• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.3.2013.tde-09072014-114247
Documento
Autor
Nome completo
Rafael Augusto Moreno Gonçalves
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2013
Orientador
Banca examinadora
Cozman, Fabio Gagliardi (Presidente)
Barretto, Marcos Ribeiro Pereira
Romero, Roseli Aparecida Francelin
Título em português
Um modelo matemático para inferência computacional de estado emocional a partir de detectores de expressões faciais.
Palavras-chave em português
Emoções
Filtros de Kalman
Inferência
Processamento de sinais
Tomada de decisão
Resumo em português
Este trabalho apresenta um modelo matemático para a inferência do estado emocional de um usuário ou interlocutor com base em suas expressões faciais. O modelo apresentado consiste em dois estágios básicos, responsáveis pelo tratamento de sinais e sua integração, respectivamente. No primeiro estágio, filtros de Kalman independentes são utilizados para o processamento paralelo dos sinais relativos às expressões faciais emocionais. O estágio de integração, por sua vez, aplica os sinais filtrados a um sistema no qual uma partícula desliza sobre uma superfície a qual representa os estados e transições emocionais. O estado emocional do interlocutor é inferido, quadro a quadro, por meio da inspeção da posição instantânea da partícula. Uma heurística de simulação-otimização baseada em recozimento simulado (simulated annealing), é introduzida a fim de automatizar o processo de ajuste dos parâmetros do modelo em conformidade com o algoritmo de detecção de expressões faciais escolhido. O modelo proposto foi validado utilizando-se um corpus contendo 51 vídeos. Os resultados são comparados à classificação realizada por um grupo de voluntários, correspondendo a esta em 92% dos casos.
Título em inglês
A mathematical model for computational inference of emotional state based on facial expressions' detectors.
Palavras-chave em inglês
Decision making
Emotions
Inference
Kalman filters
Signal processing
Resumo em inglês
This work presents a mathematical model for emotional state inference based solely on facial expressions. The presented model consists of two basic steps, which are responsible for signal processing and its integration, respectively. During the former, independent Kalman filters are employed for parallel processing of emotional facial expression related signals. The later step, integration, applies those filtered signals to a system where a massless particle slides along a surface representing the emotional states of interest and its transitions. The subjects emotional state is inferred from the particles instantaneous position at each frame. A simulation-optimization heuristic based on simulated annealing is introduced as for fully automatic parameter tuning technique, which allows for easily coupling between the proposed model and different facial expression detection algorithms. The proposed model is validated against 51 multimodal emotional videos. The results are compared to human-based classification and a 92% agreement rate is observed.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2014-07-15
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2020. Todos os direitos reservados.