• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.3.2014.tde-26082015-153843
Documento
Autor
Nombre completo
Persing Junior Cárdenas Vivanco
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2014
Director
Tribunal
Barros, Ettore Apolonio de (Presidente)
Becker, Marcelo
Lima, Raul Gonzalez
Título en portugués
Desenvolvimento do sistema de navegação de um AUV baseado em filtro estendido de Kalman.
Palabras clave en portugués
Filtro estendido de Kalman
Fusão sensorial
Navegação em tempo real
Sistema de navegação
Veículo Submarino Autônomo
Resumen en portugués
Neste trabalho, é abordado o problema da navegação de um veículo submarino autônomo. São propostos estimadores de estado que realizam fusão sensorial baseada em Filtro Estendido de Kalman. Esses estimadores de estado empregam as medidas dos seguintes sensores: uma unidade de medição inercial, um sensor de velocidade por efeito Doppler, um profundímetro e uma bússola. Primeiramente foi projetado um estimador de estados para o AUV Pirajuba, onde a estimação da orientação do veículo é realizada de forma desacoplada à estimação da velocidade e posição do veículo. Em seguida, foram desenvolvidos dois estimadores de estado que estimam orientação, velocidade e profundidade do veículo de forma acoplada. Para o projeto e testes dos estimadores mencionados anteriormente, foi empregada uma base de dados contendo um registro de medições reais dos sensores do veículo submarino autônomo Pirajuba, durante testes de campo no lago de uma represa. Os resultados dos testes validaram os estimadores de estado propostos nesse trabalho. Por último, foi realizada uma análise comparativa dos estimadores de estado mencionados.
Título en inglés
Development of the navigation system of an AUV based in extended Kalman filter.
Palabras clave en inglés
Autonomous Underwater Vehicle
Extended Kalman filter
Navigation system
Real time navigation
Sensorial fusion
Resumen en inglés
This work concerns the navigation problem of an autonomous underwater vehicle. Some state estimators using sensorial fusion were proposed, the sensorial fusion is based in an Extended Kalman Filter. The state estimators are fed by measurements of the following sensors: an inertial measurements unit, a velocity sensor by Doppler effect, a depthmeter and a compass. In the first version of the EKF algorithm, the vehicles attitude estimation was decoupled from the vehicle velocity estimation. The second version considers the coupling between linear velocity and the attitude in the vehicle reference frame, taking the velocity reading for correction of the filter estimates. Finally, in the third version, the coupling between position and attitude is also considered, but the correction of the filters estimates is based on the depth readings. Experiments for supporting the design and validation of the navigation algorithms were based on a database constructed with motion measurements during the AUV maneuvers in the north coast of Sao Paulo, and the Guarapiranga lake in the São Paulo city. This work presents a comparative analysis of those algorithms.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2015-09-02
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.