• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
10.11606/T.3.2011.tde-11082011-125123
Documento
Autor
Nombre completo
Emiliano Gonçalves de Castro
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2011
Director
Tribunal
Tsuzuki, Marcos de Sales Guerra (Presidente)
Gonzalez Clua, Esteban Walter
Martins, Thiago de Castro
Takase, Fábio Kawaoka
Tori, Romero
Título en portugués
Proposta para previsão de evasão baseada em padrões de acesso de usuários em jogos online.
Palabras clave en portugués
Jogos eletrônicos
Previsão de evasão
Wavelets
Resumen en portugués
O mercado de jogos eletrônicos online tem crescido em ritmo acelerado nos últimos anos, particularmente a partir do surgimento do modelo de negócio baseado em serviços. Como consequência, as publicadoras destes jogos passaram a compartilhar problemas comuns na área de serviços, como a erosão do lucro causada pela evasão de usuários. Modelos preditivos têm sido utilizados no combate à evasão em mercados como os de telefonia móvel e de cartões de crédito, setores que detêm um grande volume de informações demográficas e econômicas a respeito dos seus consumidores. Já os publicadores de jogos muitas vezes só possuem o endereço eletrônico dos jogadores. O objetivo deste trabalho é propor um modelo de previsão de evasão com base exclusivamente nos padrões de acesso de usuários em jogos online, onde estes registros temporais são submetidos a um conjunto de operadores que analisam os dados no domínio do plano tempo-frequência, utilizando a Transformada Discreta de Wavelet. Sua principal contribuição está na proposta de parametrização dos dados de entrada para classificadores probabilísticos baseados no algoritmo k-Nearest Neighbors. Testados com dados reais de acessos de usuários ao longo de alguns meses em um jogo online, os classificadores foram avaliados com o uso de curvas ROC (Receiver Operating Characteristic) e de elevação. A abordagem proposta nesta tese, baseada na análise no domínio do plano tempo-frequência, apresentou resultados satisfatórios. Não apenas superiores se comparados com as abordagens no domínio do tempo ou da frequência, mas também comparáveis aos desempenhos encontrados por modelos com centenas de variáveis preditivas utilizados em outros mercados.
Título en inglés
Proposal for churn prediction based on online games users' access patterns.
Palabras clave en inglés
Churn prediction
Games
Wavelets
Resumen en inglés
The online gaming market has rapidly grown in recent years, particularly since the rise of the service-based business model. As a result, the publishers of these games have started to share usual problems from the services business, like the profit erosion caused by customer churn. Predictive models have been used to address the churn problem in the mobile phones and credit cards markets, where companies have a huge volume of demographic and economic data about their customers. While game publishers often have only their users email addresses. The goal of this study is to propose a model for churn prediction based solely on the online games users access patterns, where these time entries are fed into a set of operators that are able to analyze the data in the time-frequency plane domain, using the Discrete Wavelet Transform. Its main contribution is the input data parameterization proposed for the probabilistic classifiers based on the k-Nearest Neighbors algorithm. Tested with real data from an online game users access over a few months, the classifiers were evaluated using ROC (Receiver Operating Characteristic) and lift curves. The approach proposed in this thesis, based on the analysis of the time-frequency plane domain, has shown satisfactory results. Not only higher when compared with approaches based on both time or frequency domains, but also comparable to performances found on models with hundreds of predictive variables used in other markets.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2011-09-05
 
ADVERTENCIA: El material descrito abajo se refiere a los trabajos derivados de esta tesis o disertación. El contenido de estos documentos es responsabilidad del autor de la tesis o disertación.
  • Castro, E. G., and Tsuzuki, M. S. G. Swarm Intelligence applied in synthesis of hunting strategies in a three-dimensional environment [doi:10.1016/j.eswa.2007.02.031]. Expert Systems with Applications [online], 2008, vol. 34, p. 1995-2003.
  • Castro, E. G., and Tsuzuki, M. S. G. Designing Cooperation Strategy in a 3D Hunting Game Using Swarm Intelligence [doi:10.1109/ISDA.2007.56]. In Seventh International Conference on Intelligent Systems Design and Applications, Rio de Janeiro, 2007. Proceedings of the 7th International Conference on Intelligent Systems Design and Application.Los Alamitos, Estados Unidos : IEEE Computer Society Press, 2007.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.