• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.3.2012.tde-26072013-121613
Document
Auteur
Nom complet
Daniel Igor Mendoza Quiñones
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2012
Directeur
Jury
Okamoto Junior, Jun (Président)
Margi, Cíntia Borges
Reali Costa, Anna Helena
Stern, Julio Michael
Ueyama, Jo
Titre en portugais
Algoritmo colaborativo baseado em fatoração multifrontal QR para estimação de trajetória de alvos com redes de sensores sem fio.
Mots-clés en portugais
Algoritmo
Sensoriamento remoto
Wireless
Resumé en portugais
As redes de sensores sem fio (RSSF) são uma tecnologia que ganhou muita importância nos últimos anos. Dentro das diversas aplicações para essas redes, o rastreamento de alvos é considerado essencial. Nessa aplicação, a RSSF deve determinar, de forma colaborativa, a trajetória de um ou mais alvos que se encontrem dentro de sua área de cobertura. O presente trabalho apresenta um algoritmo colaborativo baseado na fatoração multifrontal QR para estimação de trajetórias de alvos com RSSF. A solução proposta está inserida no âmbito da estimação por lotes, na qual os dados são coletados pelos sensores durante a aplicação e só no final é realizada a estimativa da trajetória do alvo. Uma vez coletados os dados, o problema pode ser modelado como um sistema de equações sobredeterminado Ax = b cuja característica principal é ser esparso. A solução desse sistema é dada mediante o método de mínimos quadrados, no qual o sistema é transformado num sistema triangular superior, que é solucionado mediante substituição inversa. A fatoração multifrontal QR é ideal neste contexto devido à natureza esparsa da matriz principal do sistema. A fatoração multifrontal QR utiliza um grafo denominado árvore de eliminação para dividir o processo de fatoração de uma matriz esparsa em fatorações densas de pequenas submatrizes denominadas matrizes frontais. Mapeando a árvore de eliminação na RSSF consegue-se que essas fatorações densas sejam executadas pelos nós sensoriais que detectaram o alvo durante seu trajeto pela rede. Dessa maneira, o algoritmo consegue realizar a fatoração da matriz principal do problema de forma colaborativa, dividindo essa tarefa em pequenas tarefas que os nós de sensoriais da rede possam realizar.
Titre en anglais
Collaborative algorithm based on multifrontal QR factorization for trajectory estimation with wireless sensor networks.
Mots-clés en anglais
Distributed estimation
Wireless sensor networks
Resumé en anglais
Wireless Sensor Networks (WSN) is a technology that have gained a lot of importance in the last few years. From all the possible applications for WSN, target tracking is considered essential. In this application, the WSN has to determine, in a collaborative way, the trajectory of one or more targets that are within the sensing area of the network. The aim of this document is to present a collaborative algorithm based on multifrontal QR factorization for the solution of the target trajectory estimation problem with WSN. This algorithm uses a batch estimation approach, which assumes that all sensing data are available before the estimation of the target trajectory. If all the observations of the target trajectory is available, the problem can be modeled as an overdetermined system of equations Ax = b where A is sparse. This system of equations is solved by least squares method. The multifrontal QR factorization uses a tree graph called elimination tree to reorganize the overall factorization of a sparse matrix into a sequence of partial factorizations of dense smaller matrices named frontal matrices. By mapping the elimination tree into the WSN, the sensor nodes that observed the target can factorize the frontal matrices. In this manner, the WSN factorizes the matrix A in a collaborative way, dividing the work in small tasks that the sensor nodes could execute.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2013-07-30
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2020. Tous droits réservés.