• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
Documento
Autor
Nombre completo
Mônica Goes Eboli
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2010
Director
Tribunal
Cozman, Fabio Gagliardi (Presidente)
Barros, Leliane Nunes de
Miyagi, Paulo Eigi
Título en portugués
Transformação de redes de Petri coloridas em processos de decisão markovianos com probabilidades imprecisas.
Palabras clave en portugués
Processo de decisão markoviano fatorado
Processos de decisão markovianos
Processos de decisão markovianos com probabilidades imprecisas
Rede de Petri colorida
Resumen en portugués
Este trabalho foi motivado pela necessidade de considerar comportamento estocástico durante o planejamento da produção de sistemas de manufatura, ou seja, o que produzir e em que ordem. Estes sistemas possuem um comportamento estocástico geralmente não considerado no planejamento da produção. O principal objetivo deste trabalho foi obter um método que modelasse sistemas de manufatura e representasse seu comportamento estocástico durante o planejamento de produção destes sistemas. Como os métodos que eram ideais para planejamento não forneciam a modelagem adequada dos sistemas, e os com modelagem adequada não forneciam a capacidade de planejamento necessária, decidiu-se combinar dois métodos para atingir o objetivo desejado. Decidiu-se modelar os sistemas em rede de Petri e convertê-los em processos de decisão markovianos, e então realizar o planejamento com o ultimo. Para que fosse possível modelar as probabilidades envolvidas nos processos, foi proposto um tipo especial de rede de Petri, nomeada rede de Petri fatorada. Utilizando este tipo de rede de Petri, foi desenvolvido o método de conversão em processos de decisão markovianos. A conversão ocorreu com sucesso, conforme testes que mostraram que planos podem ser produzidos utilizando-se algoritmos de ponta para processos de decisão markovianos.
Título en inglés
Conversion from colored Petri nets into Markov decision processes with imprecise probabilities.
Palabras clave en inglés
Colored Petri nets
Factored Markov decision process
Markov decision process
Markov decision process with imprecise probabilities
Resumen en inglés
The present work was motivated by the need to consider stochastic behavior when planning the production mix in a manufacturing system. These systems are exposed to stochastic behavior that is usually not considered during production planning. The main goal of this work was to obtain a method to model manufacturing systems and to represent their stochastic behavior when planning the production for these systems. Because the methods that were suitable for planning were not adequate for modeling the systems and vice-versa, two methods were combined to achieve the main goal. It was decided to model the systems in Petri nets and to convert them into Markov decision processes, to do the planning with the latter. In order to represent probabilities in the process, a special type of Petri nets, named Factored Petri nets, were proposed. Using this kind of Petri nets, a conversion method into Markov decision processes was developed. The conversion is successful as tests showed that plans can be produced within seconds using state-of-art algorithms for Markov decision processes.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2010-09-01
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2020. Todos los derechos reservados.