• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.3.2011.tde-17082011-090935
Document
Author
Full name
José Eduardo Ochoa Luna
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2011
Supervisor
Committee
Cozman, Fabio Gagliardi (President)
Maruyama, Newton
Revoredo, Kate Cerqueira
Silva, José Reinaldo
Wassermann, Renata
Title in Portuguese
Lógicas probabilísticas com relações de independência: representação de conhecimento e aprendizado de máquina.
Keywords in Portuguese
Aprendizado de lógica de descrição
Incerteza
Lógica probabilística
programação em lógica indutiva
Redes Bayesianas relacionais
Abstract in Portuguese
A combinação de lógica e probabilidade (lógicas probabilísticas) tem sido um tópico bastante estudado nas últimas décadas. A maioria de propostas para estes formalismos pressupõem que tanto as sentenças lógicas como as probabilidades sejam especificadas por especialistas. Entretanto, a crescente disponibilidade de dados relacionais sugere o uso de técnicas de aprendizado de máquina para produzir sentenças lógicas e estimar probabilidades. Este trabalho apresenta contribuições em termos de representação de conhecimento e aprendizado. Primeiro, uma linguagem lógica probabilística de primeira ordem é proposta. Em seguida, três algoritmos de aprendizado de lógica de descrição probabilística crALC são apresentados: um algoritmo probabilístico com ênfase na indução de sentenças baseada em classificadores Noisy-OR; um algoritmo que foca na indução de inclusões probabilísticas (componente probabilístico de crALC); um algoritmo de natureza probabilística que induz sentenças lógicas ou inclusões probabilísticas. As propostas de aprendizado são avaliadas em termos de acurácia em duas tarefas: no aprendizado de lógicas de descrição e no aprendizado de terminologias probabilísticas em crALC. Adicionalmente, são discutidas aplicações destes algoritmos em processos de recuperação de informação: duas abordagens para extensão semântica de consultas na Web usando ontologias probabilísticas são discutidas.
Title in English
Probabilistic logics with independence relationships: knowledge representation and machine learning.
Keywords in English
Description logic learning
Inductive logic programming
Probabilistic logic
Relational Bayesian networks
Uncertainty
Abstract in English
The combination of logic and probabilities (probabilistic logics) is a topic that has been extensively explored in past decades. The majority of work in probabilistic logics assumes that both logical sentences and probabilities are specified by experts. As relational data is increasingly available, machine learning algorithms have been used to induce both logical sentences and probabilities. This work contributes in knowledge representation and learning. First, a rst-order probabilistic logic is proposed. Then, three algorithms for learning probabilistic description logic crALC are given: a probabilistic algorithm focused on learning logical sentences and based on Noisy-OR classiers; an algorithm that aims at learning probabilistic inclusions (probabilistic component of crALC) and; an algorithm that using a probabilistic setting, induces either logical sentences or probabilistic inclusions. Evaluation of these proposals has been performed in two situations: by measuring learning accuracy of both description logics and probabilistic terminologies. In addition, these learning algorithms have been applied to information retrieval processes: two approaches for semantic query extension through probabilistic ontologies are discussed.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2011-09-08
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2020. All rights reserved.