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RESUMO

A área da engenharia possui grande interesse no estudo de equipamentos que lidam com
fluidos compressíveis, podemos citar como exemplo o escoamento ao redor de perfis de asa,
de pontes, e edifícios, ou ainda o escoamento dentro de bocais, turbinas, compressores,
entre outros. O uso de simulações computacionais durante a fase inicial de projeto desses
equipamentos tornou-se essencial, por causa da flexibilidade na análise de diferentes
condições de operação antes da construção efetiva de um protótipo, o que diminui o custo
e evita a realização de experimentos desnecessários. Uma ferramenta computacional que
vem sendo bastante utilizada durante a fase de projeto é a chamada Otimização Topológica
(OT), que é capaz de gerar geometrias não intuitivas que otimizam o dispositivo para uma
dada função objetivo ou de mérito. A principal vantagem da OT é obter uma geometria
otimizada, mesmo nos estágios iniciais do projeto. A OT foi aplicada com sucesso em
outras áreas, como na análise estrutural, dispositivos térmicos, entre outras. Todavia, em
problemas de escoamento de fluidos esta metodologia tem sido majoritariamente aplicada
a problemas considerando fluidos incompressíveis. Portanto, o principal objetivo desta tese
é desenvolver uma metodologia para aplicar a OT em escoamentos compressíveis invíscidos
supersônicos. Neste trabalho o método escolhido para a resolução das equações governantes
é o Método de Elementos Finitos por Mínimos Quadrados, ou em inglês Least-Squares
Finite Element Method (LSFEM), as sensibilidades são calculadas utilizando o Método
Adjunto, a atualização das variáveis de projeto é feita usando a Otimização Topológica de
Estruturas Binárias, ou em inglês Topology Optimization of Binary Structures (TOBS),
utiliza-se também um algoritmo para a identificação e suavização do contorno para cada
iteração da otimização. O escopo deste trabalho é utilizar a OT para o caso de escoamentos
supersônicos em bocais bidimensionais considerando as hipóteses de fluido compressível
invíscido e gás perfeito. O programa computacional foi desenvolvido em linguaguem de
programação Python, com o auxílio das bibliotecas livres FEniCS e pyadjoint, o otimizador
binário utilizado foi o CPLEX. A metodologia proposta demonstrou-se robusta e gerou
resultados otimizados de um bocal convergente-divergente com a presença de uma onda
de choque normal.

Palavras-chave: Otimização Topológica. Fluidos Compressíveis. Método dos Elementos
Finitos por Mínimos Quadrados. Simulações Computacionais.



ABSTRACT

The Engineering field has great interest in the study of devices that deals with compressible
fluids, such as the flow around wing profiles, bridges, and buildings, or in the flow inside
nozzles, turbines, and compressors. The use of computer simulations in the design of such
devices has become essential, due to the flexibility in the analysis of different operation
conditions, before the actual construction of the prototype, which lowers the cost and
avoids unnecessary experiments. One computational tool that has been extensively used
during the design project is the Topology Optimization (TO), that can generate non
intuitive geometries that optimize the devices for a given objective function or metric of
interest. The main advantage of TO is to obtain an optimized geometry, even in the early
stages of the project. TO has been successfully applied to different fields of study, such as
structural analysis, thermal devices, among others. However, in fluid flow problems this
methodology has been mostly applied to incompressible fluids. Thus, the main objective
of this thesis is to develop a methodology to apply TO in supersonic inviscid compressible
fluid flow problems. In this work the method chosen to solve the governing equations
is the Least-Squares Finite Element Method (LSFEM), the sensibilities are calculated
by using the Adjoint Method, the update of the design variables is performed with the
Topology Optimization of Binary Structures (TOBS), an algorithm for the identification
and smoothing of the boundary for every optimization step is also used. The scope of
this thesis is to use the TO for the case of supersonic flows in two-dimensional nozzles
considering the hypothesis of inviscid compressible fluid and the perfect gas assumption.
The computer program is developed in programming language Python, with the aid of
the open-source libraries FEniCS and pyadjoint, the binary optimizer used is the CPLEX.
The proposed methodology presented to be robust and generated optimized designs of a
convergent-divergent nozzle with the presence of a normal shock wave.

Keywords: Topology Optimization. Compressible Fluids. Least-Squares Finite Element
Method. Computer Simulations.
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1 INTRODUCTION

Computational Fluid Dynamics (CFD) is the area of study of computer simulations
applied to fluid flow problems. A computer simulation can be viewed as the study of a
system considering models, assumptions, hypotheses, and numerical methods, to describe
and predict its behavior, in a computer-based program.

All computer simulations are approximations of the real world system, as a consequence
of the hypotheses adopted and the numerical methods implemented. Due to these intrinsic
errors, these in-silico experiments should always be validated and compared with real
laboratory experiments, literature references, analytical results (when they are available)
or with other validated software (benchmark), in order to verify the accuracy and efficiency
of the program (WINSBERG, 2018).

CFD has been extensively used in the last decades in order to improve the design of
engineering devices that deal with compressible flow problems.

As stated in the introductory chapter of the book Perspectives in Flow Control and
Optimization from Gunzburger (2003), any flow control or optimization problem is:

". . . an attempt to control the mechanical state, e.g., the rate and direction of
motion, and/or the thermodynamic state, e.g., the temperature, of a fluid in
order to achieve a desired purpose"

In other words, an optimization problem can be understood as the search for the
optimal solution that minimizes or maximizes a given functional of interest or objective
function, a metric that is related to the desired purpose or the efficiency of the equipment.
The search of a wing profile that maximizes the lift (HUTCHISON et al., 1994), the
minimization of a car drag (DUMAS, 2008), to minimize the energy loss inside a pump
(SÁ et al., 2018), are examples of optimization problems, where the objective function is
the lift, the drag, and the energy dissipation respectively.

It is also possible to perform optimization problems considering restrictions and/or
constraints, in order to confine the optimization search of the solution, for example in the
optimization of wind turbine design with structural constraint (manufacture) and specific
operational constraints (natural frequency) (MUSKULUS; SCHAFHIRT, 2014).

Another strategy in optimization problems is to consider and evaluate several objective
functions (multi-objective optimization), for example simultaneously maximize lift and
minimize the drag of an airfoil profile (NEMEC; ZINGG; PULLIAM, 2004).
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Different optimization methods can be found in the specialized literature, and one
manner to categorize them is to subdivide in Parametric, Shape, and Topology, based on
the type and location of the control variables.

A brief explanation of each one is presented in the following, where, for the sake of
clarification, a bi-dimensional nozzle problem (Fig. 1.1) is chosen to explain all methods.

Figure 1.1 – Schematic representation of a nozzle

Parametric Optimization

The main idea of the Parametric Optimization, is to choose appropriated control
or design parameters and run several computer simulations for each parameter in an
incremental manner, in order to produce a graphical representation (Fig. 1.2) of how a
change in the control variable affects the objective function . This method can be viewed
as a brute force search of the optimal solution.

Figure 1.2 – Graphic representation of a single variation of a generic control variable

The control parameters can be the related to the geometrical design of the nozzle
such as: inlet and outlet diameter, the throat position and diameter, the length, as can
be visualized in Fig 1.3. Or can be related to the operational conditions of the nozzle,
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such as the inlet and outlet pressure, temperature, etc. The main disadvantage of the
parametric optimization is the computational cost associated with the performance of
several computer simulations.

Figure 1.3 – Control parameters of a parametric optimization.

Shape Optimization

In Shape Optimization (HASLINGER; MAKINEN, 2003) the primary interest is the
geometrical shape of the device, normally the shape is parameterized using functions
or splines to obtain fewer control parameters (Fig. 1.4). In this method all the control
variables represent the shape of the device studied, and therefore the initial topology is
preserved during the optimization, which means that the optimization does not allow the
creation and the merging of holes or yet the separation of the design being optimized into
two or more parts.

Figure 1.4 – Control parameters (blue dots) of a parametric optimization.

Topology Optimization
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Topology Optimization (TO) (BENDSØE; SIGMUND, 2003) is a different methodology,
where the control parameters are localized in the entire project domain. The optimum
design is achieved by choosing the locations of the domain that are fluid or solid (1.5), in
other words, the optimized design is obtained by the different material distribution inside
the allowed domain. This methodology can often generate non-intuitive designs and is
most suitable in the initial design process. A negative feature in this methodology is the
low fidelity solution in the regions at the interface between solid and fluid.

Figure 1.5 – Topology optimization.

It is important to point that all optimization methods can be used together and in an
integrated manner during the design process: use the topology optimization for an initial
design, them perform a shape optimization to improve the design near the boundaries, and
finally execute a parametric optimization around the operational conditions to establish
an acceptable range of applications.

All things considered, this thesis focus on the TO applied to fluid flow problems,
because of its robustness in generating non-intuitive initial designs that can present holes
or different structures inside it.

1.1 Fluid Flow Topology Optimization

Borrvall and Petersson (2003) were the first study to use TO in Fluid Flow problems,
they analysed creeping flow problems using an incompressible Stokes problem. The main
idea was to add a porous media flow term to the momentum equation, associated with the
Darcy Law, and emulate the solid as a low permeability region with zero velocity region
and the fluid as a region of high permeability. By performing this, the no-slip condition
at the interface is readily enforced and the system of equations is well-posed. One of the
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examples tested in their work was the double pipe problem described in Fig. 1.6, where the
optimization problem is to find the fluid path that minimizes the energy loss of the flow.

Figure 1.6 – Schematic representation of the double pipe problem.

The optimized solution given by the TO is non-intuitive as can be visualized in Fig.
1.7, in order to minimize the energy loss, the channels joined at the central part. This
optimized solution could hardly be found using parametric or shape optimization methods,
unless the topology of the pipes were known a priori.

Figure 1.7 – Optimized solution of the double pipe problem using TO.

Later this methodology was extended to Navier-Stokes equations in the work of
Gersborg-Hansen, Sigmund and Haber (2005), where the non-linear effects of the convection
were considered. They used a dimensionless approach of the primitive variables and tested
different channels configurations for Reynolds numbers between 500 ≤ Re ≤ 1000 under
the hypothesis of laminar flow.
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The first three-dimensional result is presented in the work of Pingen, Evgrafov and
Maute (2007), where they used the Lattice Boltzmann method (LBM) approximation of
the Navier-Stokes equations with a coarse mesh discretization in a nozzle diffuser problem.

TO has been successfully being applied to a large variety of fluid flow problems such
as rotating machines (ROMERO; SILVA, 2014), tesla pumps(ALONSO; SILVA, 2022),
fluid diodes (LIN et al., 2015), non-newtonian fluids (PINGEN; MAUTE, 2010), fluid solid
interation (FSI) (YOON, 2010) (PICELLI et al., 2020), fluid heat transfer (HØGHØJ et
al., 2020), just to cite a few.

The inclusion of the turbulence in the TO modelling can be found in the work of Yoon
(2016) where the author explored the Reynolds Average Navier-Stokes (RANS) with a one
equation turbulence model, Spalart–Allmaras. Two equation turbulence models such as
the Launder–Sharma k-ε and the k − ω were studied respectively by Papoutsis-Kiachagias
and Giannakoglou (2016) and Dilgen et al. (2018).

By taking into account the turbulence, these works showed significant differences in
the optimized geometries obtained, when compared with laminar non-turbulent geometries
and frozen turbulence derivations (when the turbulent viscosity is considered constant and
not taken into account in the sensitivities calculations).

The majority of papers found in the literature about TO and fluid flow problems target
incompressible fluids, as a matter of fact, a thorough search of the relevant literature
yielded few related articles or publications exploring the TO in the context of compressible
fluid flow problems (ALEXANDERSEN; ANDREASEN, 2020).

Among the works dealing with TO in compressible fluid flow problems, the ones that
stands out are the work of Sa, Okubo and Silva (2021) and Okubo et al. (2022) where the
authors accounted for the compressibility effects of the fluid in the governing equations and
solved the fully compressible Navier-Stokes. Both of them used objective functions based
on the entropy variation, the main differences between the methods are the solvers used
and the manner the sensitivities are calculated, the first used a Finite Element Method
and an automatic differentiation algorithm and the later used a Finite Volume Method
and a finite difference approach to estimate the derivatives.

However none of them dealt with supersonic problems (Mach number > 1), possibly
due to the peculiarity needed when solving flows with sonic and supersonic velocities.
Therefore, there is an important knowledge gap that needs to be explored, the use of TO
in problems where the flow surpasses the sonic velocity and becomes supersonic with,
possibly, a shock formation.
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1.2 Motivation

As explained in the previous section, few studies and works have addressed TO
considering the hypothesis of compressible fluid and, to the best of this author’s knowledge,
the method has not yet been applied to supersonic flow problems that involves shock
formation. Hence, there is an implicit importance to expand the Topology Optimization to
a class of problems that has not been explored and researched by using this optimization
method.

1.3 Objectives

The primary objective of this thesis is to study and develop a methodology to apply
the Topology Optimization to a supersonic inviscid compressible fluid problem. In order
to achieve this, the following major steps were necessary:

• solve the Euler equations with the Least-Square Finite Element Method (LSFEM),
with the addition of the stagnation temperature conservation equation to correct
the shock location.

• use the Topology Optimization of Binary Structures (TOBS) applied to fluid flow
problems, to avoid gray scale problems and have a clearly defined boundary interface
between the solid and the fluid.

• perform the boundary identification and smoothing at each optimization step, to
decouple the CFD problem and always have the correct boundary condition applied.

1.4 Scientific Contribution

The main scientific contribution of this work is the development of a methodology to
implement the Topology Optimization to inviscid fluid flow problems, that can deal with
both subsonic and supersonic velocities, and with shock wave formation.

Three papers have been published as coauthor during the elaboration of this thesis:

– Topology optimization of turbulent rotating flows using Spalart–Allmaras model
(SA et al., 2021)

– Topology optimization of fluid flow by using integer linear programming (SOUZA et
al., 2021)

– Topology optimization of turbulent fluid flow via the TOBS method and a geometry
trimming procedure (PICELLI et al., 2022)
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1.5 Outline

This thesis is organized as follows, in Chapter 2 the problem modelling is presented,
which comprehends the governing equations and all the theoretical methods used. Chapter
3 explains the Optimization methodology with more emphasis to Topology Optimization
applied to inviscid compressible fluid flow problems. The numeric implementation and the
computer programs used are described in Chapter 4. The results obtained are displayed in
Chapter 5. Finally, in Chapter 6, the conclusions and the future works are discussed.
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2 MODELLING

2.1 Governing Equations

All fluid flow problems are governed by Partial Differential Equations (PDEs) called
Navier-Stokes equations (ANDERSON, 2011):

Continuity
∂ρ

∂t
+∇ · (ρu) = 0

Momemtum
∂ (ρu)
∂t

+∇ · (ρu⊗ u) +∇p− ρf − Fviscous = 0

Energy
∂ (ρE)
∂t

+∇ · (ρEu)− ρq̇ +∇ · (pu)− ρ (f · u)− Q̇viscous − Ẇviscous = 0

(2.1)

where ρ is the density, u is the velocity, p is the pressure, Fviscous are the viscous forces, E
is the total energy per unit mass, q̇ is the rate of heat transfer per unit mass, Q̇viscous is
the rate of heat transfer due to viscous effects, and Ẇviscous is the work performed by the
viscous forces.

Even though all fluids (liquids and gases) are compressible to some extent, they can be
modeled as compressible or incompressible depending on the flow regime, more specifically
depending on the Mach number (Ma), the dimensionless relation between the absolute
velocity and the speed of sound.

Ma = |u|
a

where |u| =
√
u2

1 + u2
2 + u2

3 with ui being the velocity in the i direction, and a is the speed
of sound.

As stated in Anderson (2011) a fluid can be modeled as compressible when the
Ma is greater than 0.3. This rule of thumb comes from the fact that a Ma = 0.3
represents a change of roughly 5% in the density, and, therefore, a fluid can be modeled as
incompressible with a constant density, without any significant loss of accuracy, for flow
regimes of Ma ≤ 0.3
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One problem that frequently arises in high speed compressible fluid flow problems
is the shock formation, a drastic change in the fluid properties that can be seen as a
discontinuity. Formally the shock thickness is about a few times the size of the mean free
path of the gas molecules (PRITCHARD, 2011). A necessary but not sufficient condition
for the development of a shock wave is a flow with Ma ≥ 1.0.

The interaction of shock waves with the viscous boundary layer is a highly complex
problem (DOLLING, 2001), especially when turbulence is present, and is not going to be
addressed in this thesis. Even though the importance of the Shock-wave boundary layer
interactions, in this work, the compressible fluids are modeled using the inviscid hypothesis
where all viscous effects are neglected.

2.1.1 Euler Equations

Considering the working fluid inviscid (Q̇viscous = Ẇviscous = 0), using the perfect gas
assumption p = ρRT , in the absence of body forces (f = 0) and heat generation (q̇ = 0),
the Navier-Stokes equations (Eq. 2.1) can be written as (PONTAZA et al., 2004):

Continuity
∂ρ

∂t
+ (u · ∇) ρ+ ρ (∇ · u) = 0 (2.2)

Momemtum
∂u
∂t

+ (u · ∇) u + 1
ρ
∇p = 0 (2.3)

Energy
∂p

∂t
+ (u · ∇) p+ γp (∇ · u) = 0 (2.4)

where γ is the heat capacity ratio or adiabatic index. Eqs 2.2, 2.3, and 2.4 are also known
as the Euler Equations written in a non-conservative formulation1

The solution of the Euler Equations can be understood as a solution of the Navier-Stokes
equations in the limit of vanishing viscosity, which is a valid solution for convection
dominated problems such as High Reynolds number flows2 (HIRSCH, 1990).

The hyperbolic nature of the Euler Equations implies that the information propagates
like waves and the physical system is dominated by transport phenomena, therefore,
it is related to the mathematical concept of "characteristic surfaces". The definition of
the "characteristics variables" and its calculations are out of the scope of this thesis, the
interested reader is referred to the books Hirsch (1988) and Hirsch (1990) for more in-depth
information.
1 using the primitive variables (ρ,u, p).
2 Reynolds number is the dimensionless relation between the inertial and the viscous effects
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The method of characteristics reveals the number of admissible boundary conditions
that can be applied to a given hyperbolic system and is related to the flow regime, more
precisely, the number of boundary conditions depends on the Mach number of the flow.
Considering the local Mach number at an arbitrary point of the domain the flow can be
defined as (ANDERSON, 2011):

Subsonic: Velocity lower than the speed of sound (Ma < 1)

Sonic: Velocity equal to the speed of sound (Ma = 1)

Supersonic: Velocity greater than the speed of sound (Ma > 1)

The number of admissible boundary conditions is summarized in Table 2.1.

Table 2.1 – Number of admissible boundary conditions

subsonic supersonic
inlet 3 4
outlet 1 none

It should be noted that in a supersonic flow, all flow variables are defined at the inlet
region and none at the outlet.

From the method of characteristics is also possible to derive which physical variables
should be enforced at the boundaries, to guarantee a well-posed system of equations. These
boundaries conditions cannot be chosen at random, for instance, the subsonic inlet is
always ill-posed for the pair velocity and pressure (HIRSCH, 1990). This makes the choice
of boundary conditions problem dependent and not trivial.

For a subsonic inlet, usual boundary conditions are the direction of the flow, Stagnation
Temperature, and Stagnation Pressure. Stagnation properties are reference values that
could be hypothetically obtained if the fluid could be brought to rest adiabatically
(ANDERSON, 2011).

The Stagnation Temperature (T0) can be calculated by:

T0 = T
(

1 + γ − 1
2 Ma2

)
(2.5)

And Stagnation Pressure (P0) by:

P0 = P
(

1 + γ − 1
2 Ma2

) γ
γ−1

(2.6)
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The adequate boundary condition for a solid wall does not depend on the flow regime
and can be modeled as a no penetration or slip wall defined by:

u · n = 0 (2.7)

where n is the outward normal direction of the wall surface.

For most real-world problems the Euler Equations do not have an analytical solution, as
a result of its non-linearity, hyperbolic behavior, and the presence of shock discontinuities.
Therefore, the PDEs need to be solved using a numerical method, such as Finite Difference,
Finite Volume Method, or Finite Element Method. This thesis is going to focus on the
Finite Element Method.

2.2 Finite Element Method

The Finite Element Method (FEM) (ERN; GUERMOND, 2004) is a numerical method
and a mathematical framework that can be used to find an approximate solution of a given
set of PDEs. It basically consists in subdividing the domain of interest in a finite number
of small parts or elements (discretization), and approximating the unknown variables by a
linear combination of polynomial equations that can be solved numerically.

The mathematical definition of a domain Ω is an open, bounded, connected set in
Rd (d being the cartesian dimension) with a boundary defined by Γ (Fig. 2.1 a). The
subdivision of the domain is called a mesh (Fig. 2.1 b), that consists in the union of a
finite number of compact, connected, set of mesh cells or mesh elements (Fig. 2.1 c). In
this thesis, for the sake of simplicity, the word element is chosen to represent the mesh
elements.

Figure 2.1 – (a) Generic domain Ω and boundary Γ. (b) Mesh discretization. (c) Mesh
element
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For a general variational problem, the FEM can be defined in a canonical form as: find
w ∈ V such that:

a(w,v) = b(v), ∀v ∈ V̂

where a := V × V̂ → Rd is the bilinear form, b := V̂ → Rd is the linear form, V is the
trial function space and V̂ is the test function space.

For a given PDE defined by R(w), where R is a differential operator and w is the
vector of unknown variables, the bilinear and linear forms are:

a(w,v) =
∫
Ω

R(w) · v dx

b(v) =
∫
Ω

f · v dx

where f are the terms that do not depend on the variables (i.e. known boundary conditions,
or source terms).

Now we discretize the variational problem and rewrite as: find wh ∈ Vh ⊂ V such that

a(wh,v) = b(vh), ∀vh ∈ V̂h ⊂ V

The unknown variables w are approximated by wh, at each element, as a linear
combination of polynomial equations:

w(x) ≈ wh(x) =
Ndof∑
i=1

UiΨi(x)

where Ui are the unknown values, Ψi(x) are the basis functions of the trial space and Ndof

is the number of degrees of freedom of the element.

Using the approximated solution wh(x) in the governing equations, calculating the
nonzero residual R(wh) and making the residual zero in a weight-integral sense we can
write: ∫

Ω

R ·Wi(x) dΩ = 0 for i = 1, · · · , Ndof

where Wi(x) are weighted functions.

This procedure generates a system of algebraic equations of the kind Ax = b that can
be solved numerically. The problem now is to seek a solution of wh which ensures that the
integration above is satisfied only at the unknown values of the elements. The choice of
the weighted function dictates the numerical method used, Table 2.2 summarize the most
common choices in the literature (KARNIADAKIS; SHERWIN, 2005).
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Table 2.2 – Relation between the choice of weight function and the numerical method

Weight function Numerical Method
Ψi(x) Galerkin

Ξi(x) 6= Ψi(x) Petrov-Galerkin
δR Least-Squares

Use the same basis functions Ψi(x) (trial functions) as the weight functions Wi(x)
(test functions) is known as the Galerkin’s Method and is one of the most common FEM3.

However, the Galerkin’s Method when applied to convection-dominated transport
problems, which is the case of the Euler Equations, are often corrupted by spurious
oscillations (DONEA; HUERTA, 2003).

Another issue that frequently arises in the Galerkin’s Method is the proper choice of the
test functions space, for example, the use of same interpolation order for all variables can
lead to numerical divergence in some problems (Mixed Finite Element problems), and is
known as Ladyzenskaya-Babuška-Brezzi (LBB) condition or inf-sup condition (BABUSKA,
1971).

The spurious oscillations issue can be avoided with the use of Stabilization Methods
such as Streamline Upwind Petrov-Galerkin (SUPG), or by the use of Discontinuous
Galerkin elements, or yet by the use of the Least-Squares Finite Element Method (LSFEM)
variational formulation of the problem, where the test functions are the functional derivative
of the PDEs with respect to the variables.

Stabilization Methods are a modification of the Galerkin’s Method where a stabilization
term is added to the formulation, this stabilization parameter is problem dependent and
require a fine tuning (CODINA; BLASCO, 2002).

Discontinuous Galerkin elements use the definition of numerical fluxes, derived from
non-trivial Riemann problems, to perform the compatibility of the discontinuous solution
at the inter-element level and higher order interpolations suffer from oscillations near the
discontinuities, that can be alleviated by the use of numerical dissipation methods that
acts as an artificial viscosity (BASSI; REBAY, 1997).

The variational formulation of LSFEM is explained in more details in the following
and is the method chosen and implemented in the present work.
3 Another popular method in CFD, the Finite Volume Method, can be obtained by choosing Wi(x) = 1

inside each volume and Wi(x) = 0 outside each volume.
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2.2.1 Least-Squares Finite Element Method

The LSFEM is a variety of FEM that uses a variational formulation based on the
minimization of a quadratic "energy norm"4 or functional in a least-squares sense, which
makes the LSFEM essentially an unconstrained minimization problem whose solution
is also the solution of the PDEs. The main advantages of the LSFEM are summarized
below(JIANG, 1998):

General: Has an unified formulation to a wide range of problems, there is no necessity
of implementing a different scheme if the PDEs are elliptic, parabolic, hyperbolic,
linear or non-linear.

Efficient: The discretized system of equations can be always symmetric positive definite,
if the LSFEM is properly implemented, and can be efficiently solved numerically.

Robust: Unlike the Galerkin’s Method, the LSFEM does not suffer from the LBB
condition, and the same order of interpolation can be used for all variables.

The application of the LSFEM to solve PDEs consists in writing the residual as a
quadratic energy norm in a suitable function space:

‖R‖2 = (R,R) =
∫
Ω

R · R dx (2.8)

where (· , ·) is the inner product induced by the space of square-integrable functions L2.

Then we take the variational of Eq. 2.8 and equal it to zero, this procedure is known
as the stationary variational condition:

δ
∫
Ω

R · R dx = 0 (2.9)

The variational can be understood as type of derivative, therefore the chain rule must
be applied:

2
∫
Ω

R · δR dx =
∫
Ω

R · δR dx = 0 (2.10)

Eq. 2.10 represents a generic application of the LSFEM for any system of PDEs, for
more comprehensive information about the methodology and the mathematical background
of the LSFEM, see the works of Eason (1976) and Bochev and Gunzburger (1998) or the
books from Jiang (1998) and Bochev and Gunzburger (2005), and the references therein.
4 The quotes were used because the functional of interest does not need to be related to energy, in fact,

can be any system of PDEs, even the ones that are not derived from energy properties. The use of the
word energy is related to the Rayleigh-Ritz Method
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2.2.1.1 LSFEM applied to the Euler Equations

Different authors applied the LSFEM to the Euler Equations and some of their results
are described below:

The work of Jiang and Carey (1988) studied a one dimensional conservative formulation
of the Euler Equations for a nozzle problem with the presence of a shock wave. They
concluded that it is necessary to add an extra numerical dissipation because of the
oscillations near the shock using an energy norm in H1 instead of L2, where L2 is the space
of square integrable functions and H1 is the Sobolev space functions whose derivatives are
in L2.

Lefebvre, Peraire and Morgan (1993) also explored the conservative formulation, using
a backward difference in time for linear and quadratic elements. Better shock resolution
was achieved using an adaptive refinement based on the pressure gradients, which refined
the regions near the shock. Another conclusion of their work is that quadratic elements
need extra artificial dissipation to achieve convergence.

The non-conservative formulation of the Euler Equations were studied by Taghaddosi
et al. (1999) together with a grid adaptation method, where it was implemented a moving
node strategy to obtain elements aligned with the shock (shock fitting approach). The slip
boundary was implemented adding the boundary condition in the LSFEM functional.

Pontaza et al. (2004) also used a non-conservative formulation with a backward
difference in time. They explored different problem such as a shock reflection and a
transonic flow inside a channel.

Before applying the LSFEM to the Euler Equations, the time derivative is discretized
first using a fully implicit backward Euler scheme:

∂var

∂t
= var − var0

dt
(2.11)

where var can be any primitive variable (ρ, u, p) at the next time step, var0 is the primitive
variable at the previous time step, and dt is the time increment.

Which gives:

Rcontinuity = ρ− ρ0 + dt[(u · ∇)ρ+ ρ(∇ · u)] (2.12)

Rmomentum = u− u0 + dt

[
(u · ∇)u + ∇p

ρ

]
(2.13)

Renergy = p− p0 + dt[(u · ∇)p+ γp(∇ · u)] (2.14)
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By taking the variational of Eqs 2.12, 2.13, 2.14 we arrive at:

δRcontinuity = δρ + dt[(δu · ∇)ρ+ (u · ∇)δρ + δρ(∇ · u) + ρ(∇ · δu)] (2.15)

δRmomentum = δu + dt

[
(δu · ∇)u + (u · ∇)δu + ρ∇δp − δρ∇p

ρ2

]
(2.16)

δRenergy = δp + dt[(δu · ∇)p+ (u · ∇)δp + γδp(∇ · u) + γp(∇ · δu)] (2.17)

where δρ, δu, and δp are the test functions of the density, velocity, and pressure respectively.

Using Eq. 2.10 we obtain:∫
Ω

Requation · δRequation dx = 0 (2.18)

where Requation and δRequation are all the equations from Eqs 2.12 to 2.17

It is possible to analyze the LSFEM terms as a combination of different methods,
taking the continuity equation for example:

Rcontinuity · {δρ + dt[(δu · ∇)ρ+ (u · ∇)δρ + δρ(∇ · u) + ρ(∇ · δu)]}

The inner product between the Rcontinuity and the test function δρ is the Galerkin’s
Method, where the PDE is multiplied by a test function.

The term Rcontinuity · dt(u · ∇)δρ is exactly the SUPG stabilization term, with a
stabilization parameter equal to dt. It is a residual based stabilization term with an
upwinding in the direction of the velocity. The other terms can also be seen as a residual
based stabilization, to ensure the symmetric positive definitive character of the linearized
equations.

Carey and Jiang (1988) show that the addition of the derivatives of the test function
terms can be seen as a Petrov-Galerkin formulation, where the interpolation function is
different from the test function and the modified test function is ψ = Φ + dt∇Φ.

The time-step (dt) acts as an artificial or numerical viscosity that aids the convergence
of the solution, and should be large enough to damp numerical oscillations but small
enough to not smear out the discontinuities.

Notice that even when solving steady-state problems, a time marching procedure is
necessary in order to avoid non-physical solutions5, especially when dealing with shock
wave problems. The physical or entropy solutions are achieved in the LSFEM because of
the artificial viscosity explained above (JIANG; CAREY, 1990).
5 physical solutions are known as entropy solutions
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A pseudo-transient scheme is used in this work, where the time step is different for
every element and based on the element size, this leads to an unrealistic intermediate
transient solution but with the correct steady-state solution.

As claimed by Gerritsma et al. (2008), the non-conservative formulation produces
a wrong shock position, in order to avoid this problem, a Stagnation Temperature
conservation term in the entire domain is added to the LSFEM formulation.

RT0 = p

ρ
+ γ − 1

2γ u · u− T0inlet (2.19)

δRT0 = δpρ− pδρ
ρ2 + γ − 1

γ
u · δu (2.20)

where T0inlet is the Stagnation Temperature at the inlet6.

In this thesis it is also performed the Weighted LSFEM as explained in Bochev and
Gunzburger (2005), where each PDE is weighted with different values, to tell the solver
which terms are more important or which should have a lower residual. More weight is
applied to the continuity equation (Eqs. 2.12 and 2.15) because the unweighted LSFEM
is known to suffer from mass conservation errors as discussed in the work of Bolton and
Thatcher (2005).

The boundary conditions are derived using the LSFEM and are added to the functional
in the same manner as the Stagnation Temperature described above, and the equations
for the Stagnation Temperature at the inlet are the same as Eqs. 2.19 and 2.20.

The LSFEM derivation of the Stagnation Pressure is:

RP0 = ρk

pk−1 −
P0inlet
T k0inlet

(2.21)

δRP0 = kρk−1pk−1δρ − (k − 1)ρkpk−2δp
p2k−2 (2.22)

with k = γ
γ−1

And the boundary condition of the no penetration or slip wall is modeled as:

Rwall = u · n (2.23)

δRwall = δu · n (2.24)

where n is the outward normal vector of the boundary.
6 This value should be constant in the entire domain, except at the shock location (ANDERSON, 2011)
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The LSFEM also makes use of dimensionless variables in order to scale the residual
functionals to the same magnitude order, therefore the variables used are:

x = xreal
Lref

(2.25)

u = ureal
uref

(2.26)

ρ = ρreal
ρref

(2.27)

p = preal
ρrefu2

ref

(2.28)

This procedure does not change the formulation described in later sections, only scales
the problem variables.
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3 OPTIMIZATION

A general optimization problem can be stated as:

minimize/maximize
w,φ

J (w, φ)

subject to F(w, φ) = 0
g1(w, φ) = C1

g2(w, φ) ≥ C2

φmin ≤ φ ≤ φmax

(3.1)

where φ are the control variables, w is the solution of the PDEs, J (w, φ) is the objective
function, F(w, φ) = 0 the restriction imposed by the PDEs (forward model), g1 is an
equality constraint, g2 is an inequality constraint, and φmin ≤ φ ≤ φmax is the minimum
and maximum values allowed for the control variables (box constraint).

Eq. 3.1 can be read as find the best distribution of φ that minimizes the objective
function J for a given set of constraints. In order to solve Eq. 3.1, a systematic procedure
is implemented.

• First, the forward model F(w, φ) = 0 is solved for a fixed set of controls and the
objective function J (w, φ) is evaluated.

• Them a sensitivity analysis is performed, in order to predict which controls φ affect
most the objective function J (w, φ). Mathematically, the derivative of the objective
function with respect the controls dJ /dφ is calculated.

• Finally, the controls are changed using the information of the sensitivity step in
order to pursuit the desired extremum of the objective function.

This procedure is repeated in a loop until a given tolerance is achieved, for example
when the objective function stabilizes and does not change significantly, or when it reaches
a prescribed maximum number of iterations. This optimization loop can be visualized in
Fig 3.1.

One important part of any gradient based optimization method is the sensitivity
analysis step, by virtue of dJ /dφ being the direction used by the optimization algorithm
to minimize or maximize the objective function. Therefore, the wrong estimation of the
sensitivities will lead to designs that are not optimum.
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Figure 3.1 – Schematic representation of the optimization loop

There are different approaches to evaluate dJ /dφ, such as the Finite Difference Method
(FDM) or the Adjoint Method (FUNKE, 2012).

FDM is based on Taylor expansion series to approximate the derivatives, using a
central difference scheme the dJ /dφ can be calculated by:

dJ
dφ

= J (φ+ h)− J (φ− h)
h

+O(h2) (3.2)

where h is the size of the variation of the control.

One known problem of the FDM is the numerical cancellation, that arises for small
values of h and wrongly predicts the derivatives values. This can be circumvented by using
the Complex Step scheme (LYNESS; MOLER, 1967).

Another problem is the computational cost required when the optimization problem
has a large number of control variables, due to the large amount of simulations needed to
estimate the derivatives for each control variable.

An alternative approach is the Adjoint Method, explained with more details in the
next section.
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3.1 Sensitivity analysis with Adjoint Method

In order to calculate the dJ /dφ, we apply the chain rule first:

dJ
dφ

= ∂J
∂w

dw

dφ
+ ∂J
∂φ

(3.3)

The derivative dw/dφ can be obtained by taking the derivative of F = 0 with respect
to φ.

∂F
∂w

dw

dφ
+ ∂F
∂φ

= 0 (3.4)

Assuming ∂F/∂φ invertible:

dw

dφ
= −∂F

∂w

−1∂F
∂φ

(3.5)

Substituting into Eq. 3.3 we arrive at:

dJ
dφ

= −∂J
∂w

∂F
∂w

−1

︸ ︷︷ ︸
=λ∗

∂F
∂φ

+ ∂J
∂φ

(3.6)

where λ∗ are the adjoint variables.

The adjoint variables are calculated from:

∂F
∂w

λ∗ = ∂J
∂w

(3.7)

The sensitivities dJ /dφ are easily calculated by substituting the adjoint variables λ∗

into Eq. 3.6.

The Adjoint Method calculates the sensitivities using one additional set of equations
(the adjoint equations Eq. 3.7), and therefore, there is one additional system to solve. The
main advantage of this method is the associated computational cost that is always related
to the additional system to solve, it does not explicitly depends on the number of control
variables. This is most suitable for optimization problems with few objective functions
and several controls, which is exactly the case of the optimization problems explored in
this thesis.

Another advantage is that the adjoint equations are always linear, even when derived
from non-linear forward models (FUNKE, 2012).

The Adjoint Method can be applied following different approaches as can be visualized
in Fig. 3.2, starting from the continuous form, from the discretized form, or yet from the
source code using Automatic Differentiation tools (FUNKE, 2012).
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Figure 3.2 – Adjoint Method applied at different stages.

This thesis uses the discrete adjoint equations obtained from the discretized weak
form of the PDEs (central block of Fig. 3.2) to calculate the sensitivities needed for the
optimization step. The derivation of the discrete adjoint equations is performed in an
automatic manner using the pyadjoint library and is explained in more details in Sec. 4.2.

3.2 Fluid Flow Topology Optimization

As described in the Sec. 1.1, Fluid Flow Topology Optimization started with the
seminal work of Borrvall and Petersson (2003), where a porous Darcy term was added to
the momentum equation of the Stokes formulation. Mathematically, this term can also be
understood as a penalty method that enforces the restriction of no-slip (zero velocity) in
the solid part. The altered momentum equation is:

Rmomentum + α(φ)u (3.8)

where α is the reverse permeability and φ is a phase field variable that selects the part of
the domain that are solid or fluid1.

The equation for α(φ) used by Borrvall and Petersson (2003) is:

α(φ) = α + (α− α)φ1 + q

φ+ q
(3.9)

where α is the maximum permeability (solid region), α is the minimum permeability (fluid
region), and q is a penalization parameter.
1 This formulation is the Brinkman formulation for porous media
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Eq. 3.9 is a material interpolation function, and can be seen as a Material Model that
shifts the behavior from fluid to solid. Basically, when φ→ 1, α→ α and the momentum
equation does not suffer any alteration, which means that it is a fluid region. Conversely,
when φ → 0, α → α and the velocity solution of the momentum equation goes to zero,
which means it is a solid region. In the limit the values should be α→∞ and α→ 0. The
different behaviors are summarized in Tab. 3.1.

Table 3.1 – Material model behavior

φ α

Fluid 1 0
Solid 0 ∞

The values of α should be high enough to enforce the zero velocity in the solid region,
but not so high to make the system ill-conditioned, and the values of α should be low
enough to not alter the momentum equations in the fluid region.

The penalization parameter q controls the level of intermediate values of φ, also called
"grey scale" in the TO literature. High values of q induce Eq. 3.9 to assume a linear
behavior and consequently the optimization becomes more discrete, with φ having only 0
or 1 values. This pattern can be observed in Fig. 3.3

Figure 3.3 – Material model evaluation of the variation of q.

3.2.1 Material model for inviscid compressible fluids

Taking into consideration the shortage of specialized literature about TO applied
to compressible fluids, the first Material Model tested for the compressible case is the
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same described by Eq. 3.9 for the incompressible case. However this preliminary approach
resulted in a non-physical solution of the forward model with spurious vortex inside the
tested convergent-divergent nozzle configuration, as can be visualized in Fig. 3.4.

Figure 3.4 – Material model testing, spurious vortex inside nozzle at the divergent region.

The main cause of this behavior is due to the wrong boundary condition applied to
the interface between the fluid and the solid. The proper boundary condition should be
the slip condition for the Euler Equations and not the no-slip (zero velocity) enforced by
the material model used.

The suitable Euler material model should apply the slip condition at the interface,
however the development of a novel material model showed to be a challenging and
cumbersome task. Therefore, a different procedure is proposed and implemented in this
thesis in order to correctly perform the topology optimization of supersonic inviscid
compressible fluids.

3.3 Proposed optimization procedure

Due to the difficulties encountered in the development of a suitable material model
for the inviscid compressible case, this work proposes the following procedure: decouple
the fluid region from the optimization and remove the influence of the material model in
the forward problem. This can be accomplished by using a geometry trimming algorithm,
making the forward problem a regular CFD problem with the proper boundary condition
applied. This strategy is similar of what is performed in Picelli et al. (2022).

The proposed method can be described by the following steps:

1) Solve the forward problem in a conforming mesh with appropriate boundary
conditions, which is a standard CFD solution of a fluid problem.

2) Calculate the sensitivity using the Adjoint Method in the conforming mesh.

3) Interpolate the sensitivities from the conforming mesh to a larger mesh (extended
domain mesh), where the optimization process occurs.
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4) Solve the optimization problem in the extended domain mesh, using the sensitivities
(gradient based) to guide the optimizer.

5) Get the new design variables in the extended domain mesh (solution of step 4)

6) Identify the fluid/solid interface in the extended domain and extract the fluid part
only (geometry trimming).

7) Smooth the boundary of the fluid part, in order to avoid an irregular contour at
the boundaries.

8) Create a new mesh and repeat step 1.

This methodology is performed as an iterative process until a convergence criteria
is reached and the loop ends with an optimized design. This optimization loop can be
visualized in Fig. 3.5.

Figure 3.5 – Optimization loop with a new mesh generation at every iteration.

The proposed methodology can be seen as a post-processing step at every optimization
iteration, where the intermediate optimized geometry is interpreted and solved without
the material model influence (pure fluid standard CFD).

In order to accomplish the proposed methodology, a binary [0,1] pure fluid/solid
optimization model called Topology Optimization of Binary Structures (TOBS) is used.
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3.4 Topology Optimization of Binary Structures (TOBS)

The binary optimization method used in this work is the one described in the work of
Sivapuram and Picelli (2018), that has as advantage the absence of intermediate values of
the material model (gray scale) due to the use o binary variables, pure solid/fluid values
of the material model. This feature facilitates identification of the solid/fluid interface and
posterior geometry trimming explained in the later section.

Despite the fact that TOBS has been developed for structural topology optimization
it has already been used in the context of fluid flow problems as in the work of Souza et
al. (2021) and Picelli et al. (2022).

TOBS is a sequential approximation of integer linear optimization subproblems. The
method is derived from the linear part of the first order Taylor’s expansion. Considering
the control variable φ, the discrete binary control variable Φ, the objective function F ,
and the volume restriction V Φ at the k optimization iteration.

F (Φ) ≈ F (Φk) + dF (Φk)
dΦ ·∆Φk +O(

∣∣∣∣∣∣∆Φk
∣∣∣∣∣∣2

2
),

VΦ(Φ) ≈ VΦ(Φk) + dVΦ(Φk)
dΦ ·∆Φk +O(

∣∣∣∣∣∣∆Φk
∣∣∣∣∣∣2

2
),

(3.10)

where O(
∣∣∣∣∣∣∆Φk

∣∣∣∣∣∣2
2
) is the truncation error and ∆Φk represents the changes of the control

variable.

In order to keep the control variable with binary values, ∆Φk needs to be restrict by:−1 6 ∆φkj 6 0 if φkj = 1,

0 6 ∆φkj 6 1 if φkj = 0,
(3.11)

or, in a compact notation:
∆φkj ∈ {−φkj , 1− φkj}, (3.12)

where ∆φkj ∈ {−1, 0, 1}.

Eqs. 3.11 and 3.12 show that a fluid material (φj = 1) is restricted by ∆φj ∈ {−1, 0},
which means that it can turn into a solid (∆φj = −1 and φj = 0) or keep its value
(∆φj = 0 and φj = 1) during the optimization iteration k. Similarly, a solid material
(φj = 0) is restrict by ∆φj ∈ {0, 1}, which means that it can turn into a fluid (∆φj = 1
and φj = 1) or keep its value (∆φj = 0 and φj = 0) during the optimization iteration k.

The linear approximation from Eq. 3.10 is only valid when O(
∣∣∣∣∣∣∆Φk

∣∣∣∣∣∣2
2
) is sufficiently

small, therefore an additional constraint is needed. This is accomplished by restricting the
number of elements that are allowed to change from fluid to solid and vice-versa.

∣∣∣∣∣∣∆Φk
∣∣∣∣∣∣

1
6 βflipNφ. (3.13)
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where βflip is a percentage and Nφ is the total number of elements.

Using small values of the βflip, the number of changes or flips at each iteration k is
small, which keeps the truncation error also small and ensure the validity of the linear
approximation.

Therefore the approximate binary linear optimization subproblem can be written as:

Minimize
∆Φk

dF (Φk)
dΦ ·∆Φk,

Subject to dVΦ(Φk)
dΦ ·∆Φk 6 V − VΦ

(
Φk
)

:= ∆V k
Φ ,∣∣∣∣∣∣∆Φk

∣∣∣∣∣∣
1
6 βflipNφ,

∆φkj ∈ {−φkj , 1− φkj}, j ∈ [1, Nφ].

(3.14)

In order to avoid unfeasible solutions during the optimization, the bound constraint
(∆V k

Φ ) is modified by:

∆V k
Φ =


−εVΦ

(
Φk
)

: V < (1− ε)VΦ
(
Φk
)
,

V − VΦ
(
Φk
)

: V ∈ [(1− ε)VΦ
(
Φk
)
, (1 + ε)VΦ

(
Φk
)
],

εVΦ
(
Φk
)

: V > (1 + ε)VΦ
(
Φk
) (3.15)

where ε is a relaxation parameter related to the constraint VΦ.

The relaxation procedure in Eq. 3.15 aids in generating feasible solutions when the
initial guess or the optimization iteration is distant from feasibility.

Eq. 3.14 can be solved by means of Integer Linear Programming (ILP) or other integer
or binary optimization solver, in this thesis the linear optimization subproblem is solved
with the optimization solver CPLEX (developed by IBM®).
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4 NUMERIC IMPLEMENTATION

In this chapter, all programs and details from the methodology implemented to perform
the Topology Optimization of supersonic inviscid compressible fluids are described.

The forward model is solved using the FEniCS libraries, the sensitivities are calculated
with pyadjoint, the binary optimization solver used is CPLEX, the boundary identification
is performed with a python package nammed polylidar, the boundary smooth is performed
with signal filters, and a mesh optimization is accomplished using optimesh. The optimization
loop with an emphasis on the programs used at each step can be visualized in Fig. 4.1.

Figure 4.1 – Optimization loop with the main programs used in red.

4.1 FEniCS

FEniCS1 is an open-source software developed to automate the solution of mathematical
models described by PDEs. It starts from the variational formulation to derive and solve
the desired problem by using the FEM.
1 Avaliable at <http://fenicsproject.org/>

http://fenicsproject.org/
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User applications in FEniCS can be programmed in C++ and/or Python, where the
latter is the language chosen to implement the computer simulation in the present work.

Essentially, the FEniCS software consists in core components named DOLFIN, FEniCS
Form Compiler (FFC), Unified Form Language (UFL), Unified Form-assembly Code (UFC),
FInite element Automatic Tabulator (FIAT) and Instant. The basic relationship of these
components can be seen in Figure 4.2 and a brief explanation of each one is presented
next.

Figure 4.2 – FEniCS components overview

Core Components

External Libraries

Interface

User 
Application

Adapted from (LOGG; MARDAL; WELLS, 2012)

The user application is then implemented by using the DOLFIN package, it functions
as a user interface and is a core component of FEniCS, because it is responsible for all the
communications between the user program and the other FEniCS components.

DOLFIN is a collection of libraries with efficient C++ classes developed for finite
element computing. All its modules and features can be imported to a Python environment
in a single command line (Listing 4.1).
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1 from dolfin import *

Listing 4.1 – Importing the python DOLFIN package

The "dolfin" is a Python package providing access to the all DOLFIN libraries, features
and functions. DOLFIN also uses external libraries for the linear algebra computations,
such as PETSc, Trilinos and uBLAS, and for the mesh partitioning, such as ParMETIS
and SCOTCH.

The mesh must be stored in a specific file format called DOLFIN XML. The reading of
a mesh file is performed by the DOLFIN Mesh class and can be visualized in Listing 4.2.

1 mesh = Mesh("mesh.xml")

Listing 4.2 – Importing the mesh file

The variational forms of the governing equations must be expressed in a suitable
form language called Unified Form Language (UFL), that has as high point a very close
correspondence between the Python syntax and the mathematical expressions.

For example, the LSFEM formulation of the continuity equation (Eqs. 2.12 and 2.15
are rewritten below for the sake of completeness):

Rcontinuity = ρ− ρ0 + dt[(u · ∇)ρ+ ρ(∇ · u)]

δRcontinuity = δρ + dt[(δu · ∇)ρ+ (u · ∇)δρ + δρ(∇ · u) + ρ(∇ · δu)]

Can be written in the UFL Python code as shown in Listing 4.3

1 Rc = rho - rho_0 + dt*(dot(u, nabla_grad(rho)) + rho*nabla_div(u) )
2 var_Rc = del_r + dt*(dot(del_u, nabla_grad(rho)) + dot(u, nabla_grad(del_r))
3 + del_r*nabla_div(u) + rho*nabla_div(del_u) )
4 Rr = inner(Rc,var_Rc)*dx

Listing 4.3 – LSFEM Continuity equation written in UFL

The variational formulation in the UFL format is passed to the FEniCS Form Compiler
(FFC) that generates a code in the Unified Form-assembly Code (UFC) format, in order
to facilitate and automate the assembly of the sparse matrices system of equations from
the FEM. The FFC depends on the FInite element Automatic Tabulator (FIAT), that
contains a library of pre-defined elements, and on the just-in-time compiler Instant.

The FIAT is an extensive list of pre-defined elements, the elements used in this thesis
are the nodal Lagrange elements with linear and quadratic interpolations, and the shapes
used are triangles or quadrilaterals.

All elements are built and computed, only once, in a standard element Ωst with generic
coordinates ξi ∈ [−1; 1] with i = 1, 2 and 3, where the index i represents the direction
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of the variable ξ. The generic local coordinates ξi of standard element are then mapped
to the global Cartesian coordinates xi by a linear transformation for each element of the
mesh.

Finally, the code, generated by the FFC in the UFC format, can be used by DOLFIN
to assemble the systems using a linear algebra backend. In the default installation, FEniCS
uses the linear algebra package denominated PETSc (BALAY et al., 1997), to handle the
vectors, matrices and system solver methods, such as direct or iterative methods and also
eigenvalue solvers.

The solver method used for the nonlinear LSFEM equations is the Newton Method
with a quadratic line search procedure. For the linear solver it is used a Generalized
Conjugate Residual method (SANAN; SCHNEPP; MAY, 2016) in conjunction of a
Multigrid Preconditioner. The preconditioners can be described as a set of algebraic
operators used for improving the convergence of the solution. The standard Ax = b linear
system is transformed into M−1Ax = M−1b, where the fundamental trade off is to choose
M to reduce the convergence rate without increasing the computational cost of solving
systems with M . Further explanation of FEniCS and all its components can be found in
the FEniCS Book (LOGG; MARDAL; WELLS, 2012).

4.1.1 LSFEM Implementation

This section shows the implementation of LSFEM method with Python code examples.

The creation of the function spaces over the mesh for the linear Lagrange elements
and the Test Functions are shown in Listing 4.4.

1 R1 = FiniteElement("Lagrange", mesh.ufl_cell(), 1) # rho element
2 V2 = VectorElement("Lagrange", mesh.ufl_cell(), 1) # velocity element
3 P1 = FiniteElement("Lagrange", mesh.ufl_cell(), 1) # pressure element
4 element = MixedElement([R1, V2, P1])
5 W = FunctionSpace(mesh, element)
6
7 #Test functions
8 wt = TestFunction(W)
9 (wr, wu, wp) = split(wt) # Get test function for each variable

Listing 4.4 – Definition of the function spaces and the Test Functions

The code implementation of the LSFEM can be visualized in Listing 4.5

1 # Continuity Equation
2 Rr1 = r-r0 + dt*(dot(u,nabla_grad(r)) + r*nabla_div(u) )
3 Rr2 = wr + dt*(dot(wu,nabla_grad(r)) + dot(u,nabla_grad(wr))
4 + wr*nabla_div(u) + r*nabla_div(wu) )
5 Rr = (C_r)*inner(Rr1,Rr2)*dx # C_r is the weight used to enforce the mass conservation
6
7
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8 #Momentum Equation
9 Ru1 = u-u0 + dt*(dot(u,nabla_grad(u)) + 1.0/r*nabla_grad(p) )

10 Ru2 = wu + dt*(dot(wu,nabla_grad(u)) + dot(u,nabla_grad(wu))
11 + (nabla_grad(wp)*r - nabla_grad(p)*wr)/(r*r) )
12 Ru = inner(Ru1,Ru2)*dx
13
14 #Pressure/Energy Equation
15 Rp1 = p-p0 + dt*(dot(u,nabla_grad(p)) + gama*p*nabla_div(u) )
16 Rp2 = wp + dt*(dot(wu,nabla_grad(p)) + dot(u,nabla_grad(wp))
17 + gama*wp*nabla_div(u) + gama*p*nabla_div(wu) )
18 Rp = inner(Rp1,Rp2)*dx

Listing 4.5 – LSFEM implementation

The solver parameters are implemented as shown in Listing 4.6.

1 PETScOptions.set(’snes_type’, ’newtonls’) # Newton line search
2 PETScOptions.set(’snes_linesearch_type’,’bt’) # Backtracking line search over the L2 norm
3 PETScOptions.set(’snes_linesearch_order’, 2)
4 PETScOptions.set("snes_max_it", 1000) # Maximum number of iterations for each linear solve
5 PETScOptions.set("snes_rtol", 1.0e-12) # Residual tolerance
6 PETScOptions.set("snes_atol", 1.0e-10) # Absolute tolerance
7 PETScOptions.set(’ksp_type’,’pipegcr’) # linear solve
8 PETScOptions.set(’pc_type’,’mg’) # preconditioner
9 PETScOptions.set("pc_factor_mat_solver_package", "mumps")

Listing 4.6 – Solver and preconditioner parameters

The solution of the transient problem is performed in a time-loop, where for each
time-step the LSFEM formulation is implemented and solved, and the Python code can
be visualized in Listing 4.7.

1 while steady_state is not True:
2 F = FEM(w, w0, wt, dt, mesh, C_to, C_r)
3 solve(F == 0, w, bcs, solver_parameters={"nonlinear_solver": "snes"})
4 w0.assign(w) # assign the old solution to the next
5 if abs(w - w0)/dt < steady_state_criteria:
6 steady_state = True

Listing 4.7 – Time loop for the transient solution

4.2 pyadjoint

The adjoints equations described in Sec. 3.1 are calculated with the aid of the pyadjoint2,
an open-source module created and developed to calculate the solution of discrete adjoint
equations.

Basically, pyadjoint annotates in a tape all operations during the solve of the forward
model written in UFL, and automatically derives the adjoint equations. That is possible
because after the discretization of the forward model, the associated adjoint model
2 <http://www.dolfin-adjoint.org/en/latest/>

http://www.dolfin-adjoint.org/en/latest/
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implementation can be obtained in a prescriptive process (FUNKE, 2012), and because
the forward model in FEniCS is written as a sequence of linear (or non-linear) equations
that are solved consecutively.

4.3 TOBS and CPLEX

The TOBS method described in Sec. 3.4 is implemented in Matlab® and is interfaced
to the main Python program by means of the Octave3. The source code used as a guide to
implement the TOBS is available at <https://github.com/renatopicelli/tobs>.

CPLEX® is a commercial optimization solver developed by the IBM ® with a free
academic license, its ILP solver uses the branch-and-cut search method. Its algorithm
performs a branch-and-bound search with a cutting plane strategy to get rid of the
unfeasible solutions.

Sivapuram and Picelli (2020) showed that the main bottleneck of the TOBS is the
Finite Element Analysis and not the optimization step, if the βflip and the ε are kept small
due to the decrease size of the tree search needed during the optimization solve.

4.4 Boundary identification

The boundary identification is performed by using the library polylidar4 (Castagno;
Atkins, 2020). It is an efficient algorithm that identifies polygons with holes from point
sets. A three circle example is shown next, for the sake of clarification of the method.

Figure 4.3 – Boundary identification and the associated mesh with holes

(a) Three circle test case (b) Resulting mesh

3 <https://octave.org/>
4 <https://github.com/JeremyBYU/polylidar>

https://github.com/renatopicelli/tobs
https://octave.org/
https://github.com/JeremyBYU/polylidar
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As can be seen in Fig. 4.3b, the boundaries of the holes presented an irregular staircase
contour, due to the regular mesh nodes distribution used. This can be problematic in CFD
simulations, especially for high speed compressible flows because these irregularities in the
boundaries can generate shock waves.

Thus, it makes clear the necessity to perform a boundary smoothing algorithm before
using the generated mesh in the computer simulation.

4.5 Boundary smoothing

In order to smooth out the boundary irregularities, the Savitzky-Golay (SAVITZKY;
GOLAY, 1964) signal filter is used. It is a digital filter based on moving average polynomial
curve fitting using a least-square approximation from the adjacent points of the data set.

The smooth algorithm is tested in the same three circle example and using a more
refined mesh, the result is shown in Fig.4.4

Figure 4.4 – Boundary smoothing example

(a) Irregular boundary mesh

(b) Smoothed boundary mesh
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4.6 Mesh optimization

A mesh optimization step is needed to improve the convergence of the forward model,
the mesh generated automatically from FEniCS creates irregular triangular elements with
varying aspect ratio as can be seen in Fig. 4.5

Figure 4.5 – Generic nozzle mesh generated by FEniCS

The nodes of the mesh are reorganized using optimesh5, a python package that has
several mesh optimization methods. The optimized mesh is shown in Fig. 4.6

Figure 4.6 – Optimized generic nozzle mesh

optimesh successfully rearranged the nodes and created regular elements, improving
the mesh quality. It has to be pointed that this mesh optimization test is performed using
a coarse mesh, just for visualization purposes.

5 <https://github.com/meshpro/optimesh>

https://github.com/meshpro/optimesh
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5 RESULTS

All computer simulations used the FEniCS version 2018.1 running in a Intel Core
i7-7700K CPU with 8 cores of 4.2GHz and 32 GB RAM.

5.1 Forward solver verification

The implementation of LSFEM applied to the Euler Equations is tested against two
cases: a supersonic shock reflection problem, and a normal shock formation inside a nozzle.

The chosen test problems have a steady-state solution, nevertheless a time marching
scheme is used to avoid non-physical solutions as explained in Sec. 2.2.1.1. The solutions
are considered in the steady-state when all variables achieve a time stabilization using the
following:

|var − var0|
dt

≤ εss (5.1)

where var are the variables ρ, u and p, var0 are the variables at the previous time step, and
εss is the steady-state criteria, where the value of 5× 10−4 is used unless stated otherwise.

In all computer simulations the time-step was chosen as a fraction of the element size,
in order to respect the CFL condition for sonic velocities.

5.1.1 Shock Reflection

The first problem tested is a simple shock reflection problem that can be visualized in
Fig. 5.1. Taghaddosi et al. (1999) and Pontaza et al. (2004) also implemented the LSFEM
applied to inviscid Euler Equations and simulated this problem.

The left boundary condition is:

ρ1 = 1.0
u1 = 2.9
v1 = 0.0
p1 = 0.7143

Ma1 = 2.9
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Figure 5.1 – Schematic representation of the shock reflection problem.

And the top boundary condition:

ρ2 = 1.0
u2 = 2.9
v2 = 0.0
p2 = 0.7143

Ma2 = 2.3781

These boundary conditions are applied using a Dirichlet condition. The solid wall is
implemented using the LSFEM explained in Sec 2.2.1.1.

This problem divides the domain in three distinct regions with known analytical
solutions that can be derived from shock relations, the region of interest here is the right
most one (number 3 in Fig. 5.1), because the other two are defined by the boundary
conditions applied. The analytical solution of region 3 is:1

ρ3 = 2.6872
u3 = 2.4015
v3 = 0.0
p3 = 2.934

Ma3 = 1.9424
1 The formulas for the shock relations can be found in Anderson (2011) or Pritchard (2011)
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For this simulation a mesh of 60x20 quadrilateral elements is used (Fig. 5.2).

Figure 5.2 – Mesh with 60x20 quadrilateral elements used in the shock reflection problem.

The results for the density, pressure and Mach number can be visualized in Fig. 5.3.

Figure 5.3 – Solution obtained for Density, Pressure and Mach number in the shock
reflection problem

The results of the region 3 are analyzed in Tab. 5.1

Table 5.1 – Error analysis of the shock reflection problem

LSFEM Analytical Error(%)
Density (ρ) 2.7119 2.6872 0.9186
Pressure (p) 2.9749 2.934 1.3937

Mach number (Ma) 1.9314 1.9424 0.5661
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The next solutions are analyzed in a horizontal line in middle of the domain.

As explained in Sec. 2.2.1.1 the time-step dt acts as a numerical viscosity, this can
be seen in Fig. 5.4, where a higher time-step produces more shock smearing and higher
overshoot near the shock.

Figure 5.4 – Comparison of the Density solutions considering different time steps.

A mesh convergence study is performed with two more refined meshes with 90x30 and
120x40 elements. The results are displayed in Fig. 5.5.

Figure 5.5 – Comparison of the Density solutions considering different mesh refinements.

With the mesh refinement, the shock region gets more defined and sharp. The solution
after the oscillations are not affect significantly.
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Next, the inclusion of the term enforcing the stagnation temperature conservation
is analyzed and can be visualized in Fig. 5.6, where a simulation with and without the
stagnation temperature conservation are performed.

Figure 5.6 – Comparison of the Density solutions considering the stagnation temperature
conservation, without the additional term, and the analytical solution.

The formulation with the stagnation temperature term improved the results, and
predicts the shock closer to the analytical solution.

5.1.2 Normal Shock inside a nozzle

For the normal shock inside a nozzle, the reference used is the work of Arina (2004). The
schematic representation of the problem with the boundary conditions used is displayed in
Fig. 5.7.

Figure 5.7 – Convergent-divergent nozzle and boundary conditions

This problem consists in a convergent-divergent nozzle with the formation of a normal
shock in the divergent part. The minimal area of the nozzle is called throat and for this
problem is located at the middle of the geometry(x = 5).
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This geometry is generated using the formula given in Arina’s work:

A(x) = 2.5 + 3
(
x

5 − 1.5
)(

x

5

)2
for x ≤ 5

A(x) = 3.5− x

5

[
6− 4.5

(
x

5

)
+
(
x

5

)2
]

for x > 5
(5.2)

where A(x) is the area distribution along the length of the nozzle.

Using an one-dimensional analysis, it is possible to obtain the shock position at 7.0,
for the given boundary conditions.

The mesh used has 700 quadrilateral elements and is shown in Fig. 5.8.

Figure 5.8 – Mesh of 700 quadrilateral elements.

The results for the density, pressure, and Mach number can be visualized respectively
in Figs. 5.9, 5.10, 5.11.

Figure 5.9 – Density results for the Arina’s nozzle.

Even for the coarse mesh used, the LSFEM could predict the normal shock near the
x = 7.0, as obtained in Arina (2004).
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Figure 5.10 – Pressure results for the Arina’s nozzle.

Figure 5.11 – Mach results for the Arina’s nozzle.

There are some theoretical fundamentals of transonic compressible flows, that can
be observed analyzing the Mach number result inside the nozzle. First, the subsonic flow
Ma < 1 accelerates in the convergence part. Then the flow achieves the sonic velocity
(Ma = 1) at the throat and continues to accelerate in the divergent part, due to the area
expansion. Finally, after the shock, the flow returns to the subsonic velocity. This is an
indicative that the compressible solver implemented using the LSFEM is able to grasp
the fundamental physics of the problem, for the hypothesis considered, such as a perfect,
inviscid fluid.
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Another important aspect that needs attention is the stagnation temperature, for
this problem it should be constant in the entire domain. The result for the Stagnation
Temperature is displayed in Fig. 5.12.

Figure 5.12 – Stagnation temperature results for the Arina’s nozzle.

An oscillation of the stagnation temperature in the vicinity of the shock is observed.
The relative error can be visualized in Fig. 5.13, where the maximum error of 1.3% occurred
only in the shock region and is not significant.

Figure 5.13 – Stagnation temperature error results for the Arina’s nozzle.

For this problem the Stagnation Pressure should present two flat levels or plateaus
with different values before and after the shock. This behavior can be observed in Fig 5.14.
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Figure 5.14 – Stagnation pressure results for the Arina’s nozzle.

Next, a mesh convergence test with different refinement levels is performed. The
number of elements in each mesh is summarized in Tab. 5.2, and the results of the Mach
number for all meshes are presented in Fig. 5.15.

Table 5.2 – Number of elements of each mesh used in the mesh convergence test

n elements
1 700
2 2800
3 6300
4 11200

Fig. 5.16 displays the Mach results closer the shock region. The refinement of the
meshes increased the sharpness of the shock, and approximated the shock to the position
predicted by Arina (x = 7.0).

The influence of the stagnation temperature term added to LSFEM is observed in Fig.
5.17. These results were obtained using the most refined mesh n4.

It is clear that the LSFEM with the inclusion of the stagnation temperature term
achieved better results. Without this term the shock position is misplaced upstream and
the stagnation temperature is not conserved downstream the shock.
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Figure 5.15 – Mach number results for four mesh with different refinement levels.

Figure 5.16 – Detail of shock position for different refinement levels

5.1.3 Comparison with consolidated CFD softwares

The Euler LSFEM implemented in FEniCS is compared with three CFD programs
that uses different numerical schemes to solve compressible fluid problems. Next a concise
explanation about each program tested is presented:

FLUENT2: A commercial package that uses the Finite Volume Method and is widely
used for industrial applications.
2 <www.ansys.com/products/fluids/ansys-fluent>

www.ansys.com/products/fluids/ansys-fluent
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Figure 5.17 – Comparison of the influence of the stagnation temperature in the LSFEM
formulation.

SU23: Stanford open-source FVM designed specifically for compressible fluid flow problems
and shape optimization problems.

Nektar++4: High order FEM framework with Discontinuous Galerkin elements.

The same Arina problem is used for this comparison, all computer simulations are
performed using the same mesh with the same nodes locations, and the results show that
all software reach the same solution for all variables analyzed. Only the Mach number
results are displayed in Fig. 5.18, for the sake of simplicity.

Figure 5.18 – Comparison of Mach number for different software

3 <https://su2code.github.io/>
4 <www.nektar.info>

https://su2code.github.io/
www.nektar.info
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5.2 Topology Optimization

This section shows the results of the proposed methodology applied to a supersonic
inviscid fluid considering as initial guess the bidimensional convergent–divergent nozzle of
the Arina’s work in order to have the presence of a normal shock in the first optimization
iteration. A volume restriction is used to keep the volume constant.

5.2.1 Optimization Loop

The first optimization iteration is shown in details in a coarse mesh resolution, just
to clarify the method developed. The optimization loop used is shown again and can be
visualized in Fig. 5.19

Figure 5.19 – Optimization loop.

The main meshes used are displayed in Fig. 5.20. The top mesh (a) is where the
forward and adjoint models are solved, the middle mesh (b) is where the optimization is
performed, and the bottom mesh (c) is used for the boundary identification.
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Figure 5.20 – Different meshes used in the optimization iteration

The inlet and outlet regions are not considered in the optimization step to ensure that
these regions does not change their sizes, reason why the optimization mesh (b) in Fig.
5.20 is shorter.

The sensitivities are calculated in the first mesh (a) and interpolated to the optimization
mesh (b) (Fig. 5.21).

Figure 5.21 – Sensitivity interpolation between meshes

After the optimization step, the new design variables are calculated in the middle
mesh (b) and interpolated to the bottom mesh (c).

The left part of Fig 5.23 shows the region where the optimization altered the design in
the optimization mesh, and the right part shows the effect of the boundary identification
and boundary smoothing.

The final step of the optimization loop is the mesh optimization and is displayed in
Fig. 5.24. The optimized mesh has more regular elements that improves the convergence
of the forward model.
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Figure 5.22 – Optimization interpolation between meshes

Figure 5.23 – Detail of the inlet region after one optimization step

Figure 5.24 – Effect of the mesh optimization

The proposed optimization loop is implemented with three different objective functions:
the minimization of Pressure, the maximization of the Mach number, and the minimization
of the Temperature.

5.2.2 Minimization of the Pressure

The first optimization performed is the minimization of the pressure inside the nozzle
with:

Fobj =
∫
Ω

p2dx (5.3)

Which generated the following optimized geometry (Fig. 5.25):
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Figure 5.25 – Optimization result obtained from the minimization of the pressure inside
the nozzle, the green region is the initial guess

A symmetry boundary condition is used at the bottom plane, and therefore the
optimized geometry can be interpret as shown in Fig. 5.26. This shows an inner body
inside the nozzle near the inlet.

Figure 5.26 – Geometry Optimization result obtained from the minimization of the pressure
inside the nozzle

The variables plots are shown in Fig. 5.27. For this case, successive shock reflections
happened inside the nozzle due to the oscillations in the boundary, probably caused by
the boundary smoothing operator associated with the coarse mesh used in this simulation.

The objective function altered from Fi = 2.66 to Ff = 2.44, which represents a
minimization of 8.08%.

5.2.3 Maximization of the Mach number

The next objective function implemented is the maximization of the Mach number, in
order to improve the velocity inside the nozzle.

Fobj = −
∫
Ω

Ma2dx (5.4)

Some of the results for this case fail to reach a stable solution, the optimization seems
to skip the local minimum and the flow inside the nozzle became subsonic as can be seem
in Fig. 5.28

However, one intermediate optimization step solution resulted in a nozzle with an
optimized geometry as can be seen in Fig. 5.29 with an improved Mach distribution inside
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the nozzle shown in Fig. 5.30.

The objective function altered from Fi = −3.31 to Ff = −4.13, which represents an
improvement of 24.92%.

The optimization changed the throat and violated the volume restriction for this case,
probably due to the successive interpolations between the meshes.

One manner to circumvent this problem is to restrict the throat variation considering
only the convergent part of the optimization mesh as can be seen in Fig. 5.31. However
the results did not showed any improvement (Fig. 5.32).

5.2.4 Minimization of the Temperature

The last objective function implemented is the minimization of the temperature inside
the nozzle.

Fobj =
∫
Ω

T 2dx (5.5)

The topology optimization result can be seen in Fig. 5.33.

During the optimization of this case the intermediate solutions presented holes and
disconnected islands as can be seen in Figs.5.34 and 5.35. Nevertheless the method
implemented is robust enough to deal with these geometric features.

The temperature and Mach distributions are presented respectively in Figs. 5.36 and
5.37.

The objective function of this case altered from Fi = 3.40 to Ff = 3.02, which
represents an improvement of 11.14%.

For this case, the optimization moved the throat and the normal shock upstream, with
a shorter convergent part and a long and almost flat divergent part.
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Figure 5.27 – Variables plot result obtained from the minimization of the pressure inside
the nozzle
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Figure 5.28 – Solution became subsonic and lost the shock wave

Figure 5.29 – Intermediate optimized geometry

Figure 5.30 – Intermediate optimized Mach number solution

Figure 5.31 – Using half of optimization mesh

Figure 5.32 – Mach distribution Using half of optimization mesh

Figure 5.33 – Topology Optimization result for the minimization of temperature
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Figure 5.34 – Intermediate optimization result with the presence of holes

Figure 5.35 – Intermediate optimization result with the presence of islands

Figure 5.36 – Temperature distribution of the optimization result

Figure 5.37 – Mach distribution of the optimization result
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6 CONCLUSIONS

The topology optimization of supersonic inviscid compressible fluid is performed in a
bidimensional convergent-divergent nozzle with different objective functions. The results
in Chapter 5 shows that the methodology is robust enough to deal with the presence of
shock waves, and generated optimized geometries for the objective functions implemented.

Regarding the forward model, the LSFEM applied to the non-conservative formulation
of the Euler Equations, with the addition of the stagnation temperature conservation term,
showed to predict the right shock position for the cases tested.

Decouple the optimization from the forward model showed to be a workaround strategy
to correct implement the suitable boundary conditions without any modifications to the
material model.

The successive interpolations between the different meshes and the boundary smoothing
operation can aid the optimization, at the cost of more parameters to tune.

6.1 Future Work

This thesis opened a range of questions that still require investigation and research:

– In regard to the material model, enforce the zero velocity at the solid region with the
addition of the Darcy term in the momentum equation is an inadequate method for the
compressible case, and therefore, the development of an inviscid compressible material
model is still needed.

– The full effects of the decoupling procedure implemented are not clear yet. The influence
of the successive interpolations between the meshes and the influence of the boundary
smoothing operation on the optimization needs to be evaluated.

– In theory, the methodology can be extended to investigate the viscosity effects and
consider the full compressible Navier-Stokes equations as well as to include turbulence
models in the formulation.

– The implementation the three dimensional case is not straight forward, due to the
boundary identification, the boundary smoothing and the mesh generation algorithms
used in this thesis.
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