• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.3.2011.tde-17082011-090935
Document
Auteur
Nom complet
José Eduardo Ochoa Luna
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2011
Directeur
Jury
Cozman, Fabio Gagliardi (Président)
Maruyama, Newton
Revoredo, Kate Cerqueira
Silva, José Reinaldo
Wassermann, Renata
Titre en portugais
Lógicas probabilísticas com relações de independência: representação de conhecimento e aprendizado de máquina.
Mots-clés en portugais
Aprendizado de lógica de descrição
Incerteza
Lógica probabilística
programação em lógica indutiva
Redes Bayesianas relacionais
Resumé en portugais
A combinação de lógica e probabilidade (lógicas probabilísticas) tem sido um tópico bastante estudado nas últimas décadas. A maioria de propostas para estes formalismos pressupõem que tanto as sentenças lógicas como as probabilidades sejam especificadas por especialistas. Entretanto, a crescente disponibilidade de dados relacionais sugere o uso de técnicas de aprendizado de máquina para produzir sentenças lógicas e estimar probabilidades. Este trabalho apresenta contribuições em termos de representação de conhecimento e aprendizado. Primeiro, uma linguagem lógica probabilística de primeira ordem é proposta. Em seguida, três algoritmos de aprendizado de lógica de descrição probabilística crALC são apresentados: um algoritmo probabilístico com ênfase na indução de sentenças baseada em classificadores Noisy-OR; um algoritmo que foca na indução de inclusões probabilísticas (componente probabilístico de crALC); um algoritmo de natureza probabilística que induz sentenças lógicas ou inclusões probabilísticas. As propostas de aprendizado são avaliadas em termos de acurácia em duas tarefas: no aprendizado de lógicas de descrição e no aprendizado de terminologias probabilísticas em crALC. Adicionalmente, são discutidas aplicações destes algoritmos em processos de recuperação de informação: duas abordagens para extensão semântica de consultas na Web usando ontologias probabilísticas são discutidas.
Titre en anglais
Probabilistic logics with independence relationships: knowledge representation and machine learning.
Mots-clés en anglais
Description logic learning
Inductive logic programming
Probabilistic logic
Relational Bayesian networks
Uncertainty
Resumé en anglais
The combination of logic and probabilities (probabilistic logics) is a topic that has been extensively explored in past decades. The majority of work in probabilistic logics assumes that both logical sentences and probabilities are specified by experts. As relational data is increasingly available, machine learning algorithms have been used to induce both logical sentences and probabilities. This work contributes in knowledge representation and learning. First, a rst-order probabilistic logic is proposed. Then, three algorithms for learning probabilistic description logic crALC are given: a probabilistic algorithm focused on learning logical sentences and based on Noisy-OR classiers; an algorithm that aims at learning probabilistic inclusions (probabilistic component of crALC) and; an algorithm that using a probabilistic setting, induces either logical sentences or probabilistic inclusions. Evaluation of these proposals has been performed in two situations: by measuring learning accuracy of both description logics and probabilistic terminologies. In addition, these learning algorithms have been applied to information retrieval processes: two approaches for semantic query extension through probabilistic ontologies are discussed.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2011-09-08
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2020. Tous droits réservés.