-learning algorithms that are based on 

the series statistics (classifying and understanding the nature of historical forecasting 

data) to decide the best model to use. Time series features identification has been 

described in the literature already by Armstrong and Collopy (1992). In there they call 

Rule-based forecasting (RBF) that identifies up to 28 features of time series such as 

Trend, seasonality and outlies model choices such as random walk, linear regression, 

Holt’s exponential smoothing, and Brown’s exponential smoothing. Vokurka, Flores 

and Pearce (1996), with similar intention, applied simple exponential smoothing, 

Gardner’s damped trend exponential smoothing (Gardner, 1985) and classical 

decomposition. Adya, Collopy and Armstrong (2001) automated six features that had 

previously been judgmentally identified in RBF, to reduce the inconsistencies in 

feature coding that result from differences in the experiences, abilities, and biases of 

the expert’s judgments. 

Another focus of defining the best method for a time series forecasting is 

through experiments by grid search models and its parameters, aiming for the best 

result of a chosen performance metric.  

Certainly, there are obvious limitations for processes based on system-based 

rules. They are not dynamic and therefore require significant rework and validation 
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prior to implement and revalidate. This is not a trivial problem especially when the 

forecasting domain or situation changes (Wang; Smith-Miles; Hyndman, 2009).  

After a decade of RBF research that shared hundreds of statistics descriptions 

to identify the best model and calibrate the parameters, Wang, Smith-Miles and 

Hyndman (2009) published an approach to select a model based on key time series 

characteristics including its trend, seasonality, serial correlation, nonlinearity, 

skewness, kurtosis, self-similarity, chaos, and periodicity using a meta-learning 

approach. The focus was to classify the series in clusters based on those 9 data 

characteristics and generate recommendation rules for selection of forecasting 

methods. Self-organizing maps (SOMs) and decision trees (DTs) are used to induce 

rules that explains the relationships between these characteristics and forecasting 

performance. 

Their study has been intentionally limited in scope of forecasting methods and 

in the selection of global features to characterize the structural properties of univariate 

time series, and therefore does not propose how to narrow down local features to 

calibrate the chosen model. 

Table 5 - Model Selection Publications 

Authors Method Hyperparameters Selection 

Collopy and Armstrong (1992) 
Random- Walk 

Exponential smoothing 

Rule Based Forecasting 

statistics 

Vokurka, Flores and Pearce 

(1996)) 

Random- Walk 

Exponential smoothing 

Rule Based Forecasting with 

graphical support 

Adya, Collopy and Armstrong 

(2001) 

Random- Walk 

Exponential smoothing 

Rule Based Forecasting 

through automated heuristics 

Billah, Hyndman, Koehler 

(2003) 
Exponential smoothing 

Experiments with new penalty 

function and reduce 

forecasting error 

Billah et al. (2006) Exponential smoothing 

Experiments with three 

different smoothing 

approaches 
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Cont’d Table 5 - Model Selection Publications 

Authors Method Hyperparameters Selection 

Wang, Smith-Miles and Hyndman 

(2009) 

Random-Walk 

Exponential 

smoothing 

ARIMA 

Neural Network 

Meta-learning based on time 

series characteristics and rule 

induction. 

Lemke and Gabrys (2010) 

Exponential 

smoothing 

ARIMA 

Neural Network 

Meta-learning based on time 

series characteristics and rule 

induction. 

Parmezan, Souza and Batista 

(2019) 

Exponential 

smoothing 

ARIMA 

Neural Network 

Experiments for parametric and 

non-parametric models chosen 

by performance measures 

Abbasimehr, Shabani and Yousefi 

(2020) 

Exponential 

smoothing 

ARIMA 

Neural Network 

Experiments for selecting best 

LSTM network topology 

Bergastra and Bengio (2012) 

Rashid, Fattah and Awla (2018) 

Rere, Fanany and Arymurthy (2016) 

Gelbart, Snoek and Adams (2014) 

Liu, Simonyan and Yang (2019) 

Neural Networks 

(but not limited to) 

Hyperparameter search 

techniques based on 

optimization: Grid Search, 

Random Search, 

Metaheuristics, Bayesian 

Approach, Reinforcement 

learning 

Source: Elaborated by the author 

 

Table 5 provides a summary of the evolution found in publications concerning 

mostly the 3 models here selected for this study (ES, SARIMA and LSTM) and the 

methods employed to find the best hyperparameters. Most of publications that 

approaches model selection criteria for time series laid out the best statistics and 

optimization methods to find the parameters such as Billah et al. (2006) and Billah, 

Hyndman, Koehler (2003). As for the hyperparameters this is considered as known 
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(Acar; Gardner, 2012) or was already selected. Error metrics are then used to compare 

the best model. 

Questions remains on what are the different hyperparameters and how to apply 

it in the dataset? What are the performance metrics and how to measure?  

The performance of these models is critically determined by hyperparameters 

selection. In the last decade, there are growing studies from a rule-based statistics 

model to hyperparameters selection and calibration that can use optimization 

algorithms to extensive search for the best configuration according to an objective 

function. 

Let denote a functional form 𝑓 from equation (3) that takes N hyperparameters 

as 𝑓𝑛. A vector of hyperparameters is denoted by 𝝂 ∈ 𝑓𝑛, and 𝑓𝑛 with its 

hyperparameters initiated to 𝝂 is denoted by 𝐹̂𝝂. 

The domain of a hyperparameter can be real-valued (e.g., learning rate), 

integer valued (e.g., number of layers), binary (e.g., whether to use early stopping or 

not), or categorical (e.g., choice of optimizer). For integer and real-valued 

hyperparameters, the domains are bounded to feasible values for reduced 

optimization time (Feurer; Hutter, 2019). 

Given a dataset D composed by two partitions, the train D𝑡𝑟𝑎𝑖𝑛 and validation, 

𝐷𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛, the goal is to find the best hyperparameters vector 𝝂∗ that minimize the 

loss function L: 

 

 𝝂∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝝂 𝜖 𝑓̂𝐿(𝐹̂𝝂, 𝐷𝑡𝑟𝑎𝑖𝑛 , 𝐷𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛) 91 

 

where the loss function L measures the loss of a model generated by the functional 

form 𝑓 with hyperparameters 𝝂 on train data 𝐷𝑡𝑟𝑎𝑖𝑛 and evaluated on validation data 

𝐷𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛. Considered that any partition of the dataset follows the same probability 

distribution represented in the entire dataset D (D𝑡𝑟𝑎𝑖𝑛, 𝐷𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛)~𝐷. This process 

can be repeated more than once to validate if the hyperparameters selected were able 

to generalize the behavior of the entire dataset. The cross-validation, for time series, 

needs to obey the temporal order:  
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 𝐷𝑡𝑟𝑎𝑖𝑛 = {𝑡𝑖 , 𝑡𝑖+1, … , 𝑡𝑖+𝑛} 92 

 𝐷𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 = {𝑡𝑗 , 𝑡𝑗+1, … , 𝑡𝑗+𝑚} 93 

where j>i, and n,m defines the size of the partitions.    

Studies devoted to facilitate this optimization search process includes 

strategies such as grid search (Feurer; Hutter, 2019), random search (Feurer; Hutter, 

2019; Bergastra; Bengio, 2012), evolutionary (Metaheuristic) algorithms (Rashid; 

Fattah; Awla, 2018; Rere; Fanany; Arymurthy, 2016), Bayesian optimization (Feurer; 

Hutter, 2019 ; Gelbart; Snoek; Adams 2014), differentiable architecture search (Liu; 

Simonyan; Yang, 2019), architecture search with reinforcement learning (Rere; 

Fanany; Arymurthy, 2016), etc. 

Two experimental methods for hyperparameter optimization algorithms are the 

Grid Search and Random Search. Using 𝝂 as a vector of hyperparameters that is 

composed N hyperparameters for the functional 𝑓𝑁. Let’s define: 

 

 𝝂𝑁
1 = {𝝂1, 𝝂2, … , 𝝂𝑁} 94 

where 𝝂𝑁
1  is the first set of hyperparameters options for 𝑓𝑁. Each hyperparameter N 

have i number of values that it can assume, then the total search space is: 

 

 

Ω = ∏ 𝑖𝑛

𝑁

𝑛=1

 95 

where i = 1,2,..I the size of the possibilities for hyperparameter n, n = 1,2,…N and Ω 

is total Grid Search space containing all possible configurations for model training. 

In Grid Search, the order in which the hyperparameters vectors will be initiated 

in the function is pre-defined and all of them will be used. This suffers from the curse 

of dimensionality since the required number of function evaluations grows with the 

dimensionality of the configuration space.  

A simple alternative to Grid Search is Random Search. It uses sampling of 𝝂𝑁
𝑖  

at random until a certain allowed number for the search is exhausted. This works better 

than grid search when some hyperparameters are much more important than others 

(Bergastra; Bengio, 2012). 
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Figure 10 - Comparison of grid search and random search 

Source: Adapted from Bergstra and Bengio (2012) 

 

Figure 10 illustrates how hyperparameter space is populated by different search 

schemes. With Grid search nine trials are tested, and these hyperparameters are 

defined discretely while in Random Search the same nine trials are explored with 

hyperparameters defined continuously. 

The choice of grid search approach was properly laid out by Bergastra and 

Bengio (2012) where they describe that this technique gives researchers some degree 

of insight into hyperparameter response function; There is no technical overhead or 

barrier to optimization and is simple to implement. On the other hand, depending on 

the hyperparameter selection, processing power and time is needed for the Grid 

Search.  

The choice for the Grid Search is twofold: 

 

a. Test proposed process in understanding how much computationally 

expensive will be for the hyperparameters space 𝝂 defined.  

b. Evaluate the bounded domain of the hyperparameters  𝝂𝑁 and if it was 

properly defined. 

 

In summary, this work proposes process that grid search hyperparameters for 

the following three models:  Holt-Winters Exponential smoothing (ES), SARIMA and 

LSTM deep learning neural network. The resulting goodness of fit in each model and 

the selection of the best models are based on empiric work including:  
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a. Performance in the out of sample (data not used for fitting the model) is 

measured by a combination error metrics; 

b. Observation and analysis of each model fitting diagnostic. 

 

For that, this work relies on the hyperparameters definition based on the 

literature available for each of the models. The grid search algorithm was elaborated 

by the author. Once the hyperparameters are applied in each model (ES, SARIMA 

and LSTM), the calibration of the parameters was implemented using the software 

package Statsmodels (Seabold; Perktoldet 2010) and Keras (Chollet,2015) in Python 

programming language. Statsmodels is a Python module that provides classes and 

functions for the estimation of many different statistical models such as ARIMA, ES, 

seasonal/trend decomposition using Loess (STL decomposition) and deterministic 

process using Fourier terms. Keras is an effective high-level neural network 

Application Programming Interface (API) written in Python. This open-source neural 

network library is designed to provide fast experimentation with deep neural networks, 

and has a simple, concise, and readable architecture. Lastly, the prediction 

performance is measure by the metrics defined by the author and visual diagnostics 

are provided to analyze the goodness of fit. 
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3. Methodology  

 

Each section of this chapter demonstrates the steps that were defined to 

calibrate all three models, select the best hyperparameters and then select the best 

model. 

 
Figure 11 - Complete Grid Search Process for Hyperparameters and Model Selection. 

Source: Elaborated by the author 

 

In Figure 11, the complete process is shown. First data is preprocessed for 

outliers, missing values and periodicity is found. Then the hyperparameters search 

space are defined for all 3 models. The models are fitted in the training partition and 

the MCP is measure in the validation partition. Best hyperparameters vectors 𝝂∗ are 
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selected and implemented in the test partition where the best model with lower MCP 

is selected. This result is also compared with previous baseline to show the gains with 

current proposal. 

This process relies in an empirical methodology, and it is not limited to the time 

series in this study, neither is specific for the company where this dataset was 

extracted. It proposes to be a method to address three main challenges: (1) forecast 

hundreds of time series using automation, (2) make informed decision when select the 

best calibration in each model and (3) improve accuracy when comparing to existing 

baselines. Additionally, this process is also not limited to the three models here 

selected. Any model can be added once their hyperparameters are identified. 

 

3.1. Data profile 

The database of consumer and corporate electronics products for Latin 

America consists of different product families, each of them with its own time series of 

daily observations which builds up in hundreds of datasets. For this study a specific 

product family is selected. The target variable 𝑦𝑡  had its original value changed due 

to confidentiality. 

The time series of daily observation is presented in Figure 11. It is intended to 

forecast the next month daily values. The number of orders needed each day depends 

on customer demands based on push system which the businesses send products to 

retailers and distributors in anticipation of consumer purchases. This decision is used 

to plan supply and human resources to fulfil those orders.  
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Figure 12 - Daily forecast orders 

Source: Elaborated by the author 

 

Figure 12 shows daily observations of orders received for a specific product. In 

this case it is a 6 days week historical were Sunday no orders were processed. This 

will be important for the periodicity definition in section 3.2. The period is from 

November 2014 to January 2020, with a total of 1616 data points. The push production 

model for this product does not undermines the importance of forecasting accuracy as 

inventory is built up in anticipation of future demand so, if forecasts are inaccurate, this 

will generate excess inventory impacting company’s financials. 

 

Table 6 – Dataset descriptive Statistics 

Measure Value Measure Value 

Count 1616 Quartile 1 (25th percentile) 42.00 

Mean 73.12 Quartile 2 (50th percentile) 72.00 

Median 72.00 Quartile 3 (75th percentile) 100.00 

Mode 64.00 Maximum 239.00 

Standard Deviation 43.28 Skewness 0.43 

Minimum 1.00 Kurtosis 0.06 
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Table 6 provides the descriptive statistics of the data. Measures of central 

tendency include the mean, median and mode. The mode is the value that occurs 

most often in the dataset. Skewness is a measure of a distribution's symmetry and 

Kurtosis is the degree of peak of a distribution. Both measures are used to insights 

into the shape and distribution of a dataset and their values are compared with a 

normal distribution which has skewness of 0 and kurtosis of 3. This dataset has a 

positive low skew which means that the dataset is fairly symmetrical (positive means 

longer tail to the right indicating more high values) and very low kurtosis indicating 

flatter peak and thinner tails of a more spread-out distribution. A flat-topped distribution 

might simply reflect the inherent nature of the phenomenon being studied here. 

 

 

Figure 13 – Histogram chart of the dataset 

Source: Elaborated by the author 

 

Figure 13 shows the distribution of the dataset where the number of bins are 

defined as the squared root of the dataset size. It is possible to see the positive 

skewness for large values. There is a high number of lower values observed in the left 

tail of the distribution. The reason for this is the orders received during Saturday, which 

is an exceptional day for operation, as only urgent orders are processed. The quantity 

of those lower values is expected to be modelled by the periodicity of the series. This 
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seasonal pattern, when defined, is applied in all three models as discussed in sections 

2.8, 2.9 and 2.10. 

There are discussions in scientific community whether transforming the target 

variable to a normal distribution leads to an improvement in the forecasting accuracy. 

Nelson and Granger (1979) after fitting a linear ARIMA model to the power 

transformed series concluded that the Box–Cox transformation does not lead to an 

improvement in the forecasting performance. In their case the transformation of the 

non-normality economic data did not show an improvement in the predictions. 

Makridakis and Hibon (1979) also verified that the transformed data has little effect in 

improving forecasting. Granger and Newbold (1976) provided a general analytical 

approach to forecasting transformed series, based on the Hermite polynomials series 

expansion, and showed that the forecasting of the inverse logarithm transform 

produces a biased regressor which is carried out to the forecasting. 

More recently Proietti and Lütkepohl (2013) discussed this topic and concluded 

that depending on the partition of the dataset the Box–Cox transformation produces 

forecasts which are significantly better than the untransformed data at the one-step-

ahead horizon. Their case showed a transformation was indicated for 20% of the entire 

series, however, the advantage of the transformation diminishes for longer-term 

forecasts. Their method proposes a nonparametric approach for estimating the optimal 

transformation parameter λ from the Box-Cox transformation based on the frequency 

domain estimation of the prediction error variance.  

Most common transformations are (consider yt the time series) the logarithmic 

zt =  log(yt), power transformations zt = 𝑦𝑡
𝑝

 and the well-developed Box–Cox 

transform (Box; Cox, 1964). In this work, no transformation was applied when grid 

search for the best hyperparameters. 
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Figure 14 - Box Whisker plot of the entire dataset 

 

To evaluate outliers the Box Whisker plot from Figure 14 uses the inter quartile 

range from Table 6 to detect outliers by measuring all data points that fall outside the 

measure Q3+1.5IQR. The large values could be classified as outliers. This is in line 

with the positive skewness found. The lower values outliers measured by Q1-1.5IQR 

are then capped at the minimum observed value which is 1 and then no value is 

classified as outlier in the lower part of the quartile.  

The summarized Table 7 below shows additional characterization of the time 

series of this study: 

 

Table 7 - Time Series Characterization 

Characterization Test Measure Result 

ADF Test - Stationarity ADF p-value = 0 (eq 45) Stationary 

Periodicity 6-day week Yes 

Serial Correlation - Ljung-Box test Ljung-Box test p-value = 0 (eq 48) Yes 

Source: Elaborated by the author 

 

From Table 7 it is concluded that the series does have serial correlation and 

seasonality that can be used to model with exponential smoothing and SARIMA. The 
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stationary indicates that for SARIMA differencing is not needed and periodicity of 6 

from a 6-day week is further confirmed in section 3.2. 

 

3.2. Outliers and missing data 

Outliers are defined as unusually low or high values, occurring due to data 

errors or special circumstances such as one-off events. These unusual values can be 

problematic for time series forecasting as they are both based on the extrapolation of 

historical patterns. Outliers can have a large impact on the forecast if the event is not 

expected to reoccur in the forecasted period.  

Outliers in time series has been reviewed by Chandola, Banerjee and Kumar 

(2009) as concept of anomaly detection. Here the authors defines and review outliers 

in the context of time series and describe traditional statistical approaches to identify 

and remove outliers such as the ones found in the work of Abraham and Chuang 

(1989) and recent machine learning models like decision trees, neural networks and 

support vector machines. 

A classification of those methods was also reviewed and discussed by Smiti 

(2020) where the possible approaches to outlier’s detection such as statistical, 

distance-based, density-based and cluster-based methods are shown. 

Although, outliers should not be removed if: 

 

a) are caused by natural variation in the data such as seasonal patterns or sales 

events. Removing these outliers could lead to a biased understanding of the 

underlying trend and underestimate uncertainty, when the event could 

potentially reoccur in future; 

b) are informative and is of interest to the researcher. Removing these outliers 

could limit the insights that can be gained from the data. 

 

According to Figure 14, it was decided to remove the points which falls outside 

the range given by Q3+1.5IQR which are in total 17 points. No additional treatment 

was applied due to reasons pointed in (a) and (b), especially lower values which are 

formed by the natural occurrence of the orders in the last day of the week.  
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Removing these outliers generates missing data points in the time series and 

adding to other days which data was not available or no orders were processed, 

yielded a total of 42 missing datapoints. 

Many methods exist for imputing missing values ranging from simple univariate 

methods such as last observation carried forward variation, interpolation, and model-

based methods (Moritz; Bartz-Beielstein, 2017) to more complex methods such 

clusterization (Camacho; Lopez-Buenache, 2022). 

The method used for filling the missing datapoint was the average of the 

weekday from previous years. For instance, if the missing datapoint is a Monday, the 

average of orders processed in previous Mondays is inputted. It is a simple and 

intuitive approach that aims to keep the periodicity of the season intact, a characteristic 

that is part of the ES and SARIMA parametric formulas and an important 

hyperparameter for LSTM as it will be explained in sections 3.7, 3.8 and 3.9.   

For instance, the use of cubic spline interpolation (Moritz; Bartz-Beielstein, 

2017), a simple and robust method that creates a smooth and continuous curve 

passing through all the data points, does not take in consideration the periodicity of 

the series which creates a seasonality pattern of peaks and drops in opposite of a 

smooth behavior.  

Considering “WD” to be the weekday occurrence in the series and N the total 

number of occurrences of “WD”, the missing data will be given by: 

 
𝑦𝑡

𝑖𝑛𝑡 =
∑ 𝑦𝑊𝐷

𝑖𝑁
𝑖=1

𝑁
 

 

 

96 

 

Figure 15 - Original vs Interpolated Series. 

Source: Elaborated by the author 
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Figure 15 shows the interpolated time series for a specific time frame. 

Replacing missing data keeps the series integrity and therefore helps modelling 

seasonality and periodicity which is defined next. 

 

Table 8 – Dataset descriptive statistics after missing data treatment. 

Measure Value 

Count 1616 

Mean 71.97 

Median 72.00 

Mode 59.00 / 64.00 

Standard Deviation 41.10 

Minimum 1.00 

Quartile 1 (25th percentile) 42.00 

Quartile 2 (50th percentile) 72.00 

Quartile 3 (75th percentile) 99.00 

Maximum 187.00 

Skewness 0.23 

Kurtosis -0.40 

 

The new data profile seen in Table 8 has it’s mean and standard deviation 

reduced as expected. Also, skewness improved, reducing from 0.43 to 0.23, and a 

negative small kurtosis shows that the data is less likely to produce extreme values 

and has a slightly flatter central region compared to a normal distribution.  

 

3.3. Stationarity and periodicity (or frequency) 

A stationary time series means that the statistical properties like the mean and 

variance do not change over time (for example the Stochastic white noise with a mean 

zero and no correlation between its values at different times). Thus, time series with 

trends or with seasonality are not stationary and its properties will affect the value of 

the time series at different times. 

Stationary time series is often done for traditional time series methods such as 

ARIMA, using differences or seasonal differences which is embedded in the model 

hyperparameters that will be calibrated.  For regression-based machine learning 
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methods the time series will be transformed to a supervised learning dataset which is 

defined in section 3.9.  

Periodicity (or frequency) for time series is the number of observations before 

the seasonal pattern repeats. Time series can often exhibit complicated seasonal 

pattern which leads to unknown frequencies or regular periodicity. 

Periodicity can be determined by looking in the auto-correlation function after 

removing the trend of the series. Here are the steps implemented: 

a) Differencing: remove the trend by compute the n-th differences between 

consecutive observations according to equation (45); 

b) Find the autocorrelation function 𝑟𝑘 for all the series length 𝑌𝑘: 

 𝑟𝑘 = 𝐶𝑜𝑟𝑟(𝑌𝑘, 𝑌𝑡−𝑘) 97 

c) Plot 𝑟𝑘 and chose the periodicity to be the peak with highest of all positive 

values which has trough before it; in the case of the time series of this 

work the periodicity was clearly 6 (6-day week seasonal pattern). 

 

 

Figure 16 - Result of the periodicity calculation 

Source: Elaborated by the author 

 

In Figure 16, the peaks at every 6 lags can be seen. If no such peak is found, 

periodicity can be set to 1 (equivalent to non-seasonal). Huber and Stuckenschmidt 

(2020) presented a large-scale demand forecasting scenario that requires daily 

forecasts. A challenge in this case is predicting the demand on special days (e.g., 
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public holidays). Their empirical evaluation provides evidence that machine learning 

methods were a viable alternative over traditional methods. The periodicity of 6 is not 

a surprise result as this time series consists of calendar weeks of 6 working days of 

sales.  

 

3.4. Trend and seasonality modelling using time series decomposition. 

The objective in this section is to model the trend and seasonality 

deterministically using equation (22). To validate how well seasonality was modelled, 

two ACF plots will be used: the stationary original series ACF versus the residuals 

ACF from fitted series. If a good model is obtained, the objective is to use it as 

additional regressor in the SARIMA and LSTM modelling that could lead to 

improvement in model fitting and forecasting. 

 

 

Figure 17 - Sine and Cosine for two Seasonality frequencies 

Source: Elaborated by the author 
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 Figure 17 shows the plot of k=1 for equation (22) of the sine and cosine pair in 

a 365-time steps expansion. This figure also compares how the seasonality differs 

when using 𝑚𝐴 and 𝑚𝑀. The figure is limited by 365-time steps but this deterministic 

process expands out to the entire dataset horizon. Additionally, the dataset has a 6-

day week, so the extra terms created for the full month and year seasonality are 

dropped. 

 

 

Figure 18 - Trend modelled with polynomial. 

Source: Elaborated by the author 

 

For the polynomial equation it was selected the order p=3 to allow capturing 

both upward and downward trend as seen in Figure 18, and the weekly variables are 

given by j=1,…5, following a 6-day-week series. The two candidate equations are then: 

 

𝑌̂𝑡 = ∑ 𝛿𝑝𝑡𝑝

3

𝑝=0

+ ∑[𝛼𝑘 sin (
2𝜋𝑘𝑡

𝑚𝐴

) +

12

𝑘=1

𝛽𝑘 sin (
2𝜋𝑘𝑡

𝑚𝐴

)] + ∑ 𝛾
𝑘
𝑑𝑗,𝑡

5

𝑗=1

+ 𝑍𝑡 
98 

 

𝑌̂𝑡 = ∑ 𝛿𝑝𝑡𝑝

3

𝑝=0

+ ∑[𝛼𝑘 sin (
2𝜋𝑘𝑡

𝑚𝑀

) +

12

𝑘=1

𝛽𝑘 sin (
2𝜋𝑘𝑡

𝑚𝑀

)] + ∑ 𝛾
𝑘
𝑑𝑗,𝑡

5

𝑗=1

+ 𝑍𝑡 99 

 

Both equations (98) and (99) are fitted to the entire series and the coefficients 

are found through equation (23). The resulting residuals are then:  
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 𝑌𝑡,𝑑𝑒𝑠𝑒𝑎𝑠𝑜𝑛 = 𝑌𝑡 − 𝑌̂𝑡 100 

 
𝑌𝑡,𝑠𝑡𝑑 =

𝑌𝑡,𝑑𝑒𝑠𝑒𝑎𝑠𝑜𝑛

√∑ (𝑌𝑡,𝑑𝑒𝑠𝑒𝑎𝑠𝑜𝑛)2
𝑡 /𝑇

 101 

 

Equation (101) are the standardized residuals. This approach is useful to 

analyze on common scale, so they can be easily compared across different models. 

 

 

Figure 19 - ACF plot comparing the original series with the de-seasonalized series. 

Source: Elaborated by the author 

 

After the regression coefficients of equation (98) and (99) are found, the 

residuals are calculated in equation (100). The goal now is to evaluate how good the 

seasonality of the series was capture by measuring the autocorrelation function from 

equation (27). The plot of the autocorrelation in each lag from the de-seasonalized 

series using 𝑚𝐴 and 𝑚𝑀 can be compared with the autocorrelation from the original 

series. Figure 19 shows how 𝑚𝐴 had better result in capturing the correlation with 

previous lags (orange line), where the same peaks found in the original series (blue 

line) are not seen or have a much lower value. Selecting the annual harmonic 

seasonality, equation (98) regression resulted in F-Statistic of 63.7 which rejects the 

null hypothesis in equation (47) that all coefficients are null. 
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Table 9 - Coefficients Found from Equation (98) 

Trend Coefficients P>|t| 

const 84.2724 0.00% 

trend -0.11 0.00% 

trend_squared 0.0001 0.00% 

trend_cubed -4.183E-08 0.00% 

s(2,7) 7.6897 0.10% 

s(3,7) 13.3394 0.00% 

s(4,7) 21.1934 0.00% 

s(5,7) 21.4299 0.00% 

s(6,7) -55.3338 0.00% 

cos(1,freq=A-DEC) -4.0144 0.00% 

cos(2,freq=A-DEC) -5.6703 0.00% 

cos(3,freq=A-DEC) -2.8667 0.20% 

sin(4,freq=A-DEC) -5.2691 0.00% 

cos(4,freq=A-DEC) 2.9148 0.20% 

cos(5,freq=A-DEC) -2.4967 0.80% 

cos(6,freq=A-DEC) -2.251 1.60% 

cos(7,freq=A-DEC) -3.8418 0.00% 

sin(8,freq=A-DEC) 4.4676 0.00% 

cos(9,freq=A-DEC) -2.3642 1.10% 

cos(10,freq=A-DEC) -1.8182 5.00% 

sin(12,freq=A-DEC) 7.8554 0.00% 

cos(12,freq=A-DEC) -14.8429 0.00% 

Source: Elaborated by the author 

 

Table 9 shows the coefficients values for 𝛼𝑘, 𝛽𝑘, 𝛾𝑘 , 𝛿𝑝 created during the 

regression from Equation (98) and respectively p-values from Equation (25). Also, 

there is a total of 32 coefficients resulting from this regression, in which some 

coefficients had a p-value greater than or equal to 5% (from equation (24)). Backward 

Stepwise Selection is a technique that iteratively removes the least useful predictor, 

one-at-a-time and fit the regression once more. This has reduced the number of 
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coefficients to 21 and increased the F-Statistics to 96. The freq=A-DEC represents the 

frequency of annual for the Fourier pairs of the deterministic process. 

Figure 20 show a specific timeframe of the series comparing the resulting 

regression line of the trend and seasonality modelled (fitted values in blue) against the 

original series (in black). 

 

Figure 20 - Fitted values for Equation (99) vs Original Series 

Source: Elaborated by the author 

 

The resulting 𝑌̂𝑡 of the decomposition model are used as one regressor for the 

time series. Additionally, it was added other series (exogenous variables) that will play 

the role of additional regressor. These regressors has the time series with same 

interval as the target variable like shown in Table 2. Both SARIMA and LSTM can use 

multiple regressors to try improving the fitting of the target variable (orders) according 

to their formulation seen in 2.8 and 2.10. 

 These additional features represent business behavior that correlates with 

orders forecasting and their future data is known such as production capacity, 

company financial targets and material availability. A comparison of the error metrics 

when using these additional regressors can confirm their influence. 

 

3.5. Training, validation and test dataset partition  

When evaluating a model, the performance of the model is done on data that 

was not used for training it. As explained in section 2.2, this is the validation partition. 
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The size of the dataset in this study provides an opportunity to perform the validation 

in three steps: 

 

a) Training set: This is used to fit the models with the chosen hyperparameters 

and the objective function. The grid search space is used for each model in 

order to compare the hyperparameters vector’s 𝝂𝑁
𝑖  performance during the 

validation phase; 

b) Validation set (out of sample): Evaluate how well the model was trained by 

comparing the performance of the fitted models. The hyperparameters vector 

for each model that had the best validation result are selected (best candidates 

for the test set); 

c) Test set: How the best candidates for each model perform on unseen real-world 

data. They are applied in the test set and each model performance is compared. 

 

This methodology involves moving along the time series adding the validation 

partition to the training partition at each split. For that two options are possible: sliding 

window or expanding window. The difference between these two can be seen in Figure 

21. A sliding window hold the length of the dataset constant as new data is available 

while the expanding window increase the dataset with the new data. 

 

 

Figure 21 - Expanding window and Sliding Window approach. 

Source: Elaborated by the author 

  

The expanding window approach was selected for two reasons: according to 

Staudemeyer and Morris (2019) LSTM is designed to capture long term dependencies 

Split 1 Split 1

Split 2 Split 2

Split 3 Split 3

... ...

Split 12 Split 12

Training Training

Validation Validation

Test Accuracy Test Accuracy

Expanding Window Sliding Window

Full DatasetFull Dataset

Time Time

Model Selection Model Selection
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and second the regressor created with Equation (99) was used to capture the entire 

seasonality for the database. 

The size of each partition on a, b and c are defined as follow. The test set is 

used to validate a real case scenario, which for this study is a month prediction made 

of 6-day week. Next it is selected 12 months of test set to replicate a full year of monthly 

forecasts. The Validation set will contain about 6 months of data, which it will be fixed 

as 10% of the total records subtracted of the test set in each split. 

 

Table 10 - Size of each partition: training, validation and test for 12 splits 

Expanding Window 

Split Total Records Training Validation Test Training % Validation % Test % 

1 1330 1173 130 27 88% 10% 2% 

2 1354 1197 133 24 88% 10% 2% 

3 1380 1219 135 26 88% 10% 2% 

4 1406 1242 138 26 88% 10% 2% 

5 1433 1265 141 27 88% 10% 2% 

6 1458 1290 143 25 88% 10% 2% 

7 1485 1312 146 27 88% 10% 2% 

8 1512 1336 149 27 88% 10% 2% 

9 1537 1361 151 25 89% 10% 2% 

10 1564 1383 154 27 88% 10% 2% 

11 1590 1408 156 26 89% 10% 2% 

12 1616 1431 159 26 89% 10% 2% 

Source: Elaborated by the author 

 

From Table 10, each model will process is as follow: 

a) Hyperparameter is selected from search space. Model is fitted;  

b) The model makes a prediction for the validation partition, the performance 

is measured and stored.  

c) Next Hyperparameter is selected, fitted and validation performance is 

stored. 

d) When all the 12 splits of the validation dataset are done, the best 

hyperparameters in each split, for each model, are selected. 
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e) Those best hyperparameters are then used from split 1 to 12 with the 

training window expanded to include the validation partition and their 

performance are measured in the test partition. 

f) The model is chosen based on the best performance in the test partition 

from all 12 splits. 

 

3.6. Training and out of sample metrics 

To evaluate the performance of the models during training, validation (out of 

sample) and testing (out of sample), several statistical metrics can be used 

(Shcherbakov et al. 2013). The survey showed in Table 11 were selected and these 

measures were classified according to its objective; for model performance or for 

model selection. Based on that, a combination of these metrics is then proposed for 

selecting the best model. In Table 11, 𝑦𝑡 is the original series, 𝑦̂𝑡 the forecasted values 

and 𝑦𝑡
∗ the benchmark values. 

 

Table 11 - Evaluation Metrics for validation and testing partitions. 

Measure Formula 
Model 

Performance 

Model 

Selection 

AIC 

(Training) 
𝐴𝐼𝐶 = −2 ln(𝑀𝑎𝑥 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) + 2𝑘 X 

X 

BIC 

(Training) 
𝐵𝐼𝐶 = −2 ln(𝑀𝑎𝑥 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) + 𝑘𝑙𝑛(𝑛) X 

X 

Mean Absolute 

Error 
𝑀𝐴𝐸 =

1

𝑇
∑ |𝑦𝑡 − 𝑦̂𝑡|

𝑇

1

 X  

Mean Squared 

Error 
𝑀𝑆𝐸 = 𝑥1 =

1

𝑇
∑(𝑦𝑡 − 𝑦̂𝑡)2

𝑇

1

 

 

X  

Symmetric Mean 

Absolute 

Percentage Error 

𝑆𝑀𝐴𝑃𝐸 =
1

𝑇
∑

|𝑦𝑡 − 𝑦̂𝑡|

(|𝑦𝑡| + |𝑦̂𝑡|)/2

𝑇

1

 

 

X  

Mean Absolute 

Scaled Error 
𝑀𝐴𝑆𝐸 =

1

𝑇
∑

|𝑦𝑡 − 𝑦̂𝑡|

(
1

𝑇 − 1) ∑ |𝑦𝑡 − 𝑦𝑡−1|𝑛
𝑡=2

𝑇

1

 

 

X X 

Cont’d Table 11 - Evaluation Metrics for validation and testing partitions 
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Measure Formula 
Model 

Performance 

Model 

Selection 

Median Relative 

Absolute Error 

𝑀𝑑𝑅𝐴𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛|𝑟𝑡| 

𝑟𝑡 =
(𝑦𝑡 − 𝑦𝑡̅)

(𝑦𝑡 − 𝑦𝑡
∗)

 
 X 

Geometric Mean 

Relative Absolute 

Error 

𝐺𝑀𝑅𝐴𝐸 = 𝑥2 = √∏
|𝑦𝑡 − 𝑦̂𝑡|

|𝑦𝑡 − 𝑦𝑡
∗|

𝑇

𝑡=1

  X 

Mean Direction 

Accuracy 

𝑀𝐷𝐴 = 𝑥3

= 1 −
1

𝑇
∑ 1𝑠𝑔𝑛(𝑦𝑡−𝑦𝑡−1)=𝑠𝑔𝑛(𝑦̂𝑡−𝑦̂𝑡−1)

𝑡

 
X X 

Multi-Criteria 

Performance 

(MCP) 

𝑀𝐶𝑃 = (𝑥1𝑥2 +  𝑥1𝑥3 + 𝑥2𝑥3)
sin (

2𝜋
3 )

2
 

where xi are MSE, GMRAE and 1-MDA. 

 X 

Source: Elaborated by the author 

 

Table 11 shows the error metrics evaluated for this work and are not limited. 

AIC is the Akaike’s Information Criterion and was one of the first approaches to model 

specification and it proposes a balance between goodness-of-fit and model 

complexity. The Schwarz Bayesian Information Criterion (BIC) also penalizes model 

complexity, but the penalties grow faster with increasing sample size and model 

complexity. A full definition of both measures is found in Brockwell and Davis (2016). 

Both metrics are limited to the training partition as they leverage the result of the 

maximum likelihood function that is used to find the parameters of the model as 

discussed in section 2.9. 

In this work, the selection of the best hyperparameter vector in each model is 

done by choosing the best result found in the validation (out of sample) partition even 

though it might not be the best result found during the training partition. The reason 

for this is two: 

 

a) Different hyperparameters can achieve similar training results; 

b) Better result in out of sample cloud mean that the hyperparameters 

achieved a better generalization of the dataset. The test partition will then 

confirm this assumption. 
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For this task, the other metrics in Table 11 beyond AIC and BIC can be selected. 

They range from absolute error measurement such as MAE and MSE to relative error 

to a benchmark such as MdRAE and GMRAE. 

 In particular, the use of percentage errors is not advisable in the dataset of this 

study because of the considerable proportion of low actual values, which lead to high 

percentage errors with no direct interpretation or practical use. Another disadvantage 

of percentage error is that it puts a heavier penalty on forecasts that exceed the actual 

than on those that are less than the actual value (Armstrong; Collopy, 1992; 

Shcherbakov et al. 2013) 

On the other hand, the Symmetric Mean Absolute Percentage Error is not 

affected by the scale of the data and does not penalize over forecasting or under 

forecasting due to average taken of the both the observed and predicted value. 

SMAPE is also expressed as a percentage. 

 

 

Figure 22 - Representation of Naïve benchmark 

Source: Elaborated by the author 

  

For the relative error metrics, the benchmark value chosen was the previous 

time series step observation, also known as Naïve Method, as seen in Figure 22. This 

method uses the most recent value as the forecasted value for the next time step. To 
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do this, the benchmark value is simply one time step shifted forward and assigned as 

the forecast.  It is an elementary baseline that can be hard to beat. 

The result expected when choosing a model measure both performance and 

selection type of errors (Table 8). For this reason, a combination of those metrics was 

used in what is defined as multi-Criteria Performance index. A proposal of this metric 

was introduced by Parmezan, Lee and Wu (2017).  

 

Figure 23 - Representation of MCP criteria 

Source: Elaborated by the author 

 

The multi-criteria performance index from Figure 23 is defined to be the area of 

the triangle which the vertices are the values for three chosen metrics. Although all 

metrics are measured, only three selected metrics will be used for the best 

hyperparameter 𝝂𝑁 selection in the validation phase and for the best model in the test 

phase. The selection was: 

 

a) MSE: Selected as model performance, the second moment of the error 

incorporates both the variance of the estimator (how widely spread the estimates 

are from one data sample to another) and its bias (how far off the average 

estimated value is from the true value). The resulting MSE value is then scaled to 

match the scale of the next two criteria. 

b) GMRAE: For a relative error measure, both MdRAE and GMRAE are good 

candidates as model selection error metric. This measure will show the effect on 

accuracy when a change is made in a hyperparameter for a given model.  

Geometric mean error measure is more sensitive than median. Also values higher 
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than 1 for this error indicates that the naïve benchmark starts to be a better 

predictor. 

c) MDA: Compares the forecast direction (upward or downward) to the actual 

direction. Not only the precision of the forecast but the level and direction of the 

predictions are important in planning for future orders. Values range from 0 to 1. 

 

Choosing the best model can be a difficult task when different performance 

measures are available. The Multi Criteria Performance is a proposal to work around 

such problem. In addition, accuracy only, such as MSE is not the only goal. The goal 

is also to select a model that can perform better than a simple naïve forecast. 

Correcting predicting increase or decreasing in the sales levels are important to plan 

production accordingly and in the case of this study that impact is daily.  

For parametric models ES and SARIMA, additionally to the MCP, the estimators 

resulting from the maximum likelihood function will be evaluate by their statistical 

importance by looking at the standard errors. Given the probability p-value found in 

each coefficient, only values less than 5% for each coefficient will be accepted for the 

model. 

Finally, the concept of confusion matrix (Zhang et al.; 2020) is leveraged from 

machine learning classification task where the goal is to predict discrete categories or 

classes. Confusion matrices capture how well the model distinguishes between these 

classes. While they aren't directly applicable to regression problems, it is possible to 

adapt them to visualize and analyze model performance. 

The confusion matrix, 𝑪𝒌𝒙𝒌, is simply k x k matrix, where each column 

corresponds to the label category (ground truth) and each row corresponds to the 

model’s predicted category. Each cells value 𝑐𝑖𝑗 is the fraction of total predictions on 

the validation set, where the true label was “j” and our model predicted “i”. 

Regression tasks involve predicting continuous numerical values, so a 

discretization of the continue values are needed by separating them in bins. This 

approach can reveal patterns in the model's accuracy across different value ranges. 

A heatmap is then plot comparing actual and predicted values.  

 

 

 



87 

 

 

 

 

 

Table 12 – Prediction bins classification for confusion matrix 

Measure Value Bins 

Minimum 1.00  

Quartile 1 (25th percentile) 42.00 (0,42] 

Quartile 2 (50th percentile) 72.00 (42,72] 

Quartile 3 (75th percentile) 99.00 (72,99] 

Maximum 187.00 (99,187] 

Source: Elaborated by the author 

 

For this, the bins are defined using according to the quartile distribution of series 

from Table 8, where a bin is defined by the limits given in each category. For instance 

first bin (0,42] (where “(“ means exclusive and “]” inclusive) is the range between the 

minimum observed value and quartile 1. All true values from the validation partition 

that falls into this bin will be compared with the bin that the predicted values were 

classified. Using the quartile of the data for the bin classification ensures that the data 

is balanced across all the bins. 

 

Table 13 – Confusion Matrix based on true/predicted bins 

True 
Value 

(0, 42] cij cij cij cij 

(42, 72] cij cij cij cij 

(72, 99] cij cij cij cij 

(99, 185] cij cij cij cij 
 

 (0, 42] (42, 72] (72, 99] (99, 185] 

  Predicted Value 

 

From Table 13, the true bin “j” and predicted bin “i” is counted and the matrix 

populated. The diagonal sum provides the total correct number of values in the correct 

bin which is a measure of the accuracy of the model.  

Some key confusion matrix metrics includes accuracy, which calculates the 

overall percentage of correct predictions, precision that tells the percentage of 

predictions for a specific class that were correct and recall which represents the 

percentage of actual instances within a class that the model correctly identified. The 

goal is the overall performance as there is no specific bin from table 13 that is more 

important than the other. 
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For the predicted values in the validation and test partition, there is a 

fundamental difference between parametric models ES/SARIMA and Non-Parametric 

LSTM that is defined next. As mentioned in section 2.10, LSTM requires a definition 

of the input sequence dimension to start the training process, which will be defined as 

hyperparameter itself in section 3.9. To exemplify this, consider a time series 𝒚𝒕 of size 

t=10 which t=1..7 is used for training and t=8,…10 for validation. In this example, for 

LSTM, the input sequence dimension will have a dimension of 3 time steps. 

 

Table 14 - Fit and Prediction for Parametric Models  

      Prediction True Value 

 𝒚𝒕−𝟐 𝒚𝒕−𝟏 𝒚𝒕   𝒚̂𝒕+𝟏 𝒚𝒕+𝟏 

Model Fit 𝒚𝟏 … 𝒚𝟕   𝒚̂𝟖 𝒚𝟖 

Model Prediction 𝒚𝟏 … 𝒚𝟕 𝒚̂𝟖  𝒚̂𝟗 𝒚𝟗 

Model Prediction 𝒚𝟏 … 𝒚𝟕 𝒚̂𝟖 𝒚̂𝟗 𝒚̂𝟏𝟎 𝒚𝟏𝟎 

Source: Elaborated by the author 

 

In Table 14 Parametric models will fit to the entire training size to find the 

parameters given by Appendix A and Equation (65) for ES and SARIMA respectively. 

For the prediction values, parametric models will use the predicted values on 𝑦𝑡+1 to 

forecast 𝑦𝑡+2 and then use 𝑦𝑡+1 and yt+2 to forecast 𝑦𝑡+3 and so on. 

 

Table 15 - Fit and Prediction for LSTM  

  Prediction Validation 

 𝒚𝒕−𝟐 𝒚𝒕−𝟏 𝒚𝒕 𝒚̂𝒕+𝟏 𝒚𝒕+𝟏 

Model Fit 𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚̂𝟒 𝒚𝟒 

Model Fit 𝒚𝟐 𝒚𝟑 𝒚𝟒 𝒚̂𝟓 𝒚𝟓 

Model Fit 𝒚𝟑 𝒚𝟒 𝒚𝟓 𝒚̂𝟔 𝒚𝟔 

Model Fit 𝒚𝟒 𝒚5 𝒚6 𝒚̂7 𝒚7 

Model Prediction 𝒚𝟓 𝒚𝟔 𝒚𝟕 𝒚̂𝟖 𝒚𝟖 

Model Prediction 𝒚𝟔 𝒚𝟕 𝒚̂𝟖 𝒚̂𝟗 𝒚𝟗 

Model Prediction 𝒚𝟕 𝒚̂𝟖 𝒚̂𝟗 𝒚̂𝟏𝟎 𝒚𝟏𝟎 

Source: Elaborated by the author 
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 In Table 15 LSTM will find the weights given by Equation (75) to (78), moving 

along the training size with 3 times steps lag sequence. For LSTM, the size of the Input 

sequence dimension is used fixed as a sliding window until all the forecasted values 

for the validation partition are done.  

Both iteration procedure from Tables 14 and 15 was applied to validation and 

test datasets shown in Table 10. The metrics from Table 11 are measured based on 

the forecasted values of the validation period and test period against the respective 

true value. 

 

3.7. Exponential smoothing – Holt-Winters method hyperparameters 

The Holt Winters method (Holt, 1957 and Winters, 1960), belongs to a class of 

exponential smoothing methods that aims to capture the behavior of the time series, 

separating it in trend, season and error terms.  

 There are two variations to this method that differ in the nature of the seasonal 

component. The additive method is preferred when the seasonal variations are roughly 

constant through the series, while the multiplicative method is preferred when the 

seasonal variations are changing proportional to the level of the series (Hyndman; 

Athanasopoulos, 2018). 

By considering variations in the combinations of the trend and seasonal 

components, Hyndman et al. (2018) showed that fifteen exponential smoothing 

methods are possible to simulate, which are listed in Table 11 below. This taxonomy 

was used in the simulation of this work to calibrate and choose the best 

hyperparameter vector 𝝂𝑁 and was introduced by Makridakis, Wheelwright and 

Hyndman (1998). 

Table 16 - Taxonomy for Holt-Winters Exponential smoothing 

Trend Component 
Seasonal Component 

N (None) A (Additive) M (Multiplicative) 

N (None) (N,N) (N,A) (N,M) 

A (Additive) (A,N) (A,A) (A,M) 

Ad (Additive damped) (Ad,N) (Ad,A) (Ad,M) 

M (Multiplicative) (M,N) (M,A) (M,M) 

Md (Multiplicative Damped) (Md,N) (Md,A) (Md,M) 

Source: Makridakis, Wheelwright and Hyndman (1998)  and Hyndman and Athanasopoulos (2018). 
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As the damping parameter (value from 0 to 1) can only be applied to the trend 

component, the N(None) option is removed. The trend component is damped so it 

flattens over time instead of being linear. Therefore, the hyperparameters to be 

considered will be: 

 

Table 17 - Possible hyperparameters for ES (Holt-Winters) Model 

Hyperparameters - 𝝂𝑁 Value - 𝑖𝑛 

Trend Additive, Multiplicative 

Damping True or False 

Seasonal Additive, Multiplicative or None 

Seasonal Frequency 6 

Damping phi parameter 0.2, 0.4, 0.6, 0.8, 0.95 

Source: Elaborated by the author 

  

From Table 17, all hyperparameters for ES model are defined. From equation 

(94), N = 6 consisting of all hyperparameters of the vector 𝝂𝑁 for fitting an ES model 

and from equation (95) the total grid search space Ω = 120 configurations. For the 

case of “Damping = False”, the configurations which a damping value was applied to 

equation (95) are removed, which results in Ω = 60 − 24 = 36 configurations to be 

fitted and evaluated in the validation partition.  

The number of hyperparameters subsets to use is not cumbersome from a time 

processing standpoint. Here all combinations can be fitted. For SARIMA the use of the 

correlograms helps define the boundaries while LSTM some hyperparameters will 

need the use of experiments to define optimal boundaries. This is shared next. 

 

3.8. SARIMA method hyperparameters 

In section 2.8 it was showed that the Box–Jenkins Autoregressive Integrated 

Moving Average (ARIMA) model (Box; Jenkins, 1976) has two variations, the general 

non-seasonal model is written as ARIMA(p; d, q); where p is the order of auto-

regression (AR), d is the degree of first differencing involved, and q is the order of 

moving average (MA); while the seasonal model is an extension written as   
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SARIMA(p; d; q)(P;D;Q)s where s denote the periodicity and P, D and Q are seasonal 

equivalents of p, d and q. 

 

Table 18 - Possible hyperparameters for SARIMA Model 

Hyperparameters - 𝝂𝑁 Value - 𝑖𝑛 

Autoregressive Order 1,2….,p 

Differencing Order 0,1,2 

Moving Average order 1, 2,,…,q 

Seasonal Autoregressive Order 0, 1,…,P  

Seasonal Differencing Order 0,1,2 

Seasonal Moving Average order 0, 1,…,Q 

Seasonal Frequency 6 

Source: Elaborated by the author 

 

The possibilities of the grid search space are a lot higher for this model than for 

exponential smoothing. To narrow down possible candidates for each of the 

hyperparameters (autoregressive, stationarity, moving average and seasonal 

equivalents) the ADF test from Equation (43) is used, and the correlograms from 

Equation (26) and (38) are used to define the optimal boundaries: 

 

a) Augmented Dickey Fuller Test: The ADF test resulted that the series is 

stationary. The regression result showed a positive trend in Figure 17. For that 

the differencing order options will be 0 and 1; 

b) Autocorrelation function (ACF): Consider the series stationary in the mean and 

the variance, by measuring the autocorrelation in Equation (26) for different 

number of time steps, the lags which are significant are defined for the 

hyperparameter.  This is done by plotting the ACF correlogram. ACF plot 

suggests order of moving average MA process. Significant values above 

threshold in 1, 5, 6, 7 and 11 lags are seen; 

c) ACF Spikes around seasonal lags suggest seasonal moving average process. 

Values above threshold for the autocorrelation seasonal in lag 6 and 12 are 

seen so 1 and 2 will be selected; 
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d) Partial Autocorrelation Function (PACF): The PACF plot from Equation (38) can 

provide answers to what order, the observed time series, can be modeled with 

an AR model. Spikes for the autocorrelation above threshold function in 1, 2, 3, 

4, 5, 6 and 11 lags are observed; 

e) PACF Spikes around seasonal lags suggest seasonal in autoregressive order. 

Values above threshold for the autocorrelation seasonal in lag 6 and 12 are 

observed so 1 and 2 is selected. 

 

 

Figure 24 - Differencing on left and ACF/PACF on the right. 

 Source: Elaborated by the author 

 

Based on the ACF and PACF plots, the following SARIMA orders were 

selected, and they can be seen in Tables 19 and 20. 
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Table 19 - Hyperparameters Grid Search for ARIMA model. 

Hyperparameters - 𝝂𝑁 Value - 𝑖𝑛 

Autoregressive Order (p) 1, 2, 3, 4, 5, 11 

Differencing Order (d) 0, 1 

Moving Average order (q) 1, 5, 11 

Seasonal Autoregressive Order (P) 0 

Seasonal Differencing Order (D) 0 

Seasonal Moving Average order (Q) 0 

Seasonal Frequency (s) 6  

 Source: Elaborated by the author 

 

Table 20 - Hyperparameters Grid Search for SARIMA model. 

Hyperparameters - 𝝂𝑁 Value - 𝑖𝑛 

Autoregressive Order (p) 1, 2, 3, 4, 5 

Differencing Order (d) 0, 1 

Moving Average order (q) 1, 5 

Seasonal Autoregressive Order (P) 1 ,2 

Seasonal Differencing Order (D) 0, 1 

Seasonal Moving Average order (Q) 1, 2 

Seasonal Frequency (s) 6  

 Source: Elaborated by the author 

 

Tables 19 and 20 show the breakdown configurations for ARIMA and SARIMA 

to be applied in equation (65). The reason for a separate hyperparameter count is for 

orders (p) and (q) greater than or equal to s, the seasonal components, would cause 

a duplication on lags (sP) and (sQ). To avoid this, equation (95) is then computed by 

first an ARIMA orders search space plus SARIMA orders search space. 

 From equation (94) N = 8 hyperparameters are selected. From Table 14 

equation (95) results in Ω𝐴𝑟𝑖𝑚𝑎 = 36  and from Table 15 we have Ω𝑆𝐴𝑅𝐼𝑀𝐴 = 160 , with 

a total search space of Ω = 392 possible configurations. 
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3.9. LSTM method hyperparameters 

To define the grid search space for LSTM, two main characteristics are 

required: the sequence of observations that define the network inputs dimension and 

the network topology. These two characteristics are unfolded in the following 

hyperparameters below: 

 

Table 21 - Possible Hyperparameters for LSTM 

Hyperparameter Values 

Time Steps Input sequence Dimension. 

LSTM Layers 
How deep the model will be. 

Could help generalize the model. 

Units (Neurons) in each 

LSTM cell (Hidden States) 

Learning capacity of the network. 

Accuracy vs overfitting. 

Batch size 
Number of training samples to work through before the 

model’s internal parameters are updated. 

Learning rate 
Controls how quickly the model is adapted to the 

problem depending on the number of epochs. 

Noise Layer Add noise to an existing model to prevent overfitting. 

Epoch Size 
Number of complete passes through the training 

dataset. 

Source: Elaborated by the author 

 

Next, a qualitative approach to understand each of these hyperparameters are 

provided and this follows according to the definitions in section 2.10: 

 

a) Input Sequence Dimension:  A supervised learning problem is comprised of 

input patterns (X) and output patterns (y), such that an algorithm can learn how 

to predict the output patterns from the input patterns. Given a sequence of 

numbers for a time series dataset and additional features, data can be 

restructured to a supervised learning problem. This is done by using the target 

variable previous time steps as input variables and use the next time step as 

the output variable, according to Table 10. The input sequence is formed then 

by a defined number of previous time steps that is applied to the target variable, 



95 

 

 

 

 

the regressors and the size of the training partition. Define the best timestep for 

the network input sequence is a hyperparameter which needs to be defined.  

b) Hidden Layers: Neural networks with just one hidden layer can theoretically 

model even the most complex functions, provided it has enough neurons 

(Hornik, 1990). A choice between one or two layers is therefore selected. For 

the number of hidden layers in the LSTM, many recent studies suggested that 

a low value usually performs better (Bandara; Bergmeir; Smylet, 2020; Salinas 

et al., 2019; Smyl; Kuber, 2016; Wang et al., 2019); 

c) Hidden States (Neurons) per Hidden Layer: If the number of Hidden States is 

very small, the LSTM will not memorize all necessary information to perform 

the prediction. If the number of Hidden States is very high LSTM could overfit 

on the training instances. Throughout the literature in forecasting applications 

there is not a universal approach about what range of hidden states should be 

used as this is not clear mentioned (Abbasimehr; Shabani; Yousefiet, 2020; 

Ozdemir; Buluş; Zoret, 2022; ArunKumar et al., 2020; Hewamalage; Bergmeir; 

Bandaraet, 2021; Nguyen et al., 2021). Running initial experiments, keeping all 

other hyperparameters fixed, an initial guidance is provided. The options of 50, 

100 and 150 are selected which is between the size of the input layer and the 

size of the output layer. For more than one layer, to reduce the computational 

cost, the researchers often adopt a halving strategy, the number of hidden 

states consecutively reduce by half from the lower to the higher layer. For 

instance, if the number of hidden layers is 3 and the number of hidden states 

for the first LSTM layer is 100, then the number of hidden states for the second 

LSTM layer is 50 and for the third layer is 25 (Shen et al., 2020); 

d) Batch size: large batch sizes often lead to training instabilities and the resulting 

model may not generalize as well as a model trained with a small batch size. 

The batch size is expected to be within range of the periodicity found for the 

time series and this is confirmed by running a simulation ranging from 2 to 60 

with all the other hyperparameters fixed; 

e) Learning rate: The algorithm to train the neural network will be the stochastic 

gradient descent algorithm. Stochastic gradient descent is an optimization 

algorithm that measures the error in the training dataset by updating the weights 

of the model as shown in Equations (88), (89) and (90). The amount that the 
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weights are updated during the training is defined as the learning rate and will 

then control how quickly the model is adapted to the problem. The gradient 

descent uses as default the learning rate of 0.01 and it will be allowed to vary 

to 0.1 also. 

f) Noise Layer: Adding an extra layer that adds a Gaussian noise to the output of 

the hidden state works as regularizing effect and reduce the overfitting to a 

under constrained neural network model. This hyperparameter is the standard 

deviation of the noise that will be between 0.01 and 0.001; 

g) Epoch Size: One training epoch is referred to a single iteration over all training 

instances (Reimers; Gurevych, 2017). Smaller learning rates require more 

training epochs given the smaller changes made to the weights at each update, 

whereas larger learning rates result in rapid changes and require fewer training 

epochs.  If the number of training epochs is too small, the model will not capture 

the patterns of training instances. Also, if the epoch number is too large, the 

model will suffer from overfitting. Therefore, finding a suitable epoch number is 

important in achieving a model with high performance. The simulation did in this 

work for batch size helped us define the number of epochs suitable for the 

model. 

 

The Hyperparameter selection for Neural networks is an active area of research 

and the success still suffer from empirical choices of those hyperparameters. 

Optimization and evolutionary algorithms are some of the state-of-the-art options to 

maximize performance (Jaderberg et al., 2017).  

Like SARIMA, the grid space possibilities can grow exponentially and there are 

some hyperparameters such as the number of layers, the learning rate and the epoch 

size that significantly increase the model fitting time.  
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Table 22 - Hyperparameters Grid Search for LSTM model. 

Hyperparameter Values 

Input Sequence Time Steps (a) 

Hidden Layers 1, 2, 3 

Hidden States per Hidden Layer 50, 100, 150 

Batch size (d) 

Learning rate 0.1, 0.01, 0.001 

Epoch Size (g) 

Gaussian Noise 0.01, 0.001 

Source: Elaborated by the author 

 

Table 22 shows the values of the hyperparameters that were defined in b, c, e 

and f items.  

 

Figure 25 - Plots of lags vs original series 

 Source: Elaborated by the author 

 

To define the values for the inputs sequence time steps, from item (a), a scatter 

plot of the target variable 𝑦𝑡 and with previous lags 𝑦𝑡−1 is seen in Figure 25 to 
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observe which lag present the higher correlation. Lags 1, 6 and 12 show higher 

dependencies and these will be the candidates for this hyperparameter. This result is 

also expected as seen in section 3.8 for the ACF plot in Figure 24. 

For the batch size and epoch size, items (d) and (g), it was chosen to run 

experiments by fixing all other hyperparameters. 

At this point, it is leveraged the previous hyperparameters to experiment which 

range will define the batch size. This is done looking the validation loss function of the 

stochastic gradient descent which is the MSE of the normalized values in all the 12 

validation partitions defined in Table 10. 

 

Table 23 - Batch size and Epoch Size hyperparameter simulation LSTM 

Hyperparameter Values 

Input Sequence Time Steps 1, 6, 12 

Hidden Layers 1 

Hidden States per Hidden Layer 100 

Batch size 2, 4, 6, 8, 10, 12, 24, 30, 40, 50, 60 

Learning rate 0.01 

Epoch Size 200 

Gaussian Noise 0.01 

Source: Elaborated by the author 

 

 Table 23 shows the hyperparameters selection to define optimal boundaries for 

batch size and Epoch size. Since the input shape (time steps hyperparameter) can 

interact directly with the batch size, all three lags found in Figure 30 will be used in this 

experiment. 

Table 24 - Results of the lowest MSE found in each split. 

Split Batch Time Steps Lowest MSE 

1 2 6 612 

2 2 12 646 

3 2 12 529 

4 4 12 746 

5 6 12 1698 
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Cont’d Table 24 - Results of the lowest MSE found in each split. 

Split Batch Time Steps Lowest MSE 

6 4 12 1683 

7 4 12 1677 

8 2 6 624 

9 2 12 362 

10 2 12 878 

11 2 12 920 

12 2 12 537 

 

In Table 24 the lowest value found for MSE, in the validation partition of each 

split, and the respectively batch size and time steps value are shown. Batch sizes of 

2,4,6,12 provide the lowest MSE when analyzing all the 12 splits.  As the batch size is 

increased there was no gain observed in the MSE and therefore these batches in 

Table 19 are going to be the optimal boundaries. This result also shows that the batch 

size optimal boundaries is close to the range of the series periodicity.  
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Figure 26 - Learning curves showing the Training Epochs  

Source: Elaborated by the author 

 

Figure 26 shows the learning curves of the training partition during the model 

fitting. The value of the gradient descent is reduced to a point where there is no gain 

anymore. Some of the configurations this was achieved fast (with 20-50 epochs) but 

it can be observed instances with almost the 200 epochs were observing small gains. 

To not further extend the grid search space possibilities, it was decided to fix the 

number of 200 epochs and apply an early stopping procedure. It stops the training 

process when 5 epochs have not showed any improvement. The gaussian noise 

added to the model will try to avoid this early stopping to be triggered. 
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Table 25 - Hyperparameters Grid Search for LSTM model resulting in 648 possible 

combinations for each dataset split. 

Hyperparameter Values 

Input Sequence Time Steps 1, 6, 12 

Hidden Layers 1, 2, 3 

Hidden States per Hidden Layer 50, 100, 150 

Batch size 2, 4, 6, 12 

Learning rate 0.1, 0.01 

Epoch Size 200 

Gaussian Noise 0.01, 0.001 

Source: Elaborated by the author 

  

Finally, Table 25 shows all the hyperparameters value that will be used in the 

grid search. According to Equation (94) N = 7, and from Equation (95) resulting in Ω =

432 possible hyperparameters. 

 

4. Results 

This chapter is structured as follows: section 4.1 the training and validation 

partition results are analyzed with respect to the best hyperparameters found for all 

models. In section 4.2, a visual analysis of the residuals of the fitted model for ES and 

SARIMA are done to provide a diagnostic of the training results beyond the error 

metrics numbers. It is also shown the predicted against observed values from the 

validation (out of sample) partition.  

Section 4.3 provides the same diagnostic give in section 4.2, but now focus for 

non-parametric models. The training and out-of-sample MSE (stochastic gradient 

descent) error curves for LSTM are shown to provide a diagnostic over 

overfitting/underfitting, the predicted against observed values from the validation (out 

of sample) partition and the confusion matrix are also discussed. 

Next, section 4.4 provides the test error metrics result for the best 

hyperparameter in each model, the best model result and the improvements gain from 

the proposed process. 

A discussion of how the stochastic nature of the LSTM algorithm could impact 

the results comparing to the ES and SARIMA is done in section 4.5. 
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4.1. Training and validation partition results 

In each of the 12 splits, the grid search provides the results for all 

hyperparameters vectors defined in sections 3.7, 3.8 and 3.9. The results include the 

training metrics AIC, BIC, MAE and MSE for ES and SARIMA and the validation 

metrics MAE,  MSE, GMRAE, MDA and MCP for all three models. The training metrics 

for LSTM is not include due to the normalization done in the dataset and the resulting 

metrics are in different scale. 

 

Table 26 – Training (fitting) results for exponential smoothing (ES) 

Split Trend Damping Seasonal 𝑨𝑰𝑪 𝑩𝑰𝑪 𝑴𝑨𝑬𝒇𝒊𝒕 𝑴𝑺𝑬𝒇𝒊𝒕 

1 Multi  None Multi 11392 11413 23.25 961 

2 Add  None Multi 11608 11628 22.82 924 

3 Add  None Add 11655 11676 22.04 795 

4 Multi  None Add 11920 11941 22.25 806 

5 Multi  None Multi 12418 12439 23.45 980 

6 Multi  None Multi 12690 12711 23.57 987 

7 Multi  None Multi 12933 12954 23.60 987 

8 Multi  None Multi 13191 13212 23.57 983 

9 Add  None Add 13151 13172 21.97 790 

10 Multi  None Multi 13697 13718 23.60 983 

11 Multi  None Multi 13708 13729 23.62 985 

12 Add  None Add 13657 13678 22.05 797 

     Avg 22.98 915 

Source: Elaborated by the author 

 

Starting with ES, in Table 26, “Add” means “Additive” and ‘Multi” means 

“Multiplicative” for trend and seasonality respectively and it shows the training results 

in each split. As mentioned in section 3.6 the best hyperparameters were selected 

based on the lowest MCP found in the validation partition (Table 27) and the model 

only with coefficients that are statistically significant is chosen. 

Both trend and seasonal contains multiplicative and additive types for the 

sampling procedure of 12 splits. Changes in the trend and seasonal behavior were 
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observed, which makes the revalidation of the hypermeters in each forecasting cycle 

important. Also, no damping options were selected, mainly due to the series being 

stationary according to the ADF test. The increasing AIC and BIC values observed for 

the splits is due to the increasing number of data points used for fitting, as point out in 

Table 10. 

 

Table 27 – Validation (out of sample) results for exponential smoothing (ES) 

Split Trend Damping Seasonal MAE MSE GMRAE MDA MCP 

1 Multi  None Multi 25.79 1250 0.46 0.31 0.48 

2 Add  None Multi 23.99 1041 0.48 0.29 0.40 

3 Add  None Add 23.37 930 0.50 0.28 0.37 

4 Multi  None Add 23.16 924 0.51 0.28 0.38 

5 Multi  None Multi 21.66 854 0.45 0.28 0.32 

6 Multi  None Multi 26.66 1149 0.62 0.29 0.53 

7 Multi  None Multi 21.22 841 0.42 0.24 0.28 

8 Multi  None Multi 24.33 1079 0.49 0.26 0.41 

9 Add  None Add 21.76 806 0.48 0.23 0.30 

10 Multi  None Multi 26.36 1268 0.54 0.25 0.49 

11 Multi  None Multi 32.42 1784 0.64 0.25 0.76 

12 Add  None Add 25.51 1145 0.48 0.25 0.41 

   Avg 24.69 1089 0.51 0.27 0.43 

Source: Elaborated by the author 

 

Table 27 shows the out of sample metrics for the same best hyperparameters 

from Table 26. Comparing the out of sample metrics for MAE and MSE with the training 

partition, it is seen a close average result (MAE training 22.98 vs MAE out of sample 

24.69). The close values here are due to the hyperparameter selection criteria which 

considers the best MCP and not the best AIC. Higher errors for out of sample are 

expected due to the residual’s variance and the standard errors of the coefficients 

obtained from the maximum likelihood estimators, that will carry over to the forecasted 

values.  
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Table 28 – Comparison between the selection of the best AIC or MCP for ES 

Split 
Lower 

AIC 

Validation MAE 

with Lower AIC 

Validation MAE 

with Lower MCP 

1 11137 35.77 25.79 

2 11396 28.58 23.99 

3 11649 23.37 23.37 

4 11894 25.64 23.16 

5 12143 23.18 21.66 

6 12400 39.77 26.66 

7 12639 25.83 21.22 

8 12889 45.18 24.33 

9 13144 21.76 21.76 

10 13396 40.86 26.36 

11 13406 56.40 32.42 

12 13650 25.51 25.51 

 Avg 32.65 24.69 

Source: Elaborated by the author 

 

Although MSE was chosen for the MCP calculation in the decision criteria, MAE 

provides a practical and intuitive interpretation of the errors. Using that, a comparison 

between how MAE would have performed in the validation partition when the model 

with the lowest training AIC is chosen can be seen in Table 28. On average, ES had 

24.69 units of error in prediction with the lowest MCP while the selection of the lowest 

AIC would have yielded 32.65. This is only possible when the model calibration is done 

through 3 partitions of the dataset. 
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Table 29 – Training (fitting) results for SARIMA 

Split p d q P D Q 𝑨𝑰𝑪 𝑩𝑰𝑪 𝑴𝑨𝑬𝒇𝒊𝒕 𝑴𝑺𝑬𝒇𝒊𝒕 

1 1 0 1 1 0 1 10673 10713 16.87 493 

2 1 0 1 0 0 0 10924 10955 17.37 515 

3 5 1 1 0 0 0 11305 11356 18.49 572 

4 1 0 1 1 0 1 11418 11459 17.31 513 

5 1 0 1 0 0 0 11660 11691 17.71 533 

6 1 0 1 0 0 0 11903 11934 17.71 532 

7 1 0 1 1 0 1 12138 12179 17.47 518 

8 1 0 1 1 0 1 12377 12419 17.43 516 

9 4 1 1 1 1 1 13137 13195 19.74 652 

10 1 0 1 0 0 0 12874 12906 17.88 541 

11 1 0 1 0 0 0 12883 12915 17.88 541 

12 4 1 1 1 1 1 13658 13716 19.94 663 

        Avg 17.98 549 

Source: Elaborated by the author 

 

Like ES, Table 29 shows the best hyperparameters vectors for SARIMA found 

according to the lowest MCP in the validation partition and their respective training 

metrics. The letters “p” and “P” are the order of the autoregressive and seasonal 

autoregressive respectively. The letters “q” and “Q” are the order of the moving 

average and seasonal moving average respectively. “d” and “D” are the differencing 

used for non-seasonal and seasonal components. 

There is not a predominance of higher orders such as “4”, or “5” for “p” or “q” 

am “2” for “P” or “Q”, which means that those cases, even if the MCP were lower, the 

criteria to select models only with coefficients that were statistically significant was 

triggered. More complex SARIMA models contained several coefficients which their p 

values may be higher than 5%. This can also cause multicollinearity where two or 

more coefficients are highly correlated, providing redundant information. Removing 
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them can help reduce multicollinearity and improve the stability of the model's 

predicitons. 

 

Table 30 – Validation (out of sample) results for SARIMA for best MCP 

Split p d q P D Q MAE MSE GMRAE MDA MCP 

1 1 0 1 1 0 1 21.30 742 0.43 0.23 0.26 

2 1 0 1 0 0 0 20.71 704 0.45 0.26 0.26 

3 5 1 1 0 0 0 18.31 547 0.40 0.25 0.19 

4 1 0 1 1 0 1 18.17 541 0.41 0.27 0.21 

5 1 0 1 0 0 0 18.95 605 0.44 0.27 0.24 

6 1 0 1 0 0 0 19.65 632 0.45 0.30 0.26 

7 1 0 1 1 0 1 21.65 763 0.49 0.26 0.30 

8 1 0 1 1 0 1 22.74 813 0.53 0.26 0.34 

9 4 1 1 1 1 1 22.25 729 0.58 0.24 0.32 

10 1 0 1 0 0 0 21.83 735 0.52 0.28 0.32 

11 1 0 1 0 0 0 21.92 739 0.50 0.27 0.31 

12 4 1 1 1 1 1 20.32 649 0.42 0.26 0.24 

     Avg 20.65 683 0.47 0.26 0.27 

Source: Elaborated by the author 

 

For both tables 29 and 30, the training and out of sample results were better 

than ES model. SARIMA has more flexibility in its formulation that allows for a 

increases fitting performance. In this model, the validation MAE is higher than the 

training MAE as it was observed for ES.  

Interpreting the other metrics that compose MCP shows that SARIMA, on 

average, had GMRAE of 0.47 and ES GMRAE of 0.51, which is significantly lower 

than 1, which means that both models are better than the naïve model. The MDA had 

0.26 for SARIMA and 0.27 for ES, showing that only 26% and 27% of the time the 

direction of the predictions was wrong. MSE on average was the metric that made the 

difference having a better result for SARIMA (683 vs 1089 for ES). 
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Table 31 – Comparison between the selection of the best AIC or MCP for SARIMA 

Split 
Lower 

AIC 

Validation MAE 

with Lower AIC 

Validation MAE 

with Lower MCP 

1 10667 21.40 21.30 

2 10924 20.71 20.71 

3 11170 18.27 18.31 

4 11397 18.33 18.17 

5 11660 18.95 18.95 

6 11903 19.65 19.65 

7 12132 21.74 21.65 

8 12371 22.76 22.74 

9 12605 23.29 22.25 

10 12874 21.83 21.83 

11 12883 21.92 21.92 

12 13117 22.36 20.32 

 Avg 20.93 20.65 

Source: Elaborated by the author 

 

Here the choice of the lower MCP for the hyperparameters vector selection did 

not change the results for the validation MAE. The use of additional regressors defined 

in section 3.4 provides good generalization for less flexible models such as the ones 

with lower AIC (lower “p” and “q” orders and/or no seasonal “P” and “D” orders), 

improving the results in the validation partition. For splits 5, 6, 10 and 11, the model 

with lowest MCP in the validation partition is also the model with lowest AIC in the 

training partition. 

In SARIMA, the observed results in the out of sample partition also shows that 

the model generalizes well to unseen data as no significant increase in error was 

observed. As the model increase in complexity, overfitting can occur as pointed out in 

section 2.2. This will be important to verify in the LSTM results which is a model made 

of thousands of parameters. 
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The training results for LSTM are formed by scaled data from the gradient 

descent algorithm which is not direct comparable with the training results of the 

parametric models. 

The model hyperparameters are presented below in the following order: Time 

steps, layers, hidden states, batch size, learning rate, epochs and gaussian noise. 

 

Table 32 - Validation (out of sample) results for LSTM for best MCP 

Split Model MAE MSE GMRAE MDA MCP 

1 1, 1, 50, 2, 0.1, 200, 0.001 20.21 643 0.42 0.22 0.22 

2 1, 1, 50, 12, 0.01, 200, 0.001 21.97 728 0.48 0.25 0.28 

3 1, 2, 100, 2, 0.1, 200, 0.001 18.18 529 0.43 0.26 0.20 

4 1, 2, 100, 2, 0.1, 200, 0.01 18.29 531 0.44 0.26 0.21 

5 1, 3, 50, 6, 0.1, 200, 0.01 18.82 576 0.46 0.29 0.25 

6 1, 2, 50, 2, 0.1, 200, 0.001 18.47 572 0.43 0.29 0.23 

7 12, 2, 50, 6, 0.1, 200, 0.001 20.17 680 0.46 0.26 0.26 

8 12, 3, 50, 4, 0.01, 200, 0.01 21.68 772 0.48 0.28 0.31 

9 12, 1, 50, 12, 0.1, 200, 0.001 20.39 682 0.50 0.29 0.29 

10 12, 1, 50, 4, 0.01, 200, 0.001 20.18 630 0.49 0.24 0.25 

11 12, 1, 50, 2, 0.01, 200, 0.001 20.24 653 0.45 0.25 0.25 

12 12, 1, 50, 12, 0.1, 200, 0.001 19.77 606 0.42 0.26 0.23 

 Avg 19.87 633 0.45 0.26 0.25 

Source: Elaborated by the author 

 

The interpretation of the 𝝂𝑁
∗  vectors for LSTM does not provide an intuitive 

conclusion due to the nature of the LSTM algorithm. All these configuration changes 

from um split to the other is the algorithm finding the best network topology. The 

resulting model is formed by thousands of parameters (weights and bias) and the 

learning curves during training and validation provides answer if overfitting was 

avoided as it will be shown in next section.  

SARIMA validation metrics were marginally lower on average than LSTM, 

which is an interesting result. Comparing Table 30 with Table 32, on average SARIMA 

had MCP of 0.27 and LSTM with MCP of 0.25, a result that shows how SARIMA proves 

to be a flexible model to compare with Neural Networks as point out by Makridakis, 
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Spiliotis, Assimakopouloset (2018) and as discussed in sections 1 and 2.6. The test 

partition will provide a measure of how good SARIMA and LSTM has generalized with 

the data based on the hyperparameters here selected. 

The difference set of hyperparameters observed in each split for all models 

shows the importance to consider new available data to recalibrate the model for a 

new prediction. The process from Figure 11 that takes the recent data and recalibrates 

the model with a new run of hyperparameters, every time a new forecasting range is 

provided, makes sure that the recent changes in data are capture. It also guarantees 

that the full features of each model are being explored for the best performance.  

Form this section it is possible to conclude that the selection of the best 

hyperparameter using a validation partition provides good results. Additionally, MCP 

is a criterion that challenges the model to generalize the dataset in different behaviors, 

with accuracy on MSE, benchmark with GMRAE and trend with MDA. The last partition 

will provide which model is the winner in those metrics and how much improvement 

was gained comparing to with the existing guideline. 

 

4.2. Parametric model diagnostics – ES and SARIMA 

In this section, a series of plots are presented with the objective to perform a 

diagnostic of the training results beyond the error metrics shown in previous section. 

The purpose of this is to reveal graphically whether the model adequately captures the 

true patterns and relationships in the data. This analysis provides areas for model 

improvement, such as incorporating additional predictors, adjusting model structure, 

or transforming the target variable. This will focus on split 1, where it has 1173 

datapoints for training and 130 for validation (out of sample). Appendix B includes all 

other splits for SARIMA and appendix C includes the splits for LSTM, the best two 

models per previous section. 

The visualization is composed of: 

 

a) Standardized Residuals vs Fitted values: It can reveal issues like non-

linearity, heteroscedasticity (unequal variance of errors), and outliers.  

b) ACF plot of the residuals: detect whether the errors in a model are 

independent or exhibit patterns of correlation over time. 
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c) Q-Q plots: Assess if the standardized residuals follow a normal 

distribution. Non-normal residuals could indicate issues such as (one but 

not necessarily all of them): Non-linear relationships, outliers and 

heteroscedasticity. 

d) Validation (Out of sample) vs Predicted plot: visualize the forecasted 

values against the true values. 

 

Table 33 – Coefficients (parameters) for ES split 1 best hyperparameters. 

 
coef std err z P>|z| [0.025 0.975] 

smoothing_level 0.1307 0.016 8.059 0% 0.099 0.163 

smoothing_trend 0.0012 0 4.763 0% 0.001 0.002 

smoothing_seasonal 0.0636 0.011 6.05 0% 0.043 0.084 

Source: Elaborated by the author 

 

Table 33 shows the resulting parameters (coefficients) found for split 1 best 

hyperparameters. The ‘std err’ column is the standard error of the coefficients and 

estimate the error of the predicted value. It shows how strong is the effect of the 

residual error on the estimated parameters and therefore how accurately the model 

estimates the coefficient's unknown value.  

The ‘z’ is equal to the values of coefficients ‘coef’ divided by ‘std err’, also 

known as the standardized coefficient. The P>|z| column is the p-value of the 

coefficient given by t statistics as discussed in equation (25), were it shows that all 

coefficients are statistically significant (less than 5%). The last two columns are the 

confidence intervals of the coefficients which is a range of values that the coefficient 

will be in with the respective level of confidence. 
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Figure 27 - Split 1 diagnostics plot for ES model. 

Source: Elaborated by the author 

 

 

In Figure 27, top left chat is the residuals plot against the fitted values. The red 

line is the Loess adjusted regression. Residuals that are normally distributed and 

follow a white noise behavior with mean zero have a Loess regression line with no 

trend and close to zero. The top right is the correlogram ACF of the residuals. If the 

residuals are strict random white noise, this plot shows no significant correlation in any 

lag, meaning that the ACF plot will show no spikes at any lag. The standardized 

residuals from equation 102 are useful when comparing different models by having 

the same scale.  

The bottom left chart is the or quantile-quantile plot (Q-Q), a graphical tool used 

in statistics to compare two probability distribution. In the Q-Q plot, each data point 

from the dataset is put in its own quantile, then a theoretical normal distributed data 

point is generated from the corresponding theoretical quantile. These two points are 

plotted against each other. If the points in the plot follow a straight line, it means that 

the residuals are normally distributed. The bottom right chart are the predicted values 

against the real observed values in the test partition. 
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Observing figure 27, the split 1 for ES model, bottom right chart shows that the 

validation (Out of sample) vs prediction plot does not capture the different peaks 

observed through time for the target variable. The ES formulation does not provide 

enough flexibility, but it does capture the minimum observed values given by the 

periodicity of 6 from the series. Also, the residuals vs fitted values does not show a 

constant variance of the errors. For a constant variance across the series, known as 

homoscedasticity, it is expected that: 

 

a) Random variation above and below 0; 

b) No apparent “patterns; 

c) The width of the points is relatively constant. 

 

This might be caused by a underfitting of the model during the training partition, 

the distribution of the data which does not follow a normal behavior and/or the 

presence of outliers in the series, which is further observed in the normal Q-Q plot. In 

the Q-Q plot the points deviate from the red line in the tails (ends) of the plot, 

suggesting that the data has heavier tails than a normal distribution with more extreme 

values (outliers). Since SARIMA has shown better results according to table 29, it’s 

diagnostics plots could reveal if the model were able overcome these difficulties with 

the dataset.  

Also, a persistent autocorrelation exits, not strong as the ACF of the original 

series, but the model failure to fully capture the exiting correlations within the time 

series. This result is expected, as ES is a model which does not address 

autocorrelation of the series, but rather models the trend and seasonality using 

exponentially weighted parameters which are given by the hyperparameters seen in 

section 3.7. 
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Table 34 – Coefficients (parameters) for SARIMA split 1 best hyperparameters. 
 

coef std err z P>|z| [0.025 0.975] 

x1 0.7848 0.044 17.865 0.0% 0.699 0.871 

x2 0.0001 6.70E-06 17.867 0.0% 0 0 

ar.L1 0.5016 0.127 3.953 0.0% 0.253 0.75 

ma.L1 -0.3362 0.134 -2.502 1.2% -0.6 -0.073 

ar.S.L6 0.5639 0.118 4.764 0.0% 0.332 0.796 

ma.S.L6 -0.4145 0.13 -3.18 0.1% -0.67 -0.159 

Source: Elaborated by the author 

  

Moving to SARIMA, Table 34 shows the coefficients resulted from the fit of the 

best hyperparameters selected (lowest MCP) and in which all coefficients are 

statistically significant 9p value less than 5%). In the table, x1 is the additional 

regressor resulting from the trend and seasonality modeling from section 3.4 and x2 

is an regressor containing values of material availability projection. The remaining 

coefficients are the autoregressive components “ar.L1“ for order p =1, the “ar.S.L1“ is 

the seasonal P=1, moving average component “ma.L1“ is the q=1 and “ma.S.L6“ is 

the seasonal component Q=1.  

 

 
Figure 28 - Split 1 diagnostics plot for SARIMA 

Source: Elaborated by the author 
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In Figure 28, the validation (Out of sample) vs prediction plot for SARIMA shows 

how this model were able to better capture the different peaks observed through time 

due to the modeling of the correlation of the series. The ACF residuals plot shows no 

significant spikes at any lag. The variance lags are all similar in magnitude to each 

other and the lack of behaviors such as peaks, exponential decays or sinusoids 

suggest a good model fit.  

The residuals scatter plot also shows improvement towards a non-constant 

variance, although still some predicted values does provide higher errors where some 

points shows deviations away from a mean of zero (white noise). The resulting Loess 

regression line is closer to a white noise behavior.  

 The normal Q-Q plot shows that the residuals does deviate from normality in 

the tails of the plot suggesting again the presence of outliers. This concludes that 

performing an outliers treatment in the dataset or data transformation could lead an 

improvement in this diagnostic.  

For this analysis SARIMA provides better goodness of fit than ES. The 

remaining splits for SARIMA are all similar in analysis here provided and they are 

available in appendix B. 

 

4.3. Non-parametric model diagnostics – LSTM 

LSTM is a model that after trained, results in thousands of parameters, given 

by the weights and bias show in its formulation from section 2.10. LSTM models are 

trained by calling the “fit” function from the python package “Keras” used in this work. 

This function returns a variable called history that contains a trace of the loss value of 

the gradient descend of the training partition and the out of sample partition. These 

scores which here given by the MSE of the gradient descent are recorded at the end 

of each epoch. 
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Figure 29 – Split 1 diagnostics plot for LSTM 

Source: Elaborated by the author 

 

Figure 29 shows three plots where is possible to see the training loss and the 

validation loss in each epoch (the low value is due to the normalization of the data). 

The plot on the left shows a case of underfitting that can occurs if the hyperparameters 

provided does not allows the model to have the flexibility needed such as insufficient 

hidden states or number of epochs. 

The plot in the middle is the overfitting case where the training loss have 

converged to very low value, but the loss on the validation set improves to a point and 

then begins to degrade. This can be diagnosed from the plot where the train and 

validation loss slopes down but, the validation loss hits an inflection point, and starts 

to slope up again. The plot on the right is the resulting curves observed from the best 

hyperparameters chosen for split 1 according to the lowest MCP. 
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Figure 30 – LSTM training curves and out of sample prediction 

Source: Elaborated by the author 

 

The complete training and validation losses observed for split 1 is seen in 

Figure 30 at the top. The model converged in training after 125 epochs of training, 

meaning that changes in the weights and bias did not provide  further improvements 

in the gradient descent. The corresponding loss for the out of sample is also shown to 

converge and avoid overfitting. Although the out-sample loss curve is used visually for 

identify underfitting or overfitting, the criteria to select the best hyperparameter is the 

MCP of the out-sample partition as show in Table 32. The bottom part of Figure 30 is 

the visual of the out of sample against prediction. The data input for LSTM also 

includes both additional regressors that were used for SARIMA. 

 The other splits are included in appendix c, in which includes curves with 

optimal behaviors such as split 3, 4, 5 and 6. 

 Before moving to the test partition results, a comparison with SARIMA 

predictions for split 1 is shown next in a visual plot and using the confusion matrix 

concept. 
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Figure 31 – Out of Sample LSTM and SARIMA from split 1 

 

For both SARIMA and LSTM models in Figure 31, it is possible to vizualize how 

SARIMA and LSTM provided flexibility in capture different peaks than ES and both 

models had a very similar result for the predicted values which was observed in Tables 

30 and 32. 

The extension of the confusion matrix used for machine learning classification 

problems for regression provide another basis of comparison for the model selection, 

but it was not used to select the best hyperparameters. The objective was to evaluate 

overall accuracy and look for biases in the results. 

 

 



118 

 

 

 

 

 

Figure 32 – Confusion matrix for LSTM split 1 

Figure 32 shows the resulting confusion matrix for LSTM as well as for 

SARIMA. Both models had similar performance based on the validation metrics from 

Table 30 for SARIMA and Table 32 for LSTM. The accuracy of the confusion metrics 

reflects same conclusion, as LSTM had 55.4% and SARIMA with 56%, with 73 correct 

classifications, one more than LSTM, against a total of 130 possible values. 

The lower values bin (0, 42] shows a good classification result but the higher 

bins of (72,99] and (99,185] have less precision as it can be seen on the adjacent cells 

of the matrix. This is in line with the residuals plot from SARIMA in Figure 28 which 

there is a wider band near those two ranges.  

All 12 splits for LSTM, the confusion matrix accuracy had almost the same 

result and, on average resulted in 55%, which shows a stable performance across all 

validation partitions. Also, based on the learning curves for LSTM (appendix C), it is 

concluded that the hyperparameters selection provided good generalization of the 

data and both SARIMA and LSTM are good candidates for implementation. 

 

4.4. Test partition results 

The best hyperparameters from tables 26, 29 and 32 are applied in each test 

partition split to see how each model performed in a real word scenario. 
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Table 35 - Absolute and Relative Found in Test Partition. 

 

Source: Elaborated by the author 

 

According to MCP criteria, on average, LSTM provide better results than 

SARIMA on test partition. This additional partition is design to test how well the  the 

hyperparameters selected in the validation partition achieve a good generalization of 

the time series behavior.  

Considering LSTM complexity and the time it takes to fit during the training, 

SARIMA results have exceeded expectations. The removal of coefficients with p value 

less than 5%, although statistically meaningful, reduces the flexibility for SARIMA. 

Overall the average of all metrics are very close between these two models, except 

for MSE which causes the MCP metric to weight in more for LSTM.  

 

 

 

ES SARIMA LSTM ES SARIMA LSTM ES SARIMA LSTM ES SARIMA LSTM

1 24 19 19 989 568 500 45 29 37 0.38 0.31 0.31

2 22 15 15 714 369 373 34 25 23 0.35 0.22 0.22

3 35 22 20 1794 756 713 69 29 28 0.20 0.32 0.16

4 26 23 21 1127 925 897 40 35 33 0.36 0.36 0.40

5 22 20 19 850 603 495 40 40 39 0.23 0.27 0.31

6 26 30 25 1378 1256 915 34 44 33 0.33 0.13 0.13

7 22 20 20 749 604 645 28 28 22 0.27 0.31 0.35

8 16 18 16 396 518 433 27 34 28 0.15 0.35 0.27

9 31 25 21 1601 1092 659 55 43 29 0.33 0.29 0.21

10 20 22 19 652 696 522 26 28 24 0.31 0.23 0.31

11 19 21 19 541 648 623 29 36 32 0.20 0.20 0.24

12 29 23 21 1397 814 750 40 37 33 0.28 0.32 0.28

Avg 24 21 20 1016 737 627 39 34 30 0.28 0.27 0.26

ES SARIMA LSTM ES SARIMA LSTM ES SARIMA LSTM ES SARIMA LSTM

1 0.54 0.43 0.50 0.53 0.43 0.54 0.61 0.48 0.48 0.48 0.24 0.25

2 0.66 0.40 0.34 0.60 0.36 0.30 0.49 0.34 0.33 0.38 0.13 0.11

3 0.71 0.41 0.36 0.66 0.38 0.29 0.74 0.46 0.42 0.72 0.28 0.16

4 0.73 0.41 0.35 0.63 0.56 0.44 0.58 0.51 0.47 0.58 0.45 0.40

5 0.90 0.60 0.53 0.70 0.56 0.63 0.55 0.49 0.47 0.41 0.28 0.29

6 0.41 0.47 0.41 0.43 0.71 0.50 0.48 0.55 0.46 0.52 0.49 0.28

7 0.41 0.43 0.46 0.44 0.46 0.40 0.48 0.43 0.43 0.28 0.26 0.27

8 0.60 0.46 0.43 0.44 0.43 0.38 0.40 0.43 0.39 0.13 0.24 0.16

9 0.62 0.47 0.41 0.55 0.43 0.44 0.65 0.53 0.45 0.69 0.39 0.22

10 0.29 0.57 0.51 0.36 0.40 0.36 0.38 0.41 0.35 0.24 0.23 0.20

11 0.42 0.48 0.53 0.39 0.43 0.37 0.43 0.47 0.44 0.17 0.21 0.20

12 0.75 0.59 0.61 0.57 0.54 0.49 0.73 0.58 0.53 0.58 0.38 0.31

Avg 0.59 0.48 0.45 0.52 0.47 0.43 0.54 0.47 0.43 0.43 0.30 0.24

Absolute Errors

Split
MAE MSE SMAPE 1-MDA

Relative Errors (Naive Benchmark)

Split
MdRAE GMRAE MASE MCP
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Figure 33 – Test split 1 comparison for all models 

 

Part of this performance on SARIMA are due to the use of regressors such as 

the ones seen in Table 34. This is observed comparing to previous baselines used for 

this dataset before the implementation of this methodology. 

 

Table 36 – Improvements in MAE observed from the base line against the methodology. 

 

Split MAE using lowest AIC

ES (base line) SARIMA SARIMA (w/exog) ES SARIMA (w/exog) LSTM

1 31.34 24.49 18.68 24.32 19.24 19.25

2 26.31 17.38 15.11 21.65 15.11 14.61

3 37.69 28.05 20.63 35.17 21.67 19.91

4 25.32 25.67 23.38 26.02 22.98 21.06

5 22.28 22.03 20.15 22.50 20.15 19.15

6 38.55 38.36 29.84 26.17 29.84 24.80

7 21.49 21.01 20.77 22.02 19.87 19.75

8 20.50 16.80 18.53 16.37 17.74 15.95

9 40.00 31.40 21.26 30.90 25.05 21.15

10 20.73 21.82 21.59 19.97 21.59 18.51

11 20.11 19.29 20.55 18.92 20.55 19.27

12 32.38 32.16 20.50 29.04 23.33 21.32

Avg 28.06 24.87 20.91 24.42 21.43 19.56

Grid search time (min) 15 150 3600

MAE using lowest AIC MAE using lowest MCP
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 In Table 36 the result of the proposed methodology compares to previous 

forecasting method applied. The test partition MAE results are here used for its simple 

and intuitive interpretation: 

 

a) Existing baseline for exponential smoothing based on best AIC found: 30% 

improving comparing to LSTM MAE (LSTM 19.56 x ES 28.06); 

b) Existing baseline for SARIMA based on best AIC found: 21% improvement 

comparing to LSTM MAE (LSTM 19.56 x SARIMA 24.87). 

c) When additional regressors are used for SARIMA, the resulting MAE found in 

the test partition on average when the hyperparameters with the lower AIC is 

chosen is equal in performance when the lower MCP is used.  

 

When comparing the time taken to go through the process, LSTM takes much 

more time than parametric models and depending on the number of splits in the 

dataset this can become computing cumbersome as seen in Table 36. If processing 

power is available, this process can be automated without this impact. 

Nevertheless, exponential smoothing when well calibrated, still provides good 

aproximation to the true observed values as seens in test splits 8 and 11. It is a less 

complex model to implement with a fast grid search time, even when testing all 

possibilities. For this reason business should be enconrage to have ES as a baseline 

where no model exists or naïve bases methods are used. 

 

4.5. LSTM variability experiment 

The grid search is the most common hyperparameter tuning approach given its 

simple and straightforward procedure. It is an uninformed search method, which 

means that it does not learn from its previous iterations. Using this method implies in 

testing every unique combination of hyperparameters in the search space to determine 

the vectors that yields the best performance. It’s easy to see the benefits of such a 

brute-force method, but an increase in the size of the hyperparameter search space 

will result in an exponential rise in run time and computation.  

The random search treats iterations independently, but instead of searching for 

all hyperparameter sets in the search space, it evaluates a specific number of 

hyperparameter at random. Since it performs fewer trials in hyperparameter tuning, 
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the method requires less computation and run time than the grid search. The 

hyperparameter sets are selected at random so it runs the risk of missing the ideal set 

of hyperparameters if it is known that the best result will lie in the defined grid search 

space as presented in this work. However, with this approach, it is possible to choose 

an even higher set of hyperparameters to apply a random search, beyond the 

boundaries defined.  

For neural networks another benefit of the Random Search is, by reducing the 

hyperparameter search time, the training process can be fit more than once for the 

same hyperparameters. The reason for this is that the random initial conditions of the 

weights (parameters) for the network can produce different results each time a given 

configuration is trained. So, running the training process more than once, it is possible 

to save not only the best hyperparameters but the best weights for each of the hidden 

states that was found. This experiment was done here with the test partition for all 12 

splits with any fixed set of hyperparameters.  

 

 

Figure 34 - Variability encounter in LSTM test partition results for MSE.  

Source: Elaborated by the author 
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For each of the twelve selected best hyperparameters in each split, the LSTM 

network was trained 10 times. A box whisker plot is then presented for the three 

metrics that defines MCP (MSE, GMRAE and MDA). The x-axis shows the best 

hyperparameter vector and follows the order of the split from Table 32.  Figure 34 

shows the variability encounter in LSTM test partition results for MSE to not be 

significant due to the random initial conditions. An exception could be given for split 6 

and 8 which shows a higher amplitude. 

Figure 35 shows the variability encounter in LSTM test partition results for 

GMRAE. Splits 2, 11 and 12 shows more significant outliers than MSE. 

 

 

Figure 35 - Variability encounter in LSTM test partition results for GMRAE. 

Source: Elaborated by the author 
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Figure 36 - Variability encounter in LSTM test partition results for MDA. 

Source: Elaborated by the author 
 

Figure 36 shows the variability encounter in LSTM test partition results for MDA. 

Outliers found in splits 2, 3 and 8 are significant and this may cause the MCP metric 

to worsen depending on the initial conditions. In consequence, final decision in which 

model to select could be impacted.  

 
Figure 37 - Variability encounter in LSTM test partition results for MCP. 

Source: Elaborated by the author 
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Figure 37 shows the variability encounter in LSTM test partition results for MCP 

as a consequence of the three previous figures. More significant outliers on splits 2 

and 3 were caused by MDA from Figure 36. On split 12 it was due to GMRAE from 

Figure 35 and on split 6 due to MSE from Figure 34. The stochastic nature for the 

algorithm can provide different results, but a special attention to the MDA metric where 

significant changes in this value could cause an impact in the model selection decision. 

Nevertheless, one may argue still that the variability not to be significant. This can be 

true if the results found for LSTM where a lot better than on the other models, which 

was not observed here. 

5. Conclusion and future work 

In the proposed process in Figure 11, an optimized approach based on grid 

search framework for parametric/non-parametric models are employed, aiming to 

calibrate and select the best hyperparameter for each model. Such process is flexible, 

adaptative and efficient when dealing with multiple time series datasets that requires 

forecasting. 

The different models and calibration methods for time series can be challenging 

to implement in a business environment without a pre-defined process. The 

implementation time for better accuracy can conflict with the speed that analysts or 

management needs to have when making a decision. This can lead to very simple 

assumptions when forecasting sales and not much accuracy. The process described 

here aims to overcome these challenges that once implemented can be easily scaled. 

Also, different models can be used for comparison, once their hyperparameters are 

defined, the model is added to algorithm and the results are then compared. 

The test results shows that LSTM was able to achieve results marginally better 

than SARIMA. The flexibility found for SARIMA when using additional regressors 

makes it a competitive model even for non-parametric neural network that has a higher 

number of parameters and can capture non-linear relationships in the data. 

This process also allowed to improve results from the previous baseline used 

(Table 36). On the other hand, opportunities and challenges remain. First, according 

to the SARIMA model diagnostics from Figure 28 (and also available in appendix B), 

(1) apply a robust outliers treatment and/or transformations of the target variable for 

possible improvements in residuals distribution and heteroscedasticity. Additionally, 

(2) the rejection of models with lags not statistically significantly reduces the flexibility 
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for SARIMA. Sensitivity analyses to see how the results change if a coefficient that is 

not statistically significant is kept in the model could help answer this question. 

The use of additional regressor such as the proposed trend and seasonality 

modelling from section 3.4 showed to beneficial for SARIMA. Well-engineered 

regressors can boost the forecasting performance and reduce model complexity. 

Considering the results that SARIMA and LSTM had, a hybrid model could be 

evaluated. It is worth noticing that in case the assumption of no autocorrelation in the 

residuals is violated in a forecasting model, implies that there exists information left 

which should be considered. Hybrid models combines the prediction of classical linear 

time series models (such as time series regression/ARIMA models) with nonlinear 

models based on machine learning methods such as Neural Networks. This has also 

been discussed in the M4 competition (Makridakis; Spiliotis; Assimakopoulos, 2020). 

Zhang (2003) is one of the researchers who firstly proposed hybrid model by 

combining ARIMA as a linear model and Neural Networks as a nonlinear model for 

time series forecasting. Zhang’s work has influenced many forecasting researchers to 

develop hybrid method for solving forecasting problems. The proposed hybrid system 

methodology consists of two steps. In the first step, an ARIMA model is used to 

analyze the linear part of the problem. In the second step, a neural network model is 

developed to model the residuals of the ARIMA model, which would be the non-linear 

part of it. This providing an interesting option to be used in the selection process 

described here and can also be seen how Smyl (2020) provided as a winning 

submission in M4 competitions. 

A suggestion for using a hybrid model to the proposed process in this works is: 

First, SARIMA with the best hyperparameter found in the validation partition is fitted. 

SARIMA has proven to be a model that can captures autocorrelation of the series 

better than ES and LSTM, so it is chosen to be the model where the residuals are 

obtained. Then the residuals are modelled using LSTM to capture for non-linearities 

and long memory dependencies. The forecasting of SARIMA and LSTM are them 

summed to obtain the final forecasting. 

Finally, another approach to forecasting is customer behavior Modelling. Today 

business is evolving from the product-centered to a customer-centered environment. 

This defines another possible approach to forecast sales that shifts from a time series 

modelling to modelled future customer behavior.  
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Internal data such as customer demographic data, transactional data, product-

based data, customer review and complaint data are combined with external data such 

as government census, industry benchmark, market size analysis and economic data. 

This provides a mix of static data, multivariate time series data and textual data. In 

customer behavior prediction, the time series data are usually transformed into static 

data through aggregation and then combined with the other sources. So, the first 

challenge in this process is integrating multiple distributed data sources and types of 

data to reach the combined prediction results. 

An example of data preprocessing in this case would be create a customer 

segments, add the historical product orders aggregated by a time interval and add 

other internal, external data related to each customer segment. First a classification 

problem is defined which predicts whether a customer segment will order the product 

and when. Then a regression problem predicts the quantity that each product will be 

ordered. Such methodology has substantial application not only in traditional S&OP 

forecasting but in marketing and sales, to drive customer fulfillment and retention. 
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Appendix A - Recursive calculations and forecasts formulas for all Exponential 
smoothing methods 
 

In each case 𝑙𝑡 denotes the series level at time t, 𝑏𝑡 denotes the slope at time 

t, 𝑠𝑡 denotes the seasonal component of the series at time t and m denotes the 

periodicity. α, β, γ and the damped parameter ∅ are the parameters. ∅ℎ = ∅ + ∅2 +

⋯ + ∅ℎ and h are the forecasting point. 
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Appendix B – SARIMA residuals plots and validation predictions 
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Appendix C – Training curves and validation predictions for LSTM splits 
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