• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.3.2014.tde-26082015-153843
Document
Author
Full name
Persing Junior Cárdenas Vivanco
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2014
Supervisor
Committee
Barros, Ettore Apolonio de (President)
Becker, Marcelo
Lima, Raul Gonzalez
Title in Portuguese
Desenvolvimento do sistema de navegação de um AUV baseado em filtro estendido de Kalman.
Keywords in Portuguese
Filtro estendido de Kalman
Fusão sensorial
Navegação em tempo real
Sistema de navegação
Veículo Submarino Autônomo
Abstract in Portuguese
Neste trabalho, é abordado o problema da navegação de um veículo submarino autônomo. São propostos estimadores de estado que realizam fusão sensorial baseada em Filtro Estendido de Kalman. Esses estimadores de estado empregam as medidas dos seguintes sensores: uma unidade de medição inercial, um sensor de velocidade por efeito Doppler, um profundímetro e uma bússola. Primeiramente foi projetado um estimador de estados para o AUV Pirajuba, onde a estimação da orientação do veículo é realizada de forma desacoplada à estimação da velocidade e posição do veículo. Em seguida, foram desenvolvidos dois estimadores de estado que estimam orientação, velocidade e profundidade do veículo de forma acoplada. Para o projeto e testes dos estimadores mencionados anteriormente, foi empregada uma base de dados contendo um registro de medições reais dos sensores do veículo submarino autônomo Pirajuba, durante testes de campo no lago de uma represa. Os resultados dos testes validaram os estimadores de estado propostos nesse trabalho. Por último, foi realizada uma análise comparativa dos estimadores de estado mencionados.
Title in English
Development of the navigation system of an AUV based in extended Kalman filter.
Keywords in English
Autonomous Underwater Vehicle
Extended Kalman filter
Navigation system
Real time navigation
Sensorial fusion
Abstract in English
This work concerns the navigation problem of an autonomous underwater vehicle. Some state estimators using sensorial fusion were proposed, the sensorial fusion is based in an Extended Kalman Filter. The state estimators are fed by measurements of the following sensors: an inertial measurements unit, a velocity sensor by Doppler effect, a depthmeter and a compass. In the first version of the EKF algorithm, the vehicles attitude estimation was decoupled from the vehicle velocity estimation. The second version considers the coupling between linear velocity and the attitude in the vehicle reference frame, taking the velocity reading for correction of the filter estimates. Finally, in the third version, the coupling between position and attitude is also considered, but the correction of the filters estimates is based on the depth readings. Experiments for supporting the design and validation of the navigation algorithms were based on a database constructed with motion measurements during the AUV maneuvers in the north coast of Sao Paulo, and the Guarapiranga lake in the São Paulo city. This work presents a comparative analysis of those algorithms.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2015-09-02
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.