• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.3.2016.tde-15062016-154821
Documento
Autor
Nome completo
Arthur Henrique de Andrade Melani
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2015
Orientador
Banca examinadora
Souza, Gilberto Francisco Martha de (Presidente)
Martins, Marcelo Ramos
Sagrilo, Luis Volnei Sudati
Título em português
Desenvolvimento de um método para diagnose de falhas na operação de navios transportadores de gás natural liquefeito através de redes bayesianas.
Palavras-chave em português
Análise de confiabilidade
Gás natural líquido
Redes bayesianas
Resumo em português
O Gás Natural Liquefeito (GNL) tem, aos poucos, se tornado uma importante opção para a diversificação da matriz energética brasileira. Os navios metaneiros são os responsáveis pelo transporte do GNL desde as plantas de liquefação até as de regaseificação. Dada a importância, bem como a periculosidade, das operações de transporte e de carga e descarga de navios metaneiros, torna-se necessário não só um bom plano de manutenção como também um sistema de detecção de falhas que podem ocorrer durante estes processos. Este trabalho apresenta um método de diagnose de falhas para a operação de carga e descarga de navios transportadores de GNL através da utilização de Redes Bayesianas em conjunto com técnicas de análise de confiabilidade, como a Análise de Modos e Efeitos de Falhas (FMEA) e a Análise de Árvores de Falhas (FTA). O método proposto indica, através da leitura de sensores presentes no sistema de carga e descarga, quais os componentes que mais provavelmente estão em falha. O método fornece uma abordagem bem estruturada para a construção das Redes Bayesianas utilizadas na diagnose de falhas do sistema.
Título em inglês
Development of a method for fault diagnosis in liquefied natural gas carrier ships using bayesian networks.
Palavras-chave em inglês
Bayesian networks
Liquefied natural gas
Reability analysis
Resumo em inglês
Liquefied Natural Gas (LNG) has gradually become an important option for the diversification of the Brazilian energy matrix. LNG carriers are responsible for LNG transportation from the liquefaction plant to the regaseification plant. Given the importance, as well as the risk, of transportation and loading/unloading operations of LNG carriers, not only a good maintenance plan is needed, but also a failure detection system that localizes the origin of a failure that may occur during these processes. This research presents a fault diagnosis method for the loading and unloading operations of LNG carriers through the use of Bayesian networks together with reliability analysis techniques, such as Failure Modes and Effects Analysis (FMEA ) and Fault Tree Analysis (FTA). The proposed method indicates, by reading sensors present in the loading and unloading system, which components are most likely faulty. The method provides a well-structured approach for the development of Bayesian networks used in the diagnosis of system failures.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2016-06-17
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.