• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.3.2009.tde-13072009-165912
Document
Auteur
Nom complet
Fabiano Rogério Corrêa
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2009
Directeur
Jury
Okamoto Junior, Jun (Président)
Campos, Mario Fernando Montenegro
Cozman, Fabio Gagliardi
Finger, Marcelo
Reali Costa, Anna Helena
Titre en portugais
Mapeamento semântico com aprendizado estatístico relacional para representação de conhecimento em robótica móvel.
Mots-clés en portugais
Modelos para processos estocásticos
Processamento de imagens
Robôs
Resumé en portugais
A maior parte dos mapas empregados em tarefas de navegação por robôs móveis representam apenas informações espaciais do ambiente. Outros tipos de informações, que poderiam ser obtidos dos sensores do robô e incorporados à representação, são desprezados. Hoje em dia é comum um robô móvel conter sensores de distância e um sistema de visão, o que permitiria a princípio usá-lo na realização de tarefas complexas e gerais de maneira autônoma, dada uma representação adequada e um meio de extrair diretamente dos sensores o conhecimento necessário. Uma representação possível nesse contexto consiste no acréscimo de informação semântica aos mapas métricos, como por exemplo a segmentação do ambiente seguida da rotulação de cada uma de suas partes. O presente trabalho propõe uma maneira de estruturar a informação espacial criando um mapa semântico do ambiente que representa, além de obstáculos, um vínculo entre estes e as imagens segmentadas correspondentes obtidas por um sistema de visão omnidirecional. A representação é implementada por uma descrição relacional do domínio, que quando instanciada gera um campo aleatório condicionado, onde são realizadas as inferências. Modelos que combinam probabilidade e lógica de primeira ordem são mais expressivos e adequados para estruturar informações espaciais em semânticas.
Titre en anglais
Semantic mapping with statistical relational learning for knowledge representation in mobile robotics.
Mots-clés en anglais
Environment mapping
Image segmentation
Mobile robotics
Probabilistic models
Statistical relational learning
Resumé en anglais
Most maps used in navigational tasks by mobile robots represent only environmental spatial information. Other kinds of information, that might be obtained from the sensors of the robot and incorporated in the representation, are negleted. Nowadays it is common for mobile robots to have distance sensors and a vision system, which could in principle be used to accomplish complex and general tasks in an autonomously manner, given an adequate representation and a way to extract directly from the sensors the necessary knowledge. A possible representation in this context consists of the addition of semantic information to metric maps, as for example the environment segmentation followed by an attribution of labels to them. This work proposes a way to structure the spatial information in order to create a semantic map representing, beyond obstacles, an anchoring between them and the correspondent segmented images obtained by an omnidirectional vision system. The representation is implemented by a domains relational description that, when instantiated, produces a conditional random field, which supports the inferences. Models that combine probability and firstorder logic are more expressive and adequate to structure spatial in semantic information.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
TeseRevisada.pdf (2.72 Mbytes)
Date de Publication
2009-08-14
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2020. Tous droits réservés.