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     Resumo 

Mais de um bilhão de indivíduos no mundo convivem com alguma forma de deficiência. Em 

2010, aproximadamente 3,7 milhões de brasileiros apresentavam graus severos de deficiência 

motora que ocorrem por traumas físicos ou doenças tais como a esclerose lateral amiotrófica 

(ELA). ELA e outras doenças ou traumas físicos podem resultar em paralisias motoras severas 

com exceção dos movimentos dos olhos, que motivam o desenvolvimento de tecnologias 

assistivas controladas pelos olhos. A eletrooculografia (EOG) é uma técnica que mede 

biopotenciais gerados pelos movimentos oculares e que já foi aplicada no controle de cadeiras 

de rodas motorizadas, controle de drones e interfaces homem-máquina para fins de 

comunicação. Esse estudo tem como objetivo desenvolver um interface home-máquina baseada 

em eletro-oculografia visando oferecer um método de comunicação conveniente, eficiente e 

prático para pessoas com mobilidade reduzida e impossibilidade da fala. Um estudo piloto foi 

desenvolvido a partir de um sistema analógico de aquisição de EOG para detectar movimentos 

horizontais dos olhos e traduzi-los em respostas a perguntas pré-programadas mostradas em 

uma interface gráfica. Os resultados desse estudo inicial e discussões com os pesquisadores do 

Instituto de Reabilitação Lucy Montor sugeriram a viabilidade de se desenvolver um sistema 

de comunicação baseado em EOG acessível. Foi desenvolvido um sistema de comunicação 

EOG de canal único que usa apenas piscadas de olhos, em sincronia com o flash do botão alvo, 

para controlar uma interface gráfica de usuário (GUI). A GUI foi projetada com opções para 

informar suas necessidades e um teclado virtual para escrita. O software desenvolvido neste 

estudo executa a interface e detecta quando o usuário pisca. Dois testes online diferentes foram 

realizados com participantes que não apresentavam deficiência motora. Os resultados obtidos 

mostram que o sistema desenvolvido tem exatidão de 89,38% para detecção de piscar de olhos, 

89,91% para uso do teclado virtual e 8,26 s de tempo de resposta, demonstrando o bom 

desempenho do sistema projetado. Resultados similares foram obtidos em quatro participantes 

com deficiência atendidos no Instituto Lucy Montoro com acurácia de 85,62% na detecção do 

piscar de olhos, 91,97% no uso do teclado virtual e tempo de resposta de 9,79 s. Os resultados 

mostraram que a velocidade máxima de interação dependente do intervalo entre flashes e que 

o sistema requer treinamento e adaptação do usuário. O sistema desenvolvido tem menor 

complexidade de processamento e consumo de energia comparado a outros descritos na 

literatura e pode ser utilizado como plataforma para o desenvolvimento de sistemas portáteis. 
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Abstract 

Over one billion people worldwide deal with a type of disability. In 2010, approximately 3.7 

million Brazilians showed severe motor impairments from physical traumas or diseases such as 

amyotrophic lateral sclerosis (ALS). ALS and other diseases or physical traumas can cause 

severe impairment excluding the movements of the eyes, which motivates the development of 

assistive technologies controlled only by eye movements. Electrooculography (EOG) measures 

biopotential signals generated by eye movements and has been used for wheelchair control, 

drone control, and human-machine interfaces for communication purposes. This study aims to 

develop a human-machine interface based on electrooculography to provide an efficient, 

practical, and convenient communication method for people with mobility and speech 

impairments. A pilot study was conducted to develop an analog EOG communication interface 

based on the detection of horizontal movements of the eyes and translate them into answers to 

pre-programmed questions shown on a graphical interface screen. The initial results and 

discussions with researchers of the Instituto de Reabilitação Lucy Montoro (IRLM) suggested 

the feasibility of creating an affordable EOG communication device. A single-channel EOG 

communication system was developed that uses only eye blinks, in synchrony with the flash of 

the target button, to control a graphical interface. A graphical user interface (GUI) was designed 

with options for users to inform their needs and a virtual keyboard for writing. The software 

developed in this study runs the interface and detects when the user blinks. Two different online 

tests were conducted with participants with no disabilities, and the results showed 89.38% 

accuracy of blink detection, 89.91% virtual keyboard use, and 8.26 s of response time (RT), 

demonstrating a good performance of the system designed. The system was also evaluated at 

the Lucy Montoro Institute. Four participants with disabilities were included and the results 

were similar regarding accuracy in blink detection (85.62%), use of virtual keyboard (91.97%), 

and response time (9.79 s). Overall, the results show that the speed of the interactions depends 

on the interval between the flashes, and the system requires the user’s training and adaptation. 

The system designed has lower processing complexity and power requirements compared to 

previous studies reported in the literature and may be further developed into a wearable EOG 

acquisition system. 
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1. INTRODUCTION 

1.1 Contextualization 

More than one billion people around the world are affected by some type of disability, with 

200 million experiencing significant functional limitations (WORLD HEALTH 

ORGANISATION, 2011). In Brazil, approximately 3.7 million people were reported to have 

severe motor impairments in 2010 (INSTITUTO BRASILEIRO DE GEOGRAFIA E 

ESTATÍSTICA - IBGE, 2010); these impairments can impact a person's ability to interact with 

the world, even with perfect cognitive and social skills (USAKLI; GURKAN, 2010).  

Access to technology has been enshrined in the Brazilian Constitution. In March 2007, 

Brazil signed the United Nations Convention on Rights of Persons with Disabilities (CRPD) in 

New York, which was later enacted through Decree 6,949 in August 2009. Article 9 of the 

CRPD requires that States Parties take appropriate measures to promote the development and 

distribution of accessible technologies for persons with disabilities. Following the CRPD, 

Federal Law 13.146 was enacted in July 2015 (PERUZZO; FLORES, 2021).  

     Motor neuron diseases (MND), including amyotrophic lateral sclerosis (ALS), are 

progressive neurodegenerative disorders that result in the loss of body functions such as speech 

and breathing. Degeneration caused by this disease primarily affects the cells of the nervous 

system, except for the eye muscles, which are typically the last to be affected. In addition to 

ALS, other types of diseases or physical trauma can cause severe impairments, except for eye 

movements and mental activity, such as the locked-in syndrome. This motivates the 

development of assistive technologies that are only controlled by eye movements (USAKLI et 

al., 2018; USAKLI; GURKAN, 2010). These assistive technologies can improve people’s 

functional skills and provide better life prospects by improving access to health, education, 

transport, and the labor market (WORLD HEALTH ORGANISATION, 2011). 

The methods currently employed to track eye movements encompass a range of techniques, 

including the scleral search coil method, infrared oculography, electrooculography (EOG), and 

video-oculography (VOG) (CHANG, 2019). Among these, EOG and VOG stand out for their 

suitability for assistive technologies (HORI; SAKANO; SAITOH, 2006; SINGH; SINGH, 

2012). VOG presents certain performance challenges related to camera quality and ambient 

light, requiring more advanced signal processing, EOG offers a robust technique for measuring 
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the corneal-retinal potential (MALMIVUO; PLONSEY, 1995; SINGH; SINGH, 2012). This 

steady spontaneous bioelectric signal, ranging from 0.4 to 1 mV, can be harnessed to detect eye 

movements and blinks (MALMIVUO; PLONSEY, 1995). 

EOG-based systems have been shown to be effective in providing support to people with 

mobility impairments. For instance, EOG has been used to control a wheelchair (BAREA et al., 

2002) and navigate virtual interfaces, including keyboards and menus (USAKLI; GURKAN, 

2010). Recent advances, such as those described by Li and He's single EOG channel system 

(HE; LI, 2017), have enabled faster and more efficient communication methods, boasting 

accuracy and speed. 

Moreover, the integration of EOG with other control signals, such as steady-state visual-

evoked potentials (SSVEP) (DURAISAMY; REDDY, 2021; SARAVANAKUMAR; 

RAMASUBBA REDDY, 2020) or P300 event-related potentials (ERP) (POSTELNICU; 

TALABA, 2013; YU et al., 2019), can enhance the accuracy and information transfer rates in 

hybrid brain-computer interfaces (HBCIs). Recent studies have also focused on developing 

lightweight, flexible, and wireless EOG systems tailored for real-life usage (DEBBARMA; 

BHADRA, 2021, 2022), further expanding the accessibility and comfort of assistive 

technologies. 

In light of these advancements and challenges, research in the field of EOG-based assistive 

technologies remains important. By addressing technical limitations and exploring new 

applications, researchers can further empower individuals with disabilities and promote their 

participation in various aspects of life. 

1.2 Objectives 

The objective of this research is to develop an efficient and convenient communication 

method for people with mobility and speech impairments, using electrooculography (EOG) 

signals to control a graphical user interface (GUI). 

1.2.1 Specific Objectives: 

a) To review the EOG literature and its applications in communication interfaces; 

b) To develop an EOG system to detect and process EOG blink signals; 

c) To develop a GUI that can be accurately controlled by EOG blink signals; 

d) To evaluate the performance and user experience of the EOG system with people with 

and without disabilities.  
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2. LITERATURE REVIEW 

Different methods have been studied to improve the interactions of people with disabilities, 

such as those affecting movement and speech. Among these, eye movements have emerged as 

an option for users to communicate with their smartphones and laptops. This section reviews 

the anatomy and physiology of the human eyes and eye movement detection techniques, 

focusing on Electrooculography and its applications. 

2.1 Anatomy and Physiology of the Human Eye 

The human eye is an extension of the brain, which is protected by facial tissues and bones.  

The eyeball is spherical (Figure 1), and its outer layer, the cornea, acts as a protective barrier. 

Light enters the eye through an aperture called the pupil, which is adjusted by a thin muscular 

tissue called the iris, acting as a diaphragm. The iris can contract and expand the pupil to adjust 

the amount of light entering the eye. After entering the eyes through the pupil, the light passes 

through the crystalline lens, which, together with the cornea, adjusts the light rays to form the 

optical image on the retina, centered on the foveal region, where the visual accuracy is the 

highest. The retina then transforms the received light waves into electrical signals that are 

transferred to the brain (visual cortex) through the optic nerve (IRSCH; GUYTON, 2009; 

LUKANDER, 2003). 

Figure 1- The eye structure 

 

Source: Author. 
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The aqueous humor (Figure 1) fills the chamber that is located between the cornea and 

iris, as well as in the posterior chamber, which is situated between the iris and the crystalline 

lens. It works with the vitreous humor to fill the cavity between the crystalline lens and the 

retina, maintain intraocular pressure, preserve the shape of the eyeball, and supply nutrients and 

oxygen. The sclera, which is the external fibrous layer surrounding the eyeball, is commonly 

referred to as the "white" of the eye. Finally, the layer situated between the retina and sclera is 

called the choroid, comprising small arteries and veins forming a dense capillary plexus 

(IRSCH; GUYTON, 2009). 

2.2 Eye Muscles 

Three pairs of muscles are responsible for controlling eye movements (Figure 2): the 

superior and inferior oblique, inferior and superior rectus, and lateral and medial rectus. They 

allow the eyes to move from side to side, up and down, and rotate, controlling the horizontal 

and vertical motion of the eye and the gaze direction (GUYTON; HALL, 2011; LUKANDER, 

2003). 

Figure 2 - The muscles of the eye 

 

Source: Guyton and Hall (2011). 
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Figure 3 shows that these three sets of muscles provide six degrees of freedom for the 

eye. They are also reciprocally innervated, which means that when one pair contracts, the other 

relaxes (GUYTON; HALL, 2011). The medial and lateral rectus muscles contract to move the 

eyes toward or away from the nose, the superior and inferior rectus contract to move the eyes 

upwards and downwards, and the oblique muscles rotate, controlling the intorsion and extorsion 

of the eye (LUKANDER, 2003). 

 

Figure 3 - Eye degrees of freedom 

 

Source: Lukander (2003). 

2.3 Eye Movements 

 There are five main types of eye movements: saccades, fixation, pursuit, vergence, 

nystagmus, and vestibular-ocular system movements (GUYTON; HALL, 2011; LUKANDER, 

2003). Saccadic and smooth pursuit are the movements used for human-machine interfaces, yet 

other types of eye movements should be understood to classify them as artifacts and remove 

them from electronic readings (CHANG, 2019). 
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2.3.1 Saccades 

 Saccades are either voluntary or reflexive eye movements that abruptly change the 

direction of gaze to a new target. They can occur very rapidly and can reach 40,000 º/s2 of peak 

accelerations and 400-600 º/s of peak velocity, which vary with the saccade amplitude but are 

significantly superior in speed when compared to other resources of human interactions 

(LUKANDER, 2003; YOUNG; SHEENA, 1975).  

 Figure 4 illustrates the time response of the saccadic movement. After a change in the 

target position, there is a 200-ms delay before the eye movement starts. To focus on the next 

position, the eye takes 15-100 ms, which depends linearly on the distance between the previous 

and future targets (LUKANDER, 2003; PURVES, 2004). This type of eye movement is also 

called ballistic because the system that generates the saccadic movements cannot respond to 

subsequent changes in the target position. Consequently, the eye target must be selected before 

the saccade starts, and if the target moves during this time, another saccadic movement is 

required to correct the position (PURVES, 2004). 

Figure 4 - Time response for saccadic movements 

 

Source: Purves (2004). 
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2.3.2 Fixation 

Fixation, which lasts between 100 and 1000 ms, is the primary method for gathering 

visual information (LUKANDER, 2003). Essentially, fixation involves the eyes "locking" onto 

the object of interest and stabilizing the image on the retina. During this process, three nearly 

imperceptible movements occur: continuous tremor, drift, and flicking movements. The 

continuous tremor refers to a distinct type of high-frequency oscillatory movement that occurs 

from 30 to 80 Hz, with velocities of only a few º/s. This type of movement is often considered 

noise in the oculomotor system (GUYTON; HALL, 2011; LUKANDER, 2003). 

The drift movement is a slow, random eye motion that can move the image focus away 

from the foveal region, which accounts for high-resolution vision. In contrast, the flicking is a 

sudden reflex movement that quickly moves the image back to the center of the fovea. Figure 

5 illustrates the fovea as a pink circle and shows the movement of a spot of light over the fovea. 

The random slow drifting (represented by dashed lines) moves the spot of light to the edges of 

the fovea, whereas the flicking (solid lines) attempts to maintain the image within the region of 

the fovea (GUYTON; HALL, 2011). 

Figure 5 - Spot of light movements over the fovea during fixation 

 

Lines with dashes indicate slow drifting movements, whereas solid lines are sudden flicking movements.  

Source: Guyton and Hall (2011). 

 



21 

 

 

 

 

2.3.4 Pursuit Movements 

The ability of the eye to keep a fixed gaze on a moving object is known as pursuit 

movement. This movement occurs due to a cortical mechanism that can automatically detect 

the movement course of an object and then move the eyes following the object trajectory, 

stabilizing the image of a moving target on the retina (GUYTON; HALL, 2011). This type of 

movement can be considered voluntary because the subject can choose whether to track an 

object; however, the tracking occurs through automatic subconscious ability. Figure 6 illustrates 

three examples of pursuit movements at different velocities (blue lines) compared to the target 

(object) movements in red lines (PURVES, 2004).  

Figure 6 - Three types of pursuit movements (target versus eye movement) 

 

Source: Purves (2004). 

This type of movement is usually slow and can track objects moving within the range 

of 1 to 30 º/s (YOUNG; SHEENA, 1975). This movement is limited in velocity and 

acceleration; hence, the eye usually uses saccades to catch up with the moving object, 

maintaining the object tracking (PURVES, 2004; YOUNG; SHEENA, 1975).  
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2.3.5 Vergence Movements 

Vergence is a slow eye movement given by each eyeball moving in different directions 

simultaneously. It is either convergence, when an object in front of the subject is getting closer, 

and the eyes need to move towards each other to adjust the focus; or divergence, when the 

object is getting farther away, and the eyes move away from each other to adjust the focus. 

Contrary to saccades that can reach up to 600 º/s, vergence movements are slow, and their 

velocity is around 10 º/s over a range of nearly 15 º (LUKANDER, 2003; PURVES, 2004; 

YOUNG; SHEENA, 1975). 

2.3.6 Nystagmus 

Nystagmus is a rhythmic, involuntary, and oscillating movement that can occur in one 

or both eyes. It can cause horizontal, vertical, or rotating movements in response to patterns in 

the visual field (optokinetic nystagmus) or motions of the head (vestibular nystagmus) 

(LUKANDER, 2003; YOUNG; SHEENA, 1975). 

The appearance, amplitude, and frequency of optokinetic and vestibular nystagmus are 

similar, with amplitudes varying between 1 and 10 º. The former typically occurs when a target 

object moves out of the visual field, while the latter results from head rotation with respect to 

inertial space. Both nystagmus movements consist of two phases: a slow phase, which can be 

explained as a pursuit movement, and a fast phase, similar to a saccade. Figure 7 displays 

different types of eye movements recorded, including nystagmus with a sawtooth pattern 

characteristic (YOUNG; SHEENA, 1975). 
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Figure 7 - Movements of the eyes recorded using a photoelectric monitor 

 

It shows saccadic jumps, fixation, smooth pursuit, and optokinetic nystagmus. 

 Source: Adapted from Young and Sheena (1975). 

2.4 Excitable Cells and The Corneoretinal Potential 

Most cells in the body have an electrical potential across their membranes. This 

potential, known as the membrane potential, arises from the unequal distribution of cations and 

anions (mainly sodium Na+, Potassium P+, and chlorine Cl-) on the opposite sides of the 

membrane. The cytoplasm inside the cell is negatively charged relative to the extracellular fluid, 

ranging from -50 to -200 mV (CAMPBELL; REECE, 2008; GUYTON; HALL, 2011). This 

imbalance of charged particles is described by the Nernst equation and is caused by four factors: 

the chemical force caused by the ion concentration gradient, the inwardly directed electric field 

(effect of the membrane potential on ion movement), the membrane pores that allow different 

types of ions to pass through, and the active transport of ions (CAMPBELL; REECE, 2008; 

WEBSTER, 2010).  

The microscopic electrochemical activity of cells can cause a macroscopic potential 

distribution on the surfaces of body tissues, commonly known as bioelectric potentials. This 

potential is generated in excitable cells, found in nervous, muscular, and gland tissues. These 

cells have two potential states: the resting potential, which is the steady electrical potential 

maintained between the internal and external environments, and the action potential, caused by 
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an adequate stimulus. When the cell is in the resting potential state, it is called polarized, with 

the internal medium ranging from -40 to -90 mV relative to the external medium. A decrease 

in voltage is called depolarization magnitude, while an increase in magnitude is called 

hyperpolarization (WEBSTER, 2010). 

The human eye contains excitable cells that produce bioelectric potentials. The retina 

contains cells that are sensitive to light and, like other excitable cells, generate receptor 

potentials. This behavior can be measured by electrodes placed either on the inner surface of 

the retina or on the cornea, and another electrode placed elsewhere (e.g., forehead). The 

recorded signal is known as electroretinogram (ERG), which is the electrical response of the 

retina to light and may be used for both scientific studies and clinical diagnoses (MALMIVUO; 

PLONSEY, 1995; WEBSTER, 2010). 

Contrary to the bioelectric signals produced by excitable tissues, the corneoretinal 

potential is a spontaneous signal that arises from the increased metabolic rate of the retina. Emil 

du Bois-Reymond was the first to observe this potential in 1848, and it is often called steady, 

in the range of 0.4 to 1 mV, but it may vary slowly during the day (MALMIVUO; PLONSEY, 

1995). The corneoretinal potential behaves as a single dipole oriented from the retina to the 

cornea and is the basis of electrooculography, whose main application is to measure eye 

movements. 

2.5 Eye Blinks 

 There are three types of blinks: reflex, voluntary, and spontaneous (KANEKO; 

SAKAMOTO, 1999). Eye blinks are one of the fastest movements of the human body, 

occurring approximately 13,500 times a day, which is more than required for ocular lubrication 

(HÖMKE; HOLLER; LEVINSON, 2018). The main function of a blink is to re-form the tear 

film layer of the cornea to maintain a clear and healthy eye (DOANE, 1980). However, blinks 

also have a reflex protective function and may serve as an index of cognitive load.  

2.6 Eye Tracking 

The history of eye tracking dates back from the 18th century, when researchers first used 

“afterimages”, which are images that remain in the eyes after exposure to the original image, to 

describe eye movements (DREWES, 2010). Javal (1879) and Lamare (1892) were the 
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researchers who observed eye movements in the 19th century and introduced the term "saccade" 

to describe the sudden movements of the eyes. The first recorded attempts to measure 

movements of the eye were made by Ahrens (1891), Delabarre (1898), and Huey (1898), who 

used small levers attached to the eye to track movements on a surface covered with soot 

(DREWES, 2010; SINGH; SINGH, 2012). 

Later in 1939, Jung applied electrodes to the skin near the eyes to measure the electric 

fields generated by eyeball dipole during vertical and horizontal movements. Using analog 

electronics, this research enabled the development of the first real-time processing of gaze data. 

However, only in the 1980s did small computers become powerful enough to perform real-time 

eye tracking, which opened the possibility of video-based eye trackers (Video-oculography) 

(SINGH; SINGH, 2012).  

Research in the field of eye tracking uses either eye localization in the image, or gaze 

estimation. Eye localization involves detecting the presence and location of the eyes in an 

image, typically through the pupil or iris center. In turn, gaze estimation involves estimating 

and tracking where a person is looking in 3D space or determining their line of sight (HANSEN; 

JI, 2010).   

The following methods can be used for gaze tracking: scleral search coil method, Infrared 

oculography (IROG), Electrooculography (EOG), and Video-oculography (VOG). The 

following topics briefly review the aforementioned eye-tracking techniques. 

2.6.1 Scleral Search Coil Method 

Created in the 1960s, the search coil method remains one of the most precise eye 

movement techniques (FANG; SHINOZAKI, 2018). This method applies the principle that 

when a coil of wire is moved through a magnetic field, a voltage is induced in the coil. To 

determine the eye position, a coil of wire is placed by using a contact lens, and the voltage 

induced by two or three external oscillating or revolving magnetic fields is measured (SINGH; 

SINGH, 2012). For example, Figure 8 illustrates two magnetic fields generated outside the head 

that induce a voltage on the coil placed on the eye. The eye orientation can then be calculated 

by demodulating the components of the different magnetic fields (SINGH; SINGH, 2012). 
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Figure 8 - Magnetic fields in the scleral search coil method 

 

Source: Singh and Singh (2012). 

The advantages of this method are its high accuracy and good time resolution, which 

allows the detection of small eye movements. However, this method is only used in research 

and clinical settings since the contact lenses require a small wire connected to an external device 

(SINGH; SINGH, 2012). 

2.6.2 Infrared Oculography  

This method uses infrared light to detect the boundary between the sclera and the iris. In 

this technique, an infrared light source is directed at the eye, and photodetectors are positioned 

to receive the reflected light from the frontal surface of the eyeball (Figure 9). From the infrared 

light reflected, the system tracks the boundary between the sclera and the iris or the boundary 

of the pupil and the iris to measure the eye position (SINGH; SINGH, 2012). 
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Figure 9 - IROG measurement technique 

 

Source: Singh and Singh (2012). 

 Since infrared light is not visible, it causes neither distraction nor discomfort, nor does 

the lack of ambient light affect the measurements. This technique provides a good spatial 

resolution of up to 0.1 º and a temporal resolution of 1 ms. However, it is not suitable for 

tracking vertical movements as the eyelids block the upper sclera and the iris boundaries 

(SINGH; SINGH, 2012). 

2.6.3 Video-oculography (VOG) 

Video-oculography uses multiple cameras to estimate the eye position relative to the 

head or surroundings.  It is a noninvasive method, not requiring wearable devices and providing 

good accuracy. This method relies on ambient light, camera quality, and advanced signal 

processing, which may result in higher user costs (SINGH; SINGH, 2012). 
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2.6.4 Electrooculography 

Whereas the main sources of bioelectric signals are those produced by excitable tissues 

(e.g., nerve and muscle cells), electrooculography (EOG) is based on the corneoretinal 

potential, which is a static electric polarization of the eye. The potential between the cornea 

(positive pole) and retina (negative pole) can be represented as a spherical battery (dipole), with 

potentials varying from 0.4 to 1 mV (FANG; SHINOZAKI, 2018; MALMIVUO; PLONSEY, 

1995). This dipole of the ocular globe generates microcurrents in the conductive tissue around 

the eyes that can be measured by skin surface electrodes placed near the eyes. As shown in 

Figure 10A, to capture eye signals, five electrodes are placed on the face: two for detecting 

horizontal movements, two for vertical movements (+X, –X and +Y, –Y), and a reference 

electrode. 

Figure 10 - (A) Electrode placement (B) changes in the electrical field generated by eye 

movements 

 

      (A)                                        (B) 

Source: Adapted from Doyle, Kucerovsky and Greason (2006). 

Figure 10B illustrates the voltage behavior of the electrodes placed on the face due to 

horizontal movements of the eyes. The left movement creates a similar waveform to the right 

movement, but with the opposite amplitude, which allows identifying the direction of the gaze. 

Each degree of eye movement generates about 14 to 20 µV, with a complete movement 

registering between 50 to 3500 µV and frequencies of 0-100 Hz (SINGH; SINGH, 2012; 



29 

 

 

 

 

USAKLI; GURKAN, 2010). Additionally, EOG can accurately record movements of up to 70°, 

with an accuracy of 1.5° to 2° (DOYLE; KUCEROVSKY; GREASON, 2006). 

The measurement of EOG signals is usually performed using operational amplifiers 

connected to a band-pass filter (SINGH; SINGH, 2012), as illustrated in Figure 11. For 

example, obtaining the horizontal signal involves subtracting the signal of +X from that of -X 

(following Figure 10A notation), or vice versa (CHANG, 2019). An advantage of EOG is that 

horizontal and vertical eye movements are easily distinguished, even in temporal series, which 

allows simple processing systems to be used (USAKLI; GURKAN, 2010). The main objective 

of processing EOG signals is to eliminate noise and artifacts from signals related to saccades 

and smooth pursuit movements. For example, median and low-pass filters are used to remove 

high-frequency EMG artifacts, whereas high-pass filters remove ocular drift (CHANG, 2019). 

Figure 11 - Scheme of EOG electrical activity recording 

 

Source: Adapted from Chen and Newman (2004). 

 Eye blinks can also be detected by using EOG. During a blink, the eyeball experiences 

an upward movement called Bell's phenomenon, which was identified by Sir Charles Bell 

(IWASAKI et al., 2005). Electrooculogram recordings of eye blinks traditionally place 

electrodes in a bipolar montage above the eyebrow and above the malar prominence in a vertical 

plane in line with the pupil. This results in electrical potentials similar to those observed during 

vertical saccades (DENNEY; DENNEY, 1984; IWASAKI et al., 2005; MATSUO; PETERS; 

REILLY, 1975). 
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2.7 EOG-based devices  

EOG has been used for developing an automatic wheelchair controlled by eye 

movements, as shown in Figure 12A (BAREA et al., 2002). For this application, a model was 

developed to determine the gaze direction by using recorded EOG data (Figure 12B). It filters 

out other biopotentials, detects when the eyelids are open (security block), classifies whether it 

is a saccadic or smooth movement, and outputs the deviation angles 𝜃𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 and 𝜃𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 

with respect to the central position of the eye. In addition, the model outputs are sent to a high-

level controller that generates the linear and angular speed commands of the wheelchair 

([𝑉𝑐𝑚𝑑 Ω𝑐𝑚𝑑]𝑇). The high-level controller also uses the eye position to navigate a graphical 

interface (similar to a computer mouse) and to select between a rotational and a linear 

movement of the wheelchair, which is controlled by a state machine. 
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Figure 12 - Wheelchair controlled by EOG 

 

(A) 

 

(B) 

Source: Barea et al. (2002). 
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EOG electrodes were developed by using graphene electronic tattoos (GET), which are 

extremely thin, soft, transparent, and breathable, and which have shown improved skin contact, 

reduced size, high signal-to-noise ratio (SNR), and lower motion artifacts. These GET EOG 

electrodes were connected to a wireless transmitter to control the movements of a drone, as 

shown in Figure 13 (AMERI et al., 2018). 

Figure 13 - Drone system control using graphene electrodes 

    

Source: Ameri et al. (2018).  

 EOG has been widely used in human-machine interfaces (CHEN; NEWMAN, 2004; 

FANG; SHINOZAKI, 2018; USAKLI et al., 2018; USAKLI; GURKAN, 2010), in which the 

movement of the eyes is used to control a computer cursor, write words, and navigate graphical 

interfaces. For example, Usakli and Gurkan (2010) developed an EOG system to navigate a 

menu with options for the user, including a virtual keyboard that allowed the user to write a 5-

word letter in 25 s (Figure 14).  
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Figure 14 - (A) Graphical interface developed for the EOG system (B) EOG acquisition 

system connected to a notebook (C) interface submenu (D) virtual keyboard 

 

(A)                                                                         (B) 

 

   (C)                                                                               (D) 

Source: Usakli and Gurkan (2010a). 

In 2017, Lopéz et al. created a computer writing system (Figure 15A) that used eye 

movements and was composed of: a wireless high-performance analog front-end (LÓPEZ et 

al., 2020) (Figure 15B) for acquiring and transmitting the signals generated by EOG; a software 

application designed for data processing, mapping, and signals classification; and a GUI (Figure 

15C) that, besides other functions, allowed the user to write a text.  
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Figure 15 - (A) System in use (B) hardware device (C) graphical interface 

  

(A)         (B) 

 

     (C) 

Source: López et al. (2017). 

To type using eye movements, a virtual keyboard based on groups of letters was 

developed (Figure 16A). For selecting one of the 64 of the alphanumeric characters, the user 

had to perform three simple eye movements. For instance (Figure 16A), to type the letter “H”, 

the user needed to look left, select the first group of letters, look upwards, and finally look 

down. In the same study (LÓPEZ et al., 2017), they compared the proposed group typing system 

(System I) with a conventional virtual keyboard typing system (System II), in the same test 

environment and hardware. The results showed (Figure 16B) that the writing speed and 

accuracy of “System I” was always greater than those of “System II”, and with training, the 

performance difference tended to increase.  
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Figure 16 - (A) Selecting a character in the virtual keyboard using three basic eye movements 

(B) Evolution of writing speed and accuracy of System I and System II with the number of tests 

 

(A) 

      

  

(B) 

Source: López et al. (2017). 
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 Recently, Usakli and Gurkan developed a low-cost and stand-alone EOG system 

(USAKLI et al., 2018) for users to communicate remotely using 10 pre-programmed messages 

transmitted wirelessly, without the need of a personal computer or display. The system 

consisted of two distinguishing devices. The first one, shown in Figure 17A, acquires and 

processes the EOG signals, and transmits one of the 10 messages pre-programmed. The second 

device, shown in Figure 17B, receives the information through a radio frequency and 

communicates it with a speaker or LEDs (USAKLI et al., 2018). 

Figure 17 - Complete EOG communication system: (A) acquisition, processing and 

transmission device (B) receptor system for remote monitoring 

 

      (A) 

 

      (B) 

Source: Usakli et al. (2018). 
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Most EOG projects reviewed use wet electrodes, which involve applying a conducting gel or 

solution between the skin and the electrode to improve conduction. However, this method can 

result in decreased conductivity and skin irritation over time (CHANG, 2019). Additionally, 

most EOG-based systems are attached to the head using headbands, head caps, or frames of 

glasses with wires, which can be uncomfortable for everyday use (KOSMYNA et al., 2019), 

developed for investigation only and not as a product (CHANG, 2019).  

In contrast, the wireless eyeglass AttentivU (Figure 18A) has a socially acceptable and 

comfortable design. It has embedded electronics that allow it to acquire and process EEG and 

horizontal EOG signals to analyze the level of user attention, providing audible feedback when 

the attention level drops. Although AttentivU uses dry electrodes, the signal can still be clearly 

distinguished in temporal series, as shown in Figure 18B (KOSMYNA et al., 2019). 

Figure 18 - (A) AttentivU: Eyeglasses with embedded EOG acquisition and processing 

system. (B) comparison of the EOG signals obtained using dry and wet electrodes 

      

(A) 

 

(B) 

Source: Kosmyna et al. (2019). 
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 In 2017, Li and He proposed a single EOG channel system (HE; LI, 2017) to write on a 

virtual keyboard using only eye blinks. This enabled fast communication (4.18 s per character) 

by only blinking in synchrony with the flashes of the buttons of the virtual keyboard. The 

efficiency of the system was due to the rapid flashing of the buttons combined with an effective 

blink detection method. The authors later applied a similar technique to control wheelchair 

(HUANG et al., 2018), a virtual reality environment (XIAO; QU; LI, 2019) and an 

asynchronous hybrid brain-computer interface (BCI) (HE et al., 2020). 

 The first study (HE; LI, 2017) presented a GUI with 40 buttons (Figure 19A) that flashed 

randomly to reduce interference from adjacent buttons. The user had to blink in synchrony with 

the flashes of the desired button. Each flash lasted 100 ms with a 30-ms interval between 

successive flashes, resulting in only 1.2 s for one entire round of flashes. To detect the eye blink, 

two processing operation ran in parallel: the waveform detection and the support vector 

machine (SVM), as illustrated in Figure 19B.  

Figure 19 - (A) The GUI of the EOG-based speller (B) flowchart of the detection algorithm 

 

(A) 
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(B) 

Source: He and Li (2017). 

 The detection algorithm (Figure 19B) extracts 40 feature vectors of the filtered and 

differentiated EOG signal, corresponding to 40-button flashes. These 40-feature vectors are 

then fed into an SVM classifier, resulting in 40 SVM scores for the 40 buttons. Simultaneously, 

the 40 online feature vectors are also processed for waveform detection. Figure 20 shows two 

waveforms of single feature vectors: Figure 20A corresponds to an eye blink, and Figure 20B 

corresponds to a non-blink. 

Figure 20- (A) Single blink (B) and a non-blink differentiated EOG waveforms 

 

(A) 
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(B) 

Source: He and Li (2017). 

 The waveform detection uses thresholds to detect the eye blink: duration threshold (‘d’), 

which is the time difference between the peak and the valley and energy threshold (‘e’), both 

shown in Equation 01. 

 

{
𝑑 = 𝑡𝑣𝑎𝑙𝑙𝑒𝑦 − 𝑡𝑝𝑒𝑎𝑘

𝑒 =  ∑ (𝑥𝑡
′)2𝑡𝑣𝑎𝑙𝑙𝑒𝑦

𝑡= 𝑡𝑝𝑒𝑎𝑘

      (1) 

   

These thresholds are determined by a calibration process, which uses 200 feature 

vectors, removing values that are either greater than μ + 3σ or less than μ − 3σ (μ represents the 

mathematical expectation and σ is the standard deviation). The energy threshold is then selected 

as the smallest value within the top 95% of the sorted energy values, whereas the duration 

thresholds are the smallest values within the top 95% and bottom 5% of the sorted duration 

values. Finally, the waveform detection selects the button according to the following criteria 

(Equation 02): 

 

𝑏𝑖 = {
1,   𝑖𝑓 𝐷𝑚𝑖𝑛 ≤ 𝑑𝑖 ≤ 𝐷𝑚𝑎𝑥  𝑎𝑛𝑑 𝑒𝑖 ≥ 𝐸

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
         (2) 

 

 The system selects the button based on the waveform detection and SVM classification 

results, referred to as "decision making" in Figure 19B. The selected button is the one 

designated as the potential choice chosen twice across the three consecutive detections 
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(successive rounds of button flashes). The button with the highest final score is chosen as the 

target button for the current decision, and the character is inputted. This means that the decision 

step is concluded, and the system moves on to the detections and decisions of the following 

operation. Lastly, Li and Hi (2017) performed a clinical trial with eight individuals without 

disabilities to assess the system effectiveness, resulting in an average accuracy of 94.4% and a 

time of 4.14 s to select a character. 

 The following studies employed a similar technique to detect blinks, but with some 

modifications. Huang et al. (2018) did not use the SVM technique; instead, an EOG waveform 

was used with a few parameters in addition to the differential EOG parameters. Xiao, Qu and 

LI (2019) used only the parameters of the differentiated waveform and achieved an average 

accuracy of 95.25%. After that, both EEG and blink EOG signals were used, and the blink 

detection was achieved by combining SVM and the EOG differentiated waveform parameters 

(HE et al., 2020), similarly to (HE; LI, 2017). 
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3. DEVELOPMENT 

 The following section describes the preliminary studies, the initial results, and the 

rounds of development based on the observations of researchers of the Instituto de Reabilitação 

Lucy Montoro. This section also highlights the development and testing of a prototype for the 

EOG system, which was evaluated with subjects with and without disabilities. This section 

concludes with a description of the tests of feasibility for developing a comfortable acquisition 

system. 

3.1 Pilot Study 

As a preliminary study, we developed an EOG communication system (COSTA et al., 

2020) for people with severe motor disabilities who are unable to communicate by speaking, 

writing, or gesturing. Figure 21 illustrates the block diagram of the system. The system was 

used to acquire, filter, and process the EOG signals for detecting horizontal movements of the 

eyes, which were translated into answers to questions by an interface that ran on a personal 

computer (PC).  

Figure 21 - System block diagram 

 

Source: Author. 

 3.1.1 Acquisition Circuit 

 The block diagram of the acquisition stage is illustrated in Figure 22A. The system was 

designed to use three silver chloride electrodes (Ag/AgCl), two electrodes on the right and left 
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of the outer sides of the eyes (R and L in Figure 22B), and one reference electrode (G in Figure 

22B) on the forehead.  

Based on previous research (CHANG, 2019; USAKLI; GURKAN, 2010), we designed 

the amplification and filtering circuit (Figure 23) to eliminate noise and enhance the signal of 

interest, which are primarily saccades and smooth pursuit movements. The typical amplitude 

of the signal of interest is less than 500 µV, and the frequencies are typically up to 5 Hz. To 

eliminate high and low frequency noise, the previous studies reviewed in (CHANG, 2019) set 

the cutoff frequency of the low-pass filters between 10 and 60 Hz, and the high-pass filters 

between 0.05 and 0.1 Hz. Based on these considerations, we applied a final amplification gain 

of 74.15 dB (51×10×10 = 5100 V/V) and filtered the frequencies below 0.16 Hz and above 10.6 

Hz. 

To achieve this high gain, two stages of band-pass filters were required because a higher 

gain in the instrumentation amplifier would decrease the SNR, and a single 2nd-order band-pass 

filter would not provide the attenuation required to remove high-frequency noise. Lastly, the 

signals obtained after amplification and filtering were sampled by an Arduino UNO R3 board.    

Figure 22 - (A) EOG acquisition circuit block diagram (B) electrodes placement 

   

Source: Author. 
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 The amplification and filtering circuit was implemented using a +/- 5 V symmetrical 

direct current (DC) power supply and the TL064 operational amplifier. The circuit was divided 

into four stages, as described below and shown in Figure 23: 

 

a) stage 1: an instrumentation amplifier (INA114AP) of approximately 34.15 dB (~51 

V/V), with high input impedance (100 GΩ) and high common noise rejection (115 dB). 

The input of the INA114AP uses two input resistors of 100 kΩ to protect the user in 

case of circuit failure;   

b) stage 2: an active 2nd-order band-pass filter with 20 dB gain (10 V/V), low-pass cutoff 

frequency of 10.61 Hz, and a high-pass cutoff frequency of 0.16 Hz. The inverting 

amplifier was used to obtain a higher SNR with gain lower than one in the rejection 

band; 

c) stage 3: a notch filter to remove the 60 Hz power-line noise captured by the cables of 

the electrodes; 

d) stage 4: similar filter of the second stage, with a 2.5 V DC level shift, to allow the 

Arduino to read the total excursion of the signal. The output of the last stage of the 

circuit was connected to a 10-bit analog-to-digital converter (ADC) of the Arduino 

board.  



45 

 

 

 

 

 

Figure 23 - Schematic of the signal acquisition circuit 

 

 

Source: Author. 

3.1.2 Processing Algorithm 

 The eye movement detection was performed by using a level detection algorithm 

implemented in the Arduino board, which was connected to the analog acquisition circuit and 

to the PC by using the Arduino USB serial port. Figure 24 illustrates a flowchart of the firmware 

algorithm. When a question is generated by the graphical interface, the computer interface sends 
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a command (“char”) for the Arduino to start reading the ADC output. If this output is above 3 

V, the Arduino sends a signal to the interface, representing the “Yes” answer. If the voltage is 

below 2 V, the Arduino sends a signal to the interface, representing the “No” answer. After an 

answer is displayed, there is a delay of 0.5 s to avoid multiple answers in case the interface 

sends another signal to start the acquisition immediately after receiving an answer from the 

Arduino. 

           

Figure 24 - Level detection algorithm 

 

Source: Author. 
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3.1.3 Graphical Interface 

 A graphical user interface (Figure 25) was developed in Python to translate the user’s 

eye movements acquired by EOG electrodes into answers to four pre-programmed questions. 

If the Arduino detects a movement to the right, the interface prints “Yes”. Otherwise, if the user 

looks to the left, it prints “No”. 

Figure 25 - Printed screens of the graphical interface 

     

      

Source: Author. 

 The interface requires a helper to assist in starting and advancing the sequence of 

questions using a computer mouse or keyboard. Thus, if the user selects “start”, the first 

question appears, and the Arduino starts the EOG readings. The algorithm then detects an eye 

movement and displays the answer. After answering the question, the participant’s assistant can 

select “next question”, triggering a new Arduino acquisition. This process continues until the 

system reaches the final question and can be restarted.       

3.1.4 Experimental Protocol 

 To evaluate the performance of the system, we created synthetic signals with 

morphology similar to those generated by eye movements (CHANG, 2019; USAKLI; 
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GURKAN, 2010). The signals generated by eye movements to the left and to the right were 

represented by a waveform consisting of two square pulses with opposite amplitude of 200 µV 

and 200 ms width, as illustrated in Figure 26. The waveform was generated by using a function 

generator (DSOX1102G, Keysight Technologies, USA) with amplitude reduced by a voltage 

divider to 200 µV, which is the amplitude of an EOG signal (USAKLI; GURKAN, 2010).  

Figure 26 - Eye movement scheme 

 

Source: Author 

Experiments were also carried out to test circuit accuracy, using the sequence of pulses 

illustrated in Figure 27, representing eye movements to the left and to the right. This waveform 

was generated by a function generator (DG1022, RIGOL Technologies, China) and a voltage 

divider (to obtain 200 µV) with pulse widths of 100, 200 and 300 ms. This signal was then 

applied to the input of the first stage of the acquisition circuit (“Vin”) and with the Arduino 

configured to send a signal to the serial port when it detected a signal corresponding to a look 

to the right or to the left.  
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Figure 27 - Sequence of pulses simulating eye movements 

   

Source: Author. 

3.1.5 Results of the pilot study 

Figure 28 illustrates the frequency response of the acquisition circuit with 74 dB gain in 

the pass band and with 66 dB in the cutoff frequency of the low-pass filter (10.61 Hz). Together 

with the band-pass filters, the notch filter provided a final system gain of 6.4 dB at 60 Hz. 
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Figure 28 - Frequency response of the acquisition circuit 

 

Source: Author. 

 Figure 29 shows a time-series signal obtained by using the pulse wave generated to 

simulate eye movements. Figure 29A shows the simulation of the movement of the eyes to the 

right, whereas Figure 29B shows the movement to the left. The final gain of the circuit was 

approximately 74bB, as defined, and the signals could be easily distinguished in time series, as 

also described by (CHANG, 2019; USAKLI; GURKAN, 2010). 
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Figure 29- Acquisition circuit response to synthetic eye movements: (A) left eye movements 

(B) right eye movements 

 

(A) 

 

(B) 

“Vin” refers to the first stage of the acquisition input whereas “Vout” refers to the last stage (following Figure 23 

notation) 

Source: Author. 

The results showed that the designed acquisition system could successfully record 

artificial EOG signals with high SNR and that the synthetic pulses were correctly classified by 
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the algorithm. However, the main limitation of the design was that the person needed help to 

use the device, which could be eliminated by detecting the blink of the eyes as a trigger.  

The use of synthetic signals did not allow the study of the influence of vertical 

movements on the horizontal electrodes, known as crosstalk (CHANG, 2019). Previous studies 

(CHANG, 2019; USAKLI; GURKAN, 2010) have shown that this issue can be addressed by 

ignoring EOG signals with low amplitudes, which was already performed by the algorithm 

used. 

The total cost of the device designed as a proof of concept was approximately 35 USD, 

which was less expensive than the 200 USD complete system presented by Usakli (USAKLI et 

al., 2018). This excluded the costs of a PC because it was only used as a development tool and 

not part of the device. The initial findings seemed to indicate the feasibility of creating an 

affordable EOG communication device and suggest its promising potential as a mode of 

communication. The design described was a proof of concept of an EOG device, and as such, 

it had limitations. 

3.2 Design specifications 

 During the development of the project, meetings with the Biomedical Engineering and 

the Occupational Therapy teams of the Instituto de Reabilitação Lucy Montoro were conducted 

to discuss patients’ needs and define the specifications of the project. The Occupational Therapy 

team reported that interfaces that depended on the user selection in synchrony with the target 

button were well accepted by patients despite not having previous experience with interfaces 

based on eye blinking. 

 During this stage, we studied the case of a patient with severe mobility and speech 

impairments but with intact head movements. To communicate, she used a laser pointer fixed 

to her eyeglasses and head movements to point out letters and numbers on paper. In addition to 

this method, she had the software on her computer (Camera Mouse, Boston College, USA) that 

detected the tip of her nose by using a webcam and served as the mouse cursor. The patient 

could select items using either a cursor dwell timing or an enter button press on the PC. 

However, she reported neck fatigue when using either of these methods for an extended period. 

The United Nations CRPD encourages the participation of individuals with disabilities during 

the early stages of development so that the technology becomes accessible and possibly 

available at a minimum cost. 
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3.3 Proposed System 

 Based on the literature review, pilot study, and feedback from the IRLM team, we 

proposed the communication shown in Figure 30 (COSTA et al., 2022). This system uses the 

user’s eye blink, in synchrony with the flash of the target button, to control a GUI. The 

development of the system was divided into three stages: the design of the acquisition system, 

the creation of a blink detection algorithm, and the development of a GUI. The system is used 

to acquire, filter, and process the EOG signals to detect eye blinks, which are then translated 

into commands of a GUI running on a PC.  

Figure 30 - EOG-based system representation 

  

Source: Author. 

3.3.1 Data Acquisition 

 In this study, EOG signals were acquired and preprocessed using a customized EOG 

device (Figure 31). The blink EOG acquisition involved positioning three commercial adhesive 

silver chloride electrodes (Ag/AgCl), as shown in Figure 30: the EOG signal on the forehead 

(+Y above the left eyebrow), the reference electrode on the left mastoid (-Y), and the ground 
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on the right mastoid (GND). The signal acquisition was accomplished using a commercial 

electronic board (Ganglion, OpenBCI, USA), which transmitted the data via Bluetooth to a PC.  

The electrodes were connected to the input of the instrumentation amplifier (AD8237) 

of the Ganglion board. Figure 31 shows the electrodes connected to the channel 1 amplifier and 

the D_G pin of the board. The output of the AD8237 was connected to an analog high-pass 

filter of 0.3 Hz and a 24-bit delta-sigma ADC. After being filtered, the signals were converted 

by using the 24-bit ADC, sampled at 200 Hz, and transmitted through an embedded low-energy 

Bluetooth 4.0 module. Additionally, we mounted the board in a portable case and connected to 

four 1.5 V AA batteries that provided approximately 160 h of autonomy (considering 15 mA 

board consumption when streaming data). The portable case also had an externally mounted 

switch that allowed turning on/off the board when the lid was closed.  

Figure 31 - Photo of the acquisition device 

 

Source: Author. 

The Ganglion board was compatible with free open-source software (OpenBCI GUI, 

OpenBCI, USA). The software interface is illustrated in Figure 32, which shows the time series 

of the acquired signal, the electrode impedance, and the transmission widget. We used this 

software to receive EOG data from the Ganglion board, apply digital filters, and transmit the 

data to the GUI developed specifically for this study. In addition, we modified the source code 

of the OpenBCI GUI to include a 2nd-order Butterworth filter with a low cutoff frequency of 
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0.1 Hz and a high cutoff frequency of 10 Hz. This filter was implemented using Brain Flow, 

which is a library created for EEG, EMG, and ECG signal processing. 

Figure 32 - The OpenBCI GUI 

 

Source: Author. 

 The networking widget used the Lab Streaming Layer (LSL) protocol to transmit the 

EOG signal between the OpenBCI GUI and the GUI developed in this study. The LSL 

comprises a set of libraries and tools for real-time data streaming. Figure 32 shows that we 

configured the widget to stream the data from Channel 1 and to apply the created band-pass 

filter. A test routine (Appendix A) was executed to validate the network functionality and to 

confirm that the EOG data were correctly received. The program recorded streamed data for 2 s 

and then calculated the valid samples and the average sampling rate. The test results showed 

that the average rate of valid samples remained close to 200 Hz and did not compromise the 

EOG acquisition.      

3.3.2 Development of the Graphical User Interface 

 The GUI developed is shown in Figure 33. First, it displays the main menu (Figure 

33A), with options for the user to communicate his/her needs, such as food, bath, water, and 
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emergency help. Additionally, there is an option of a writing application that uses a virtual 

keyboard illustrated in Figure 33B and Figure 33C.  

Figure 33 – GUI proposed: (A) main menu (B - C) virtual keyboard 

 

   (A)    

 

   (B) 

 

                  (C) 

Source: Author. 

When the interface is running, it sequentially flashes its buttons in green, and the user 

can select the target button by synchronously blinking with the flash. The GUI also works in 

asynchronous mode, in which the user chooses a convenient time to select a target button (self-
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paced) instead of having the algorithm set the time to select each operation — a synchronous 

mode program. 

The GUI was developed in Python 3.8 (code in Appendix B), using the Eclipse 

Integrated Development Environment (IDE). The GUI software was programmed to 

communicate with the OpenBCI software, to control the graphical interface, and to run the blink 

detection algorithm. We used the Tkinter library for the interface design, and the PyLSL library 

to receive the EOG stream via the LSL protocol. 

3.3.3 Blink detection and button selection algorithm 

 The blink detection implemented in this study was based on previous works (HE et al., 

2020; HE; LI, 2017; HUANG et al., 2018; XIAO; QU; LI, 2019). This method was chosen 

because it was a more straightforward approach than other complex techniques, such as the 

SVM technique and other pattern recognition methods, which still produced comparable results. 

Figure 34 shows the flowchart of the button selection algorithm. The interface contains 

buttons that flash in sequence, and the user must blink synchronously with the flash of the 

desired button to execute a command. When the selection routine starts, each button flashes in 

a sequence, with 100 ms of flash duration and 250 ms of the interval between the flashes of 

each adjacent button.  
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Figure 34 - Flowchart of button selection algorithm 

Buttons start to flash and EOG data 
stream starts to be recorded

User blinks in synchrony with the 
flash of the target 
button/character 

The waveform parameters are calculated and 
the possible target buttons are defined

The button or character 
selected is based on tSMax

error

 

Source: Author. 

Simultaneously with the start of the flash sequence, the recording of the EOG data 

stream starts, and it is divided into multiple segments of 800 ms. Each extracted segment refers 

to the flash of a different button and is composed of two vectors: the EOG signal and its 

respective timestamp. 

Next, each EOG segment is differentiated, and a moving average filter of three samples 

is applied. Figure 35 shows the resulting waveform used to verify whether the user blinked. The 

algorithm then calculates the waveform parameters described below and illustrated in Figure 

35. 

a) sMax: the maximum value of the differentiated EOG signal; 

b) tSMax: the time that sMax occurs; 

c) sMin: the minimum value of the differentiated EOG signal, within the period of 125 ms 

after sMax occurs; 

d) tSMax: the time that sMax occurs; 

e) tSMin: the time that sMin occurs; 

f) dTS: the time difference between tSMax and tSMin. 
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Figure 35 – Parameters: (A) EOG blink segment (B) parameters of the differentiated EOG blink 

 

Source: Author. 

 The detection of eye blink occurs when the parameters read from the differentiated and 

filtered EOG waveform reach a threshold obtained in the calibration: SmaxThreshold, 

DTSLTheshold, DTSHThreshold, tpSmaxLThreshold, and tpSmaxHThreshold. The successful 

blink detection must satisfy the following inequalities (Equation 03): 

 

         𝑠𝑀𝑎𝑥 ≥ 𝑆𝑀𝑎𝑥𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

𝑇𝑆𝑀𝑎𝑥𝐻𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≥ 𝑡𝑆𝑀𝑎𝑥 ≥ 𝑇𝑆𝑀𝑎𝑥𝐿𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  

    D𝑇𝑆𝐻𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≥ 𝑑𝑇𝑆 ≥ 𝐷𝑇𝑆𝐿𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑   (3) 

 

 However, as the time between the flashes of the adjacent buttons is very short, the 

program may detect more than one button selection in one round of button flashes. Therefore, 

there is a final step called decision making, in which the button selected is the one that presents 

the smallest error (Equation 04) between tSMax and TSMaxMean. 

  

𝑒 =  |𝑡𝑆𝑀𝑎𝑥 − 𝑇𝑆𝑀𝑎𝑥𝑀𝑒𝑎𝑛|      (4) 

 

 Once a button is selected as the target, all buttons stop flashing, and the respective 

command is executed. However, if there is no candidate button, the buttons start flashing again 
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(after a short delay). The system then proceeds to the next stage of detection and decision 

making. 

3.3.4 Protocol for testing the interface 

 To test the described method of blink detection and button selection, we developed a 

testing interface (Figure 36) in Python 3.8 (code in Appendix C). The GUI includes four buttons 

(“Segment”, “Calibration”, “Accuracy”, and “Synchrony Detection”) that must be selected by 

using a computer mouse. After the button is selected, the interaction is performed only by 

blinking. The detailed function of each button is described below: 

Figure 36- Testing GUI for calibration, accuracy measurement and character selection 

Source: Author. 

a) segment: this button was created to plot a segment of the blink EOG signal. When this 

button is selected, the program starts to record the EOG data stream, and the word 

“Blink” flashes for 100 ms. The user must blink synchronously with the button flash. 

After 800 ms of EOG acquisition, the algorithm calculates the first-order difference and 

then applies a moving average filter of three samples to remove possible Ganglion 

transmission errors. The program then plots the blink segment, as shown in Figure 37; 
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Figure 37 - Blink EOG Segment 

 

Blue line: EOG signal (filtered with 0.1 to 10 Hz band-pass filter); Orange Line: differentiated EOG 

signal; Green Line: moving average applied to the differentiated EOG signal. Source: Author. 

 

b) calibration: this button runs the calibration routine that must be executed before the 

user starts controlling the GUI because it sets the parameters thresholds. Similar to the 

segment button routine, the word “Blink” flashes, and the system records the blink EOG 

signal. However, the calibration routine repeats 20 times, every 2 s, with one break in 

the middle to rest (after 10 flashes). This results in 20 segments of the differentiated and 

filtered EOG signal recorded for each flash. The calibration program collects the 

parameters of the 20 blink segments, and the blink segments with dTS, sMax, and 

tSMax parameters smaller than µ − 2σ or larger than µ + 2σ are removed (μ represents 

the mathematical expectation and σ is the standard deviation). Next, the remaining 

collected segments are used to calculate the thresholds, as described below (Equation 

5). 

 

SMaxThreshold = µ(sMax) – 2σ(sMax) 

DTSLThreshold = µ(dTS) – 2σ(dTS) 

DTSHThreshold = µ(dTS) + 2σ(dTS) 

TSMaxLThreshold = µ(tSMax) – 2σ(tSMax) 

        TSMaxHThreshold = µ(tSMax) + 2σ(tSMax)  (5) 
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c) accuracy: this button activates the accuracy routine. This routine is similar to the 

calibration in the sense that the user has to blink in synchrony with the flash of the word 

“Blink”. However, unlike the calibration process, there is no interruption in the 

sequence of 20 button flashes. The program then uses the thresholds obtained during 

calibration to determine the number of times the user blinked during the 20 button 

flashes. After the 20 button flashes, the program displays the number of blinks that it 

accurately detected;  

d) synchrony selection: this mode executes the button selection algorithm. When this 

button is pressed, the three letters (“A”, “B”, or “C”) flash in sequence, and the user 

must blink in synchrony with the flash of the desired letter. This mode was created as a 

preliminary test for the blink selection algorithm (described in section 3.3.3), and the 

results confirmed the feasibility of this method. The software was then expanded to a 

complete virtual keyboard, as described in section 3.3.2. The synchrony selection mode 

was not used in the system assessment described below (section 3.4). 

3.4 System performance assessment  

 To assess the effectiveness of the system designed, we conducted online tests involving 

both volunteers without disabilities and volunteers with disabilities from the IRLM, following 

a clinical protocol that we submitted to the Ethics Committee of the Clinics Hospital of the 

University of Sao Paulo Medical School (CAAE: 62589722.3.0000.0068 and ethical committee 

approval number: 5.647.107). Prior to participation, all subjects signed a consent form for both 

the experiments and the publication of individual information. 

Table 1 outlines the main steps performed by each subject during the study. For the 

tests, we used both the testing interface (described in section 3.3.4) and the proposed GUI 

(section 3.3.2). Initially, the participants received instructions and an overview of the system. 

Next, the skin area where the electrodes were to be placed was cleaned by using alcohol swabs, 

and the electrodes were positioned as shown in Figure 30. After a brief waiting period for the 

electrode-skin interface to stabilize, we checked if the impedance was below 10 kΩ and verified 

the data stream by using the “segment” button of the testing interface. If the software correctly 

acquired the EOG data, the participant proceeded to the calibration session for threshold 

determination. Subsequently, the participants underwent an accuracy test to confirm whether 
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the system could detect their blinks by using the obtained thresholds. Subjects were then given 

time to familiarize themselves with the system, and finally, they were asked to write a 

predefined text. 

 

Table 1 - Steps of tests with subjects 

Steps Description 

01 Subject receives instructions and an overview of the system 

02 Electrode placement, wait for the electrode-skin interface stabilization 

03 Check impedance and verify stream of data (both OpenBCI GUI and testing interface) 

04 Calibration (testing interface or proposed GUI) 

05 Accuracy Test (testing interface) 

06 System familiarization (proposed GUI) 

07 Write a predefined text (proposed GUI) 

08 Remove electrodes 

Source: Author. 

After applying the described steps, we used the NASA-TLX protocol (HART; STA, 

1988) to evaluate our system. This protocol, widely recognized and cited in over 5500 studies, 

was developed by a NASA research group to assess the subjective workload and satisfaction of 

tasks or systems. The method employs a multidimensional analysis based on six factors: mental 

demand (MD), physical demand (PD), temporal demand (TD), own performance (OP), effort 

(EF), and frustration level (FR). Each factor is scored on a scale of 0 to 100, which are used to 

calculate the final task workload index. Higher NASA-TLX scores and final indexes indicate 

greater subjective workload. However, in this workload analysis, it is important to consider not 

only the final index but also variations in the scores of different factors (HART; STA, 1988).  

An example of the NASA-TLX application form is included in Attachment A, and an 

adapted free translation version is available in Attachment B (applied version). The individuals 

without disabilities were asked to complete the protocol, whereas the IRLM participants 

answered during an interview. One IRLM participant answered the interview by speaking, 

whereas the other two used alternative communication methods. 

 The basic safety standards were applied during the tests. According to the IEC 60601-1 

standard, the maximum direct current allowed under normal conditions is 10 µA and under a 

single fault condition is 50 µA (LÓPEZ et al., 2020). However, the current that can flow through 
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the subject is far below 10 µA because of the high input impedance (100 MΩ) of the 

instrumentation amplifiers in the input channels of the Ganglion board. Moreover, the Ganglion 

is equipped with an isolated power supply of only 6 V, which means that any single fault 

condition will provide a current significantly lower than 50 µA. 

3.4.1 Application of the tests in subjects without disabilities 

Two online tests were conducted with the subjects without disabilities. Eight subjects 

without disabilities participated in Test I. Next, six of the eight subjects without disabilities 

participated in Test II. The tests were performed as follows. 

Test I: We applied the accuracy routine of the testing interface to assess the blink 

detection. Accuracy was determined by dividing the number of blink detections by the number 

of flashes. 

Test II: Participants interacted with the virtual keyboard to spell the name “Pedro 

Costa”. The initial text selection was arbitrary considering the project context; however, we 

opted not to alter it to maintain consistency across all participants. The total number of 

operations required to type the name was 21. The following parameters have been widely 

adopted in previous studies (HE et al., 2020; HE; LI, 2017; HUANG et al., 2018; XIAO; QU; 

LI, 2019) to assess user performance and system efficiency, and they were used to evaluate our 

proposed system and method:  

a) time — the total time required to spell the name;  

b) operations — number of operations generated by the participant;  

c) command Ratio — the ratio of the operations issued to the minimum number of 

operations required; 

d) accuracy — the ratio of the number of correctly inputted letters to the total 

number of inputted letters; 

e) response time (RT) — the number of operations issued over the total time 

required to spell the name. 
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3.4.2 IRLM participants  

 Four participants from IRLM with severe motor disabilities who were literate volunteers 

with preserved cognition were selected for the tests. To expand the pool of potential 

participants, it was not necessary to have communication disabilities. The IRLM also ensured 

the best accessibility conditions for participants, and the tests preferably occurred before or at 

the beginning of each scheduled therapy session so that the participants were less fatigued. 

The testing procedure for IRLM participants closely mirrored that of subjects without 

disabilities, with the distinction that IRLM participants underwent at least five sessions of 20 

min each, whereas subjects without disabilities participated in a single session. Test I was the 

same as Test I conducted with subjects without disabilities, but the accuracy was determined as 

the mean accuracy across these multiple sessions. 

 In Test II, the IRLM participants interacted with the virtual keyboard. However, two 

participants required significantly more time to adapt. In one case, 10 sessions and interface 

adjustments were required to enable this participant to effectively write a full sentence. 

Customized adjustments (Figure 38) were made to address this participant's specific needs, 

which significantly improved her system usage. However, these adaptations were not found to 

enhance the system performance of other participants. 

Figure 38 - Adapted system layout 

 

Source: Author. 
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The adaptations were as follows:  

a) The letters layout – the letters were displayed in lines and columns, with all the 

letters on a single screen; 

b) The time between flashes was increased to 900 ms; 

c) The font size was increased; 

d) The background color was changed to improve the contrast. 

 

 In contrast, the remaining two participants were able to start typing during their first 

session. Over a series of five sessions, these participants were asked to type the predefined 

sentence: “Treino para comunicar com as pessoas ao meu redor”. This sentence was 

collaboratively reformulated with the input from a participant from IRLM. It was chosen to 

contain more characters than the initial test applied to individuals without disabilities and to be 

a sentence that participants could type within the allotted time, featuring familiar words and 

holding meaning relevant to the project.  

3.5 Tests for a convenient and comfortable acquisition system 

To detect eye blinks, the placement of electrodes can vary. In this study, we based our 

electrode placement on previous studies (HUANG et al., 2018; XIAO; QU; LI, 2019). However, 

we also tested a different electrode placement, as shown in Figure 39, to provide a more 

convenient and comfortable acquisition system that would enhance real-life use. We used silver 

chloride electrodes (Ag/AgCl), with +Y located on the glabellar area (EOG signal), -Y on the 

right nose pad (reference electrode), and ground (GND) on the left nose pad. The impedance of 

the electrodes was maintained below 10 kΩ. 
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Figure 39 - Electrode position for eyeglasses assessment 

 

Source: Author. 

The inspiration for the new electrode positioning test came from the electrode placement 

of the commercial EOG eyeglasses (JINS MEME, JINS Inc., Japan), as shown in Figure 40. 

This eyewear is equipped with an EOG sensor that can detect both horizontal and vertical eye 

movements. The electrodes on JINS MEME are situated on the nose pad and glabellar area and 

are made of stainless steel (SUS316L). 

Figure 40 - JIMS MEME eyeglasses 

 

Source: Jins Inc. (2022).  
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4.  RESULTS AND DISCUSSION 

This section presents and discusses the test results for our blink EOG communication 

system. The results are divided into those of subjects with no disabilities and those of 

participants from the IRLM. The results are then compared with those of previous studies, and 

the limitations of our research are discussed. Lastly, we present the results of the preliminary 

evaluation of a new EOG acquisition system. 

4.1 Tests with subjects without disabilities 

Table 2 summarizes the results of Test I (accuracy test). The average blink detection 

accuracy was 89.38 ± 9.5%, which was based on the number of blink detections of 20 button 

flashes. 

Table 2 - Test I (accuracy test) Results 

Subject Number of Flashes Number of Blink Detections Accuracy (%) 

S1 20 20 100 

S2 20 18 90 

S3 20 15 75 

S4 20 15 75 

S5 20 19 95 

S6 20 19 95 

S7 20 20 100 

S8 20 17 85 

Average ± 

Standard Deviation 
20 17.87 ± 1.89 89.38 ± 9.5 

Source: Author. 
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Table 3 - Test II Results (use of virtual keyboard) 

Subject Time (s) Operations 
Command Ratio 

(%) 
Accuracy (%) RT (s) 

S1 120 23 109.52 100 5.22 

S2 252 25 119.05 84.62 10.08 

S3 330 26 123.81 100 12.69 

S4 360 41 195.24 78.57 8.78 

S5 169 25 119.05 91.67 6.76 

S6 180 30 142.86 84.62 6.00 

Average ± 

Standard 

Deviation 

235.17 

± 

87.12 

28.33 

± 

6.05 

134.92 

± 

28.79 

89.91 

± 

8.07 

8.26 

± 

2.58 

Source: Author. 

Table 3 presents the results of Test II. All the participants completed the spelling task 

successfully. The average time for the subjects to spell the name was 235.17 ± 87.12 s, whereas 

the average RT to issue a command was 8.26 ± 2.58 s. The average number of operations 

required to spell the name was 28.33 ± 6.05, which resulted in an average command ratio of 

134.92 ± 28.79% and an average accuracy of 89.91 ± 8.07%. The results of Test I demonstrated 

that the blink detection algorithm successfully detected user blinking, which enabled the 

subjects to accomplish the spelling task of Test II with high accuracy. In addition, the accuracy 

achieved was similar to that obtained in previous studies (HE; LI, 2017; LEE et al., 2017; 

XIAO; QU; LI, 2019).  

Previous studies (HE et al., 2020; HE; LI, 2017; LEE et al., 2017; XIAO; QU; LI, 2019) 

reported that blinking in synchrony with only one button flash may be challenging due to the 

extremely short stimulus onset asynchrony (SOA). For example, (HE; LI, 2017) set the SOA to 

30 ms and the flash duration to 100 ms, which resulted in an overlap between the two adjacent 

flashes. In our study, the SOA was approximately eight times greater (250 ms), with no overlap 

between flashes. This significantly alleviated the time pressure without compromising the RT. 

Many EOG systems are synchronous and may not be suitable for practical applications. 

We used an asynchronous interface, which does not impose a fixed time frame for selecting a 

target button. Instead, a button was chosen when the user generated a control signal, enabling 

the user to rest while performing the spelling task. 
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Table 4 - Workload Assessment Results 

Subject MD PD TD OP FR EF NASA-TLX 

S1 10 20 30 10 30 20 19.33 

S2 80 70 100 20 20 60 63.33 

S3 10 10 30 0 20 10 10.66 

S4 0 0 30 30 30 0 24.00 

S5 60 20 50 10 20 30 40.33 

S6 10 10 30 30 20 10 22.66 

Average 

 ±  

Standard Deviation 

28.33  

±  

30.23 

21.67  

± 

 22.67 

45       

± 

 25.66 

16.67  

±  

11.05 

23.33  

±    

4.71 

21.67  

±    

19.51 

30.05 

± 

17.30 

Source: Author. 

Table 4 shows the scores for the six factors and the final index. On average, the scores 

remained less than 50, which is considered acceptable according to (EITRHEIM; 

FERNANDES, 2016). Similar to (HUANG et al., 2018), the TD scores remained higher than 

the other scores. This may be related to the time pressure to blink synchronously with the flash 

of the desired button. Furthermore, the low values obtained for the OP may suggest that the 

users were satisfied with their performance, as reported by (HART; STA, 1988). 

4.2 Tests with IRLM participants 

Table 5 summarizes the results of Test I for the IRLM participants. The average blink 

detection accuracy was 85.625 ± 10.17 %, which was based on the number of blink detections 

of 20 button flashes. 

Table 5 - Test I for the IRLM participants 

Subject Number of Flashes Number of Blink Detections Accuracy (%) 

S1 20 16.25 81.25 

S2 20 14.25 71.25 

S3 20 18.5 92.5 

S4 20 19.5 97.5 

Average ± 

Standard Deviation 
20 17.12 ± 2.03 85.625 ± 10.17 

Source: Author. 
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Table 6 presents the results of Test II. Since the IRLM participants were unable to spell 

the same text, it was not possible to calculate the mean time and the mean number of operations. 

However, for the command ratio, accuracy, and RT, the mean was calculated because it was 

not linked to the text size. Therefore, the average command ratio was 116.19 ± 9.32 %, the 

average accuracy was 91.97 ± 5.69 %, and the average RT was 9.79 ± 1.94 s. 

Table 6 - Test II for the IRLM participants 

Subject Time (s) Operations 
Command 

Accuracy (%) 
RT 

Ratio (%) (s) 
  

S1 - A 300 35 106,06 90,00% 8,57 

S2 - P 1200 95 110,53 91,23% 12,63 

S3 - E 1108 117 123,16 86,67% 9,47 

S4 - C 68 8 125,00 100,00% 8,50 

Average ± Standard 

Deviation 
    116.19 ± 9.32 91.97 ± 5.69 9.79 ± 1.94 

Source: Author. 

Although there was a discrepancy in the spelling task, the results in Table 6 indicate that 

the IRLM participants showed similar accuracy in blink detection, speller use, and response 

time. For blink detection, the participants’ accuracy was calculated as the average of five tests, 

which further supported the high accuracy of the blink detection algorithm. 

Table 7 - Workload Assessment Results for the IRLM Participants 

Subject MD PD TD OP FR EF NASA-TLX 

S1 – Ana 80 20 50 60 20 30 49,33 

S2 – Patricia 0 80 0 90 0 50 46,00 

S3 - Elisson 20 40 30 50 20 40 13,33 

Average 

 ±  

Standard Deviation 

33.33  

±  

33.99 

46.67  

± 

 24.94 

26.67      

± 

 20.55 

66.67  

±  

17.00 

13.33  

±    

9.42 

40 

±    

8.16 

36.22 

± 

16.24 

Source: Author. 
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Table 7 shows the results of the NASA-TLX protocol for the IRLM participants. The 

average and deviation of the NASA-TLX were comparable to the values obtained for subjects 

without disabilities; thus, it is also considered acceptable. However, the TD scores were lower, 

and the OP scores were higher than those obtained for subjects without disabilities. This may 

suggest that the IRLM participants felt less time pressure to write, but at the same time they felt 

less satisfied with their performance. 

4.3 Comparison with results reported in the literature 

For further evaluation, we compared the results of the present study with those of 

previous studies on speller systems, as shown in Table 4. The information transfer rate (ITR) 

of our system was determined based on the average accuracy (P), the average time to select a 

character (T), and the number of possible user commands (N) (Equation 6) (HE; LI, 2017).  

 

                    𝐼𝑇𝑅 = 60 ×
log2 𝑁+𝑃 log2 𝑃+(1−𝑃) log2(

1−𝑃

𝑁−1
)

𝑇
                    (6) 

 

From Table 8, we may conclude that the system operation is robust with lower 

processing complexity and power requirements, which are adequate for real-life use. For 

example, (LÓPEZ et al., 2017) required a more complex processing unit and four different types 

of eye movements to interact with the interface, yet their performance was similar to our system. 

In (HE; LI, 2017), the study combined the SVM technique and a waveform detection method, 

but the results were similar to those of our study. The studies that presented a considerable 

difference in performance (DURAISAMY; REDDY, 2021; SARAVANAKUMAR; 

RAMASUBBA REDDY, 2020) required an additional control signal (SSVEP) that may not be 

convenient for real-life use. 
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Table 8 - Comparison of the Proposed System with Other Studies 

Source: Author. 

4.4 Limitations of the EOG system developed and its application 

The system described in this study has some limitations. Although it is an asynchronous 

interface, the time between the flashes limits the speed of interaction. The time between the 

flashes was set to 250 ms, and if the user wanted to change the pace, the programmer needed to 

change it for him/her. For example, during the experiments with the Lucy Montoro participants, 

the time between flashes was increased for adaptation. The proposed system also requires 

training and time for the users to adapt. The time and extent of adaptation varied significantly 

among the users. Some participants began writing with high accuracy during the first test 

session, whereas others took several sessions. Lastly, the size of the electrodes and the 

discomfort caused by the wires could be improved. 

The tests also had limitations. Only four IRLM participants were selected to test the 

proposed system, and the time spent with them was mostly restricted to a maximum of 40 min. 

This is a short time for the required tasks: calibration, accuracy test, adaptation, and writing 

test. One participant could spend more time on the tests during the sessions, whereas the other 

Reference Control Signal 

Number of 

Possible 

Commands 

RT 

(s) 
Accuracy (%) ITR (bits/min) 

(LÓPEZ et al., 2017) EOG 64 5.55 98 20 

(HE; LI, 2017) EOG 40 6.07 93.02 45.83 

(POSTELNICU; TALABA, 2013) EOG-P300 72 12.7 90.62 18.28 

(SARAVANAKUMAR; 

RAMASUBBA REDDY, 2020) 
SSVEP-EOG 23 3.70 96.73 76.02 

(DURAISAMY; REDDY, 2021) SSVEP-EOG 40 2.70 99.38 116.58 

Our system 

(subjects without disabilities) 
EOG 29 8.26 89.91 28.34 

Our  system (IRLM Participants) EOG 29 9.79 91.97 24.94 
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could participate in 12 sessions. However, the remaining two participants had only five sessions 

of interaction with the system. 

4.5 Results for tests of the acquisition system 

 The new EOG positioning tends to produce a waveform similar to that of the first 

electrode positioning, as illustrated in Figure 41. However, the new positioning showed a 

greater amplitude for the same blink intensity. Although dry electrodes were not used, as in the 

JINS MEME, these findings suggest the potential miniaturization and portability. 

Figure 41 - EOG segment for the new electrode position 

 

Source: Author. 

The development of a device such as JINS MEME would enable real-life use. In Brazil, 

a similar device has been recently launched (Colibri, TiX Tecnologia Assistiva, Brazil). It 

utilizes an infrared light sensor and an accelerometer to detect eye blinks and head movements, 

respectively. This device can function as a head computer mouse and is often used with spelling 

interfaces. Moreover, Colibri (TIX TECNOLOGIA ASSISTIVA INC., 2021) has addressed a 

crucial issue for this type of technology: maintenance and technical support. They offer a price 

for customers to purchase the glasses, but also provide a significantly lower price (25 times 
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less) for users to rent the product and receive all necessary support, including replacements, if 

required. An EOG eyeglasses device could benefit from the same business model. 

4.6 Future works 

Future works may include the study of evaluation of user performance with a larger 

number of tests in individuals with disabilities. This would result in a more robust conclusion 

about the effectiveness of the interface. The next step may also involve integrating a light and 

flexible wireless EOG acquisition system to enhance comfort and mobility in real-life 

situations.  
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5. CONCLUSIONS 

This dissertation describes the development and evaluation of an asynchronous single-

channel EOG interface for people with mobility disabilities who cannot communicate by 

speaking, writing, or gesturing. The study initially explored the use of EOG signals as a 

modality for communication and verified the feasibility of an EOG-based communication 

device. This opened discussions with the IRLM Team, which led us to investigate the use of 

eye blinks in synchrony selection as a method of communication. As a result, we developed an 

EOG blink communication system with a GUI and evaluated it with both subjects without 

disabilities and with disabilities at the IRLM. 

The evaluation results showed high accuracy for both the blink detection algorithm and 

the proposed speller. Compared to previous research, we achieved lower processing complexity 

and power requirements while maintaining robust performance. However, the study had some 

limitations, including a limited maximum speed of interaction, the need for training and 

adaptation that varied between users, and the small number of participants from the IRLM. 

This study is expected to contribute to an assistive technology for people with 

disabilities by providing a practical and comfortable design for everyday use. Future work may 

include the study of change in user performance with the number of tests, as well as 

improvements to the design to enhance comfort and mobility in real-life situations. This may 

involve incorporating a light and flexible wireless EOG acquisition system. 
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APPENDIX A – PYTHON CODE FOR LSL  

import time 

from pylsl import StreamInlet, resolve_stream 

from time import sleep 

 

# first resolve an EOG stream on the lab network 

print("looking for an EOG stream...") 

streams = resolve_stream('type', 'EEG') 

 

# create a new inlet to read from the stream 

inlet = StreamInlet(streams[0]) 

duration = 2 

 

sleep(1) 

 

def testLSLSamplingRate(): 

    start = time.time() 

    totalNumSamples = 0 

    validSamples = 0 

    numChunks = 0 

 

    while time.time() <= start + duration: 

        # get chunks of samples 

        samples, timestamp = inlet.pull_chunk() 

        if samples: 

            numChunks += 1 

            print( len(samples) ) 

            totalNumSamples += len(samples) 

            # print(samples); 

            for sample in samples: 

                print(sample) 

                validSamples += 1 

 

    print( "Number of Chunks and Samples == {} , {}".format(numChunks, 

totalNumSamples) ) 

    print( "Valid Samples and Duration == {} / {}".format(validSamples, 

duration) ) 

    print( "Avg Sampling Rate == {}".format(validSamples / duration) ) 

 

 

testLSLSamplingRate() 
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APPENDIX B – PYTHON CODE FOR THE PROPOSED SYSTEM 

# -*- coding: cp1252 -*- 
import tkinter 
from pylsl import StreamInlet, resolve_stream 
import time 
import matplotlib.pyplot as plt 
from time import sleep 
import statistics 
import tkinter.font as tkFont 
 
deltaArr = [] 
samples = [] 
timeSamples = [] 
timeStamps = [] 
 
timeDiff = [] 
duration = 0.8 
timeFlashes = 60 
 
AmaxVec = [] 
tpAMaxVec = [] 
tpSMaxVec = [] 
SmaxVec = [] 
SminVec = [] 
dTSVec = [] 
avgDeltaArr = [] 
     
rodada = 1 
piscadas = 0 
piscadaErrada = 0 
 
class EOGInterface: 
    def __init__(self): 
        self.main_window = tkinter.Tk() 
 
        self.main_window.geometry('1300x700') 
         
        self.construcMainMenu() 
         
    def construcMainMenu(self): 
         
        self.main_window.title('Menu') 
        
        self.button = tkinter.Button( self.main_window, text = 'Calibração', 
                                       font = ("Arial Bold", 30),) 
        self.button.grid(column=0, row=0, sticky ="WENS", pady = 10, padx = 10) 
         
        self.button1 = tkinter.Button( self.main_window, text = 'Alimentação', 
                                       font = ("Arial Bold",30), 
command=self.sleep) 
        self.button1.grid(column=1, row=0, sticky ="WENS", pady = 10, padx = 10) 
 
        self.button2 = tkinter.Button( self.main_window, text = 'Banheiro', 
                                       font = ("Arial Bold", 30), 
command=self.bath) 
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        self.button2.grid(column=2, row=0, sticky ="WENS", pady = 10, padx = 10) 
         
        self.button3 = tkinter.Button( self.main_window, text = 'Emergência', 
                                       font = ("Arial Bold", 30), 
command=self.emergencyHelp) 
        self.button3.grid(column=0, row=1, sticky ="WENS", pady = 10, padx = 10) 
         
        self.button4 = tkinter.Button( self.main_window, text = 'Água', 
                                       font = ("Arial Bold", 30), 
command=self.emergencyHelp) 
        self.button4.grid(column=1, row=1, sticky ="WENS", pady = 10, padx = 10) 
         
        self.button5 = tkinter.Button( self.main_window, text = 'Teclado Virtual', 
                                       font = ("Arial Bold", 30), 
command=self.open_keyboard) 
        self.button5.grid(column=2, row=1, sticky ="WENS", pady = 10, padx = 10) 
 
        tkinter.mainloop() 
 
    def emergencyHelp(self): 
            print('Emergency Help') 
             
    def medicalAssistance(self): 
            print('Medical Assistance') 
         
    def sleep(self): 
        print('Sleep') 
         
    def bath(self): 
        print('Bath') 
 
    def flashBlocksSelection(self): 
         
        global deltaArr, samples, timeSamples, timeStamps, timeDiff, duration, 
timeFlashes  
        global AmaxVec, tpAMaxVec, tpSMaxVec, SmaxVec, SminVec, dTSVec, 
avgDeltaArr  
        global rodada, piscadas, piscadaErrada  
        global tpAmaxMean, tpSMaxMean, AmaxThreshold, SmaxThreshold, 
dTSLThreshold, dTSHThreshold, tpSMaxLThreshold, tpSMaxHThreshold  
        global textOfTextBox 
         
        sleep(1) 
        self.flashLetters('Start') 
        sleep(0.1) 
        self.unFlashLetters('Start') 
        sleep(1) 
         
        # first resolve an EOG stream on the lab network 
        print("\nlooking for an EOG stream...") 
        streams = resolve_stream('type', 'EEG') 
        # create a new inlet to read from the stream 
        inlet = StreamInlet(streams[0]) 
        sample, timestamp = inlet.pull_sample() 
        while len(sample) == 0: 
            samples, timestamp = inlet.pull_sample() 
        x1 = sample[0] 
        initialTimeStamp = timestamp 
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        timeStamps.append(0) 
        samples.append(x1) 
        deltaArr.append(0) 
        oldTimestamp = timestamp 
         
        self.flashBlocks(1) 
         
        start = time.time()         
 
        while time.time() <= (start + (timeFlashes*0.07+1)): 
            sample, timestamp = inlet.pull_sample() 
            if timestamp > oldTimestamp: 
                timeStamps.append(timestamp - initialTimeStamp ) 
                timeSample = time.time() - start 
                timeSamples.append(timeSample) 
                x2 = sample[0] 
                samples.append(x2) 
                deltaX = x2 - x1 
                deltaArr.append(deltaX) 
                x1 = x2 
                oldTimestamp = timestamp 
         
                tempoA =  time.time() - start 
                if (tempoA >= 0.1 and self.labelABCDE.cget("bg") == "darkgreen"): 
                    self.unflashBlocks(1) 
                elif ( tempoA >= 0.01*timeFlashes and tempoA < (0.01*timeFlashes + 
0.1)  and self.labelFGHIJ.cget("bg")!= "darkgreen"): 
                    self.flashBlocks(2) 
                elif ( tempoA >= (0.01*timeFlashes + 0.1)  and 
self.labelFGHIJ.cget("bg")== "darkgreen" ): 
                    self.unflashBlocks(2) 
                elif ( tempoA >= 0.02*timeFlashes and tempoA < (0.02*timeFlashes + 
0.1) and self.labelKLMNO.cget("bg")!= "darkgreen"): 
                    self.flashBlocks(3) 
                elif ( tempoA >= (0.02*timeFlashes + 0.1) and 
self.labelKLMNO.cget("bg")== "darkgreen" ): 
                    self.unflashBlocks(3)    
                elif ( tempoA >= 0.03*timeFlashes and tempoA < (0.03*timeFlashes + 
0.1) and self.labelPQRST.cget("bg")!= "darkgreen"): 
                    self.flashBlocks(4) 
                elif ( tempoA >= (0.03*timeFlashes + 0.1) and 
self.labelPQRST.cget("bg")== "darkgreen" ): 
                    self.unflashBlocks(4) 
                elif ( tempoA >= 0.04*timeFlashes and tempoA < (0.04*timeFlashes + 
0.1) and self.labelUVWXYZ.cget("bg")!= "darkgreen"): 
                    self.flashBlocks(5) 
                elif ( tempoA >= (0.04*timeFlashes + 0.1) and 
self.labelUVWXYZ.cget("bg")== "darkgreen" ): 
                    self.unflashBlocks(5)     
                elif ( tempoA >= 0.05*timeFlashes  and tempoA < (0.05*timeFlashes 
+ 0.1)and self.backspace.cget("bg")!= "darkgreen"): 
                    self.flashLetters('Backspace') 
                elif ( tempoA >= (0.05*timeFlashes + 0.1) and 
self.backspace.cget("bg")== "darkgreen" ): 
                    self.unFlashLetters('Backspace') 
                elif ( tempoA >= 0.06*timeFlashes  and tempoA < (0.06*timeFlashes 
+ 0.1)and self.space.cget("bg")!= "darkgreen"): 
                    self.flashLetters('Space') 
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                elif ( tempoA >= (0.06*timeFlashes + 0.1) and 
self.space.cget("bg")== "darkgreen" ): 
                    self.unFlashLetters('Space') 
                elif ( tempoA >= 0.07*timeFlashes and tempoA < (0.07*timeFlashes + 
0.1) and self.returnMenu.cget("bg")!= "darkgreen"): 
                    self.flashLetters('Return') 
                elif ( tempoA >= (0.07*timeFlashes + 0.1) and 
self.returnMenu.cget("bg")== "darkgreen" ): 
                    self.unFlashLetters('Return') 
         
        avgDeltaArr.insert(0,deltaArr[0]) 
        avgDeltaArr.insert(1,deltaArr[1]) 
        for i in range(2,len(deltaArr),1): 
            a = i-1 
            aa = i -2  
            value = (deltaArr[i] + deltaArr[a] + deltaArr[aa])/ 3 
            avgDeltaArr.insert(i , value ) 
         
        buttons = {} 
         
        for i in range(1,9,1):  
            timeStampsIndex = [idx for idx, val in enumerate(timeStamps) if (val > 
0.1+(i-1)*0.01*timeFlashes and val < 0.8+(i-1)*0.01*timeFlashes)]                
            timeStampsA = [timeStamps[index] for index in timeStampsIndex]    
            samplesA = [samples[index] for index in timeStampsIndex] 
            deltaArrA = [avgDeltaArr[index] for index in timeStampsIndex] 
            delayT = 0.01*timeFlashes*(i-1) 
            timeStampsA[:] = [timeStampA - delayT for timeStampA in timeStampsA] 
         
            if(samplesA):  
                AmaxA = max(samplesA) 
                tpAMaxIndexA = samplesA.index(AmaxA) 
                SmaxA = max(deltaArrA) 
                tpSMaxIndexA = deltaArrA.index(SmaxA) 
                tpSMaxA = timeStampsA[tpSMaxIndexA] 
                SminA = min(deltaArrA[tpSMaxIndexA:(tpSMaxIndexA+50)]) 
         
                tpMinIndexA = deltaArrA.index(SminA) 
                dTSA = timeStampsA[tpMinIndexA] - timeStampsA[tpSMaxIndexA]  
         
            if( (SmaxA > SmaxThreshold) and (dTSA > dTSLThreshold) and (dTSA < 
dTSHThreshold) and (tpSMaxA > tpSMaxLThreshold) and (tpSMaxA < tpSMaxHThreshold)): 
         
                if i == 1: 
                    buttons["1"] =  abs(tpSMaxA - tpSMaxMean) 
                elif i == 2: 
                    buttons["2"] =  abs(tpSMaxA - tpSMaxMean) 
                elif i == 3: 
                    buttons["3"] =  abs(tpSMaxA - tpSMaxMean)  
                elif i == 4: 
                    buttons["4"] =  abs(tpSMaxA - tpSMaxMean)  
                elif i == 5: 
                    buttons["5"] =  abs(tpSMaxA - tpSMaxMean) 
                elif i == 6: 
                    buttons["Backspace"] =  abs(tpSMaxA - tpSMaxMean) 
                elif i == 7: 
                    buttons["Space"] =  abs(tpSMaxA - tpSMaxMean) 
                elif i == 8: 
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                    buttons["Return"] =  abs(tpSMaxA - tpSMaxMean)  
         
                print('\Linha '+ str(i) + ' Pré-Selecionada') 
                print('Amax = ' + str(AmaxA)) 
                print('tpAmax = ' + str(timeStampsA[tpAMaxIndexA]))     
                print('tpSmax = ' + str(timeStampsA[tpSMaxIndexA])) 
                print('Smax = ' + str(SmaxA)) 
                print('tpSmin = ' + str(timeStampsA[tpMinIndexA])) 
                print('Smin = ' + str(SminA)) 
                print('dTS = ' + str(dTSA)) 
                print('Samples = ' + str(len(samplesA))) 
                print('deltaArr = ' + str(len(deltaArrA))) 
         
            deltaArrA = [] 
            samplesA = [] 
            timeStampsA = [] 
         
        selected = '' 
        if buttons: 
         
            selected = min(buttons, key=buttons.get) 
            print('\n Final Selection ' + selected) 
            if selected == 'Return': 
                textOfTextBox = self.textBox.get('1.0', 'end') 
                deltaArr = [] 
                samples = [] 
                avgDeltaArr = [] 
                timeSamples = [] 
                timeStamps = [] 
                timeDiff = [] 
                self.rebuild_Menu() 
                return 
            elif selected == "Backspace": 
                self.deleteTextChar() 
            elif selected == 'Space': 
                self.textBox.insert(tkinter.END, '_')     
            else: 
                self.main_window.update() 
                deltaArr = [] 
                samples = [] 
                avgDeltaArr = [] 
                timeSamples = [] 
                timeStamps = [] 
                timeDiff = [] 
                if selected == '1': 
                    self.open_keyboardABCDE() 
                elif selected =='2': 
                    self.open_keyboardFGHIJ() 
                elif selected =='3': 
                    self.open_keyboarKLMNO() 
                elif selected =='4': 
                    self.open_keyboarPQRST() 
                elif selected =='5': 
                    self.open_keyboarUVWXYZ() 
                return 
        print('length buttons ' + str(buttons))          
         
        deltaArr = [] 
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        samples = [] 
        avgDeltaArr = [] 
        timeSamples = [] 
        timeStamps = [] 
        timeDiff = [] 
         
        self.flashBlocksSelection()  
     
    def flashLettersSelectionABCDE(self): 
         
        global deltaArr, samples, timeSamples, timeStamps, timeDiff, duration, 
timeFlashes  
        global AmaxVec, tpAMaxVec, tpSMaxVec, SmaxVec, SminVec, dTSVec, 
avgDeltaArr  
        global rodada, piscadas, piscadaErrada  
        global tpAmaxMean, tpSMaxMean, AmaxThreshold, SmaxThreshold, 
dTSLThreshold, dTSHThreshold, tpSMaxLThreshold, tpSMaxHThreshold  
        global textOfTextBox 
        
        sleep(1) 
        self.flashLetters('Start') 
        sleep(0.1) 
        self.unFlashLetters('Start') 
        sleep(1) 
         
        # first resolve an EOG stream on the lab network 
        print("\nlooking for an EOG stream...") 
        streams = resolve_stream('type', 'EEG') 
        # create a new inlet to read from the stream 
        inlet = StreamInlet(streams[0]) 
        sample, timestamp = inlet.pull_sample() 
        while len(sample) == 0: 
            samples, timestamp = inlet.pull_sample() 
        x1 = sample[0] 
        initialTimeStamp = timestamp 
        timeStamps.append(0) 
        samples.append(x1) 
        deltaArr.append(0) 
        oldTimestamp = timestamp 
         
        self.flashLetters('A') 
         
        start = time.time()         
         
        while time.time() <= (start + (timeFlashes*0.04+1)): 
            sample, timestamp = inlet.pull_sample() 
            if timestamp > oldTimestamp: 
                timeStamps.append(timestamp - initialTimeStamp ) 
                timeSample = time.time() - start 
                timeSamples.append(timeSample) 
                x2 = sample[0] 
                samples.append(x2) 
                deltaX = x2 - x1 
                deltaArr.append(deltaX) 
                x1 = x2 
                oldTimestamp = timestamp 
                 
                tempoA =  time.time() - start 
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                if (tempoA >= 0.1 and self.labelA.cget("bg") == "darkgreen"): 
                    self.unFlashLetters('A') 
                elif ( tempoA >= 0.01*timeFlashes and tempoA < (0.01*timeFlashes + 
0.1)  and self.labelB.cget("bg")!= "darkgreen"): 
                    self.flashLetters('B') 
                elif ( tempoA >= (0.01*timeFlashes + 0.1)  and 
self.labelB.cget("bg")== "darkgreen" ): 
                    self.unFlashLetters('B') 
                elif ( tempoA >= 0.02*timeFlashes and tempoA < (0.02*timeFlashes + 
0.1) and self.labelC.cget("bg")!= "darkgreen"): 
                    self.flashLetters('C') 
                elif ( tempoA >= (0.02*timeFlashes + 0.1) and 
self.labelC.cget("bg")== "darkgreen" ): 
                    self.unFlashLetters('C')     
                elif ( tempoA >= 0.03*timeFlashes and tempoA < (0.03*timeFlashes + 
0.1) and self.labelD.cget("bg")!= "darkgreen"): 
                    self.flashLetters('D') 
                elif ( tempoA >= (0.03*timeFlashes + 0.1) and 
self.labelD.cget("bg")== "darkgreen" ): 
                    self.unFlashLetters('D') 
                elif ( tempoA >= 0.04*timeFlashes and tempoA < (0.04*timeFlashes + 
0.1) and self.labelE.cget("bg")!= "darkgreen"): 
                    self.flashLetters('E') 
                elif ( tempoA >= (0.04*timeFlashes + 0.1) and 
self.labelE.cget("bg")== "darkgreen" ): 
                    self.unFlashLetters('E')     
                 
                 
        avgDeltaArr.insert(0,deltaArr[0]) 
        avgDeltaArr.insert(1,deltaArr[1]) 
        for i in range(2,len(deltaArr),1): 
            a = i-1 
            aa = i -2  
            value = (deltaArr[i] + deltaArr[a] + deltaArr[aa])/ 3 
            avgDeltaArr.insert(i , value ) 
         
        buttons = {} 
         
        for i in range(1,6,1):  
            timeStampsIndex = [idx for idx, val in enumerate(timeStamps) if (val > 
0.1+(i-1)*0.01*timeFlashes and val < 0.8+(i-1)*0.01*timeFlashes)]                
            timeStampsA = [timeStamps[index] for index in timeStampsIndex]    
            samplesA = [samples[index] for index in timeStampsIndex] 
            deltaArrA = [avgDeltaArr[index] for index in timeStampsIndex] 
            delayT = 0.01*timeFlashes*(i-1) 
            timeStampsA[:] = [timeStampA - delayT for timeStampA in timeStampsA] 
             
            if(samplesA):  
                AmaxA = max(samplesA) 
                tpAMaxIndexA = samplesA.index(AmaxA) 
                SmaxA = max(deltaArrA) 
                tpSMaxIndexA = deltaArrA.index(SmaxA) 
                tpSMaxA = timeStampsA[tpSMaxIndexA] 
                SminA = min(deltaArrA[tpSMaxIndexA:(tpSMaxIndexA+50)]) 
            
                tpMinIndexA = deltaArrA.index(SminA) 
                dTSA = timeStampsA[tpMinIndexA] - timeStampsA[tpSMaxIndexA]  
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            if( (SmaxA > SmaxThreshold) and (dTSA > dTSLThreshold) and (dTSA < 
dTSHThreshold) and (tpSMaxA > tpSMaxLThreshold) and (tpSMaxA < tpSMaxHThreshold)): 
                 
                if i == 1: 
                    buttons["A"] =  abs(tpSMaxA - tpSMaxMean) 
                elif i == 2: 
                    buttons["B"] =  abs(tpSMaxA - tpSMaxMean) 
                elif i == 3: 
                    buttons["C"] =  abs(tpSMaxA - tpSMaxMean)  
                elif i == 4: 
                    buttons["D"] =  abs(tpSMaxA - tpSMaxMean)  
                elif i == 5: 
                    buttons["E"] =  abs(tpSMaxA - tpSMaxMean) 
                 
                print('\nBotao '+ str(i) + 'Pré-Selecionado') 
                print('Amax = ' + str(AmaxA)) 
                print('tpAmax = ' + str(timeStampsA[tpAMaxIndexA]))     
                print('tpSmax = ' + str(timeStampsA[tpSMaxIndexA])) 
                print('Smax = ' + str(SmaxA)) 
                print('tpSmin = ' + str(timeStampsA[tpMinIndexA])) 
                print('Smin = ' + str(SminA)) 
                print('dTS = ' + str(dTSA)) 
                print('Samples = ' + str(len(samplesA))) 
                print('deltaArr = ' + str(len(deltaArrA))) 
             
            deltaArrA = [] 
            samplesA = [] 
            timeStampsA = [] 
         
        selected = '' 
        if buttons: 
             
            selected = min(buttons, key=buttons.get) 
            print('\n Final Selection ' + selected) 
            self.textBox.insert(tkinter.END, selected) 
            self.main_window.update() 
                              
        print('length buttons ' + str(buttons))          
         
        deltaArr = [] 
        samples = [] 
        avgDeltaArr = [] 
        timeSamples = [] 
        timeStamps = [] 
        timeDiff = [] 
         
        self.labelA.grid_remove() 
        self.labelB.grid_remove() 
        self.labelC.grid_remove() 
        self.labelD.grid_remove() 
        self.labelE.grid_remove() 
        self.labelABCDE.grid() 
        self.labelFGHIJ.grid() 
        self.labelKLMNO.grid() 
        self.labelPQRST.grid() 
        self.labelUVWXYZ.grid() 
        self.flashBlocksSelection() 
         



92 

 

 

 

 

    def flashLettersSelectionFGHIJ(self): 
         
        global deltaArr, samples, timeSamples, timeStamps, timeDiff, duration, 
timeFlashes 
        global AmaxVec, tpAMaxVec, tpSMaxVec, SmaxVec, SminVec, dTSVec, 
avgDeltaArr  
        global rodada, piscadas, piscadaErrada  
        global tpAmaxMean, tpSMaxMean, AmaxThreshold, SmaxThreshold, 
dTSLThreshold, dTSHThreshold, tpSMaxLThreshold, tpSMaxHThreshold  
        global textOfTextBox 
        
        sleep(1) 
        self.flashLetters('Start') 
        sleep(0.1) 
        self.unFlashLetters('Start') 
        sleep(1) 
         
        # first resolve an EOG stream on the lab network 
        print("\nlooking for an EOG stream...") 
        streams = resolve_stream('type', 'EEG') 
        # create a new inlet to read from the stream 
        inlet = StreamInlet(streams[0]) 
        sample, timestamp = inlet.pull_sample() 
        while len(sample) == 0: 
            samples, timestamp = inlet.pull_sample() 
        x1 = sample[0] 
        initialTimeStamp = timestamp 
        timeStamps.append(0) 
        samples.append(x1) 
        deltaArr.append(0) 
        oldTimestamp = timestamp 
         
        self.flashLetters('F') 
         
        start = time.time()         
         
        while time.time() <= (start + (timeFlashes*0.04+1)): 
            sample, timestamp = inlet.pull_sample() 
            if timestamp > oldTimestamp: 
                timeStamps.append(timestamp - initialTimeStamp ) 
                timeSample = time.time() - start 
                timeSamples.append(timeSample) 
                x2 = sample[0] 
                samples.append(x2) 
                deltaX = x2 - x1 
                deltaArr.append(deltaX) 
                x1 = x2 
                oldTimestamp = timestamp 
                 
                tempoA =  time.time() - start 
                if (tempoA >= 0.1 and self.labelF.cget("bg") == "darkgreen"): 
                    self.unFlashLetters('F') 
                elif ( tempoA >= 0.01*timeFlashes and tempoA < (0.01*timeFlashes + 
0.1)  and self.labelG.cget("bg")!= "darkgreen"): 
                    self.flashLetters('G') 
                elif ( tempoA >= (0.01*timeFlashes + 0.1)  and 
self.labelG.cget("bg")== "darkgreen" ): 
                    self.unFlashLetters('G') 
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                elif ( tempoA >= 0.02*timeFlashes and tempoA < (0.02*timeFlashes + 
0.1) and self.labelH.cget("bg")!= "darkgreen"): 
                    self.flashLetters('H') 
                elif ( tempoA >= (0.02*timeFlashes + 0.1) and 
self.labelH.cget("bg")== "darkgreen" ): 
                    self.unFlashLetters('H')     
                elif ( tempoA >= 0.03*timeFlashes and tempoA < (0.03*timeFlashes + 
0.1) and self.labelI.cget("bg")!= "darkgreen"): 
                    self.flashLetters('I') 
                elif ( tempoA >= (0.03*timeFlashes + 0.1) and 
self.labelI.cget("bg")== "darkgreen" ): 
                    self.unFlashLetters('I') 
                elif ( tempoA >= 0.04*timeFlashes and tempoA < (0.04*timeFlashes + 
0.1) and self.labelJ.cget("bg")!= "darkgreen"): 
                    self.flashLetters('J') 
                elif ( tempoA >= (0.04*timeFlashes + 0.1) and 
self.labelJ.cget("bg")== "darkgreen" ): 
                    self.unFlashLetters('J')     
                 
                 
        avgDeltaArr.insert(0,deltaArr[0]) 
        avgDeltaArr.insert(1,deltaArr[1]) 
        for i in range(2,len(deltaArr),1): 
            a = i-1 
            aa = i -2  
            value = (deltaArr[i] + deltaArr[a] + deltaArr[aa])/ 3 
            avgDeltaArr.insert(i , value ) 
         
        buttons = {} 
         
        for i in range(1,6,1):  
            timeStampsIndex = [idx for idx, val in enumerate(timeStamps) if (val > 
0.1+(i-1)*0.01*timeFlashes and val < 0.8+(i-1)*0.01*timeFlashes)]                
            timeStampsA = [timeStamps[index] for index in timeStampsIndex]    
            samplesA = [samples[index] for index in timeStampsIndex] 
            deltaArrA = [avgDeltaArr[index] for index in timeStampsIndex] 
            delayT = 0.01*timeFlashes*(i-1) 
            timeStampsA[:] = [timeStampA - delayT for timeStampA in timeStampsA] 
             
            if(samplesA):  
                AmaxA = max(samplesA) 
                tpAMaxIndexA = samplesA.index(AmaxA) 
                SmaxA = max(deltaArrA) 
                tpSMaxIndexA = deltaArrA.index(SmaxA) 
                tpSMaxA = timeStampsA[tpSMaxIndexA] 
                SminA = min(deltaArrA[tpSMaxIndexA:(tpSMaxIndexA+50)]) 
            
                tpMinIndexA = deltaArrA.index(SminA) 
                dTSA = timeStampsA[tpMinIndexA] - timeStampsA[tpSMaxIndexA]  
                                 
            if( (SmaxA > SmaxThreshold) and (dTSA > dTSLThreshold) and (dTSA < 
dTSHThreshold) and (tpSMaxA > tpSMaxLThreshold) and (tpSMaxA < tpSMaxHThreshold)): 
                 
                if i == 1: 
                    buttons["F"] =  abs(tpSMaxA - tpSMaxMean) 
                elif i == 2: 
                    buttons["G"] =  abs(tpSMaxA - tpSMaxMean) 
                elif i == 3: 
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                    buttons["H"] =  abs(tpSMaxA - tpSMaxMean)  
                elif i == 4: 
                    buttons["I"] =  abs(tpSMaxA - tpSMaxMean)  
                elif i == 5: 
                    buttons["J"] =  abs(tpSMaxA - tpSMaxMean) 
                 
                print('\nBotao '+ str(i) + 'Pré-Selecionado') 
                print('Amax = ' + str(AmaxA)) 
                print('tpAmax = ' + str(timeStampsA[tpAMaxIndexA]))     
                print('tpSmax = ' + str(timeStampsA[tpSMaxIndexA])) 
                print('Smax = ' + str(SmaxA)) 
                print('tpSmin = ' + str(timeStampsA[tpMinIndexA])) 
                print('Smin = ' + str(SminA)) 
                print('dTS = ' + str(dTSA)) 
                print('Samples = ' + str(len(samplesA))) 
                print('deltaArr = ' + str(len(deltaArrA))) 
             
            deltaArrA = [] 
            samplesA = [] 
            timeStampsA = [] 
         
        selected = '' 
        if buttons: 
             
            selected = min(buttons, key=buttons.get) 
            print('\n Final Selection ' + selected) 
            if selected == 'Return': 
                textOfTextBox = self.textBox.get('1.0', 'end') 
                self.rebuild_Menu() 
                deltaArr = [] 
                samples = [] 
                avgDeltaArr = [] 
                timeSamples = [] 
                timeStamps = [] 
                timeDiff = [] 
                return 
            elif selected == "Backspace": 
                self.deleteTextChar() 
            else: 
                self.textBox.insert(tkinter.END, selected) 
                self.main_window.update() 
                              
        print('length buttons ' + str(buttons))          
         
        deltaArr = [] 
        samples = [] 
        avgDeltaArr = [] 
        timeSamples = [] 
        timeStamps = [] 
        timeDiff = [] 
         
        self.labelF.grid_remove() 
        self.labelG.grid_remove() 
        self.labelH.grid_remove() 
        self.labelI.grid_remove() 
        self.labelJ.grid_remove() 
        self.labelABCDE.grid() 
        self.labelFGHIJ.grid() 
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        self.labelKLMNO.grid() 
        self.labelPQRST.grid() 
        self.labelUVWXYZ.grid()         
        self.flashBlocksSelection() 
     
    def flashLettersSelectionKLMNO(self): 
         
        global deltaArr, samples, timeSamples, timeStamps, timeDiff, duration, 
timeFlashes  
        global AmaxVec, tpAMaxVec, tpSMaxVec, SmaxVec, SminVec, dTSVec, 
avgDeltaArr  
        global rodada, piscadas, piscadaErrada  
        global tpAmaxMean, tpSMaxMean, AmaxThreshold, SmaxThreshold, 
dTSLThreshold, dTSHThreshold, tpSMaxLThreshold, tpSMaxHThreshold  
        global textOfTextBox 
 
        sleep(1) 
        self.flashLetters('Start') 
        sleep(0.1) 
        self.unFlashLetters('Start') 
        sleep(1) 
         
        # first resolve an EOG stream on the lab network 
        print("\nlooking for an EOG stream...") 
        streams = resolve_stream('type', 'EEG') 
        # create a new inlet to read from the stream 
        inlet = StreamInlet(streams[0]) 
        sample, timestamp = inlet.pull_sample() 
        while len(sample) == 0: 
            samples, timestamp = inlet.pull_sample() 
        x1 = sample[0] 
        initialTimeStamp = timestamp 
        timeStamps.append(0) 
        samples.append(x1) 
        deltaArr.append(0) 
        oldTimestamp = timestamp 
         
        self.flashLetters('K') 
         
        start = time.time()         
         
        while time.time() <= (start + (timeFlashes*0.04+1)): 
            sample, timestamp = inlet.pull_sample() 
            if timestamp > oldTimestamp: 
                timeStamps.append(timestamp - initialTimeStamp ) 
                timeSample = time.time() - start 
                timeSamples.append(timeSample) 
                x2 = sample[0] 
                samples.append(x2) 
                deltaX = x2 - x1 
                deltaArr.append(deltaX) 
                x1 = x2 
                oldTimestamp = timestamp 
                 
                tempoA =  time.time() - start 
                if (tempoA >= 0.1 and self.labelK.cget("bg") == "darkgreen"): 
                    self.unFlashLetters('K') 
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                elif ( tempoA >= 0.01*timeFlashes and tempoA < (0.01*timeFlashes + 
0.1)  and self.labelL.cget("bg")!= "darkgreen"): 
                    self.flashLetters('L') 
                elif ( tempoA >= (0.01*timeFlashes + 0.1)  and 
self.labelL.cget("bg")== "darkgreen" ): 
                    self.unFlashLetters('L') 
                elif ( tempoA >= 0.02*timeFlashes and tempoA < (0.02*timeFlashes + 
0.1) and self.labelM.cget("bg")!= "darkgreen"): 
                    self.flashLetters('M') 
                elif ( tempoA >= (0.02*timeFlashes + 0.1) and 
self.labelM.cget("bg")== "darkgreen" ): 
                    self.unFlashLetters('M')     
                elif ( tempoA >= 0.03*timeFlashes and tempoA < (0.03*timeFlashes + 
0.1) and self.labelN.cget("bg")!= "darkgreen"): 
                    self.flashLetters('N') 
                elif ( tempoA >= (0.03*timeFlashes + 0.1) and 
self.labelN.cget("bg")== "darkgreen" ): 
                    self.unFlashLetters('N') 
                elif ( tempoA >= 0.04*timeFlashes and tempoA < (0.04*timeFlashes + 
0.1) and self.labelO.cget("bg")!= "darkgreen"): 
                    self.flashLetters('O') 
                elif ( tempoA >= (0.04*timeFlashes + 0.1) and 
self.labelO.cget("bg")== "darkgreen" ): 
                    self.unFlashLetters('O')     
                 
                 
        avgDeltaArr.insert(0,deltaArr[0]) 
        avgDeltaArr.insert(1,deltaArr[1]) 
        for i in range(2,len(deltaArr),1): 
            a = i-1 
            aa = i -2  
            value = (deltaArr[i] + deltaArr[a] + deltaArr[aa])/ 3 
            avgDeltaArr.insert(i , value ) 
         
        buttons = {} 
         
        for i in range(1,6,1):  
            timeStampsIndex = [idx for idx, val in enumerate(timeStamps) if (val > 
0.1+(i-1)*0.01*timeFlashes and val < 0.8+(i-1)*0.01*timeFlashes)]                
            timeStampsA = [timeStamps[index] for index in timeStampsIndex]    
            samplesA = [samples[index] for index in timeStampsIndex] 
            deltaArrA = [avgDeltaArr[index] for index in timeStampsIndex] 
            delayT = 0.01*timeFlashes*(i-1) 
            timeStampsA[:] = [timeStampA - delayT for timeStampA in timeStampsA] 
             
            if(samplesA):  
                AmaxA = max(samplesA) 
                tpAMaxIndexA = samplesA.index(AmaxA) 
                SmaxA = max(deltaArrA) 
                tpSMaxIndexA = deltaArrA.index(SmaxA) 
                tpSMaxA = timeStampsA[tpSMaxIndexA] 
                SminA = min(deltaArrA[tpSMaxIndexA:(tpSMaxIndexA+50)]) 
            
                tpMinIndexA = deltaArrA.index(SminA) 
                dTSA = timeStampsA[tpMinIndexA] - timeStampsA[tpSMaxIndexA]  
                 
            if( (SmaxA > SmaxThreshold) and (dTSA > dTSLThreshold) and (dTSA < 
dTSHThreshold) and (tpSMaxA > tpSMaxLThreshold) and (tpSMaxA < tpSMaxHThreshold)): 
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                if i == 1: 
                    buttons["K"] =  abs(tpSMaxA - tpSMaxMean) 
                elif i == 2: 
                    buttons["L"] =  abs(tpSMaxA - tpSMaxMean) 
                elif i == 3: 
                    buttons["M"] =  abs(tpSMaxA - tpSMaxMean)  
                elif i == 4: 
                    buttons["N"] =  abs(tpSMaxA - tpSMaxMean)  
                elif i == 5: 
                    buttons["O"] =  abs(tpSMaxA - tpSMaxMean) 
                 
                print('\nBotao '+ str(i) + 'Pré-Selecionado') 
                print('Amax = ' + str(AmaxA)) 
                print('tpAmax = ' + str(timeStampsA[tpAMaxIndexA]))     
                print('tpSmax = ' + str(timeStampsA[tpSMaxIndexA])) 
                print('Smax = ' + str(SmaxA)) 
                print('tpSmin = ' + str(timeStampsA[tpMinIndexA])) 
                print('Smin = ' + str(SminA)) 
                print('dTS = ' + str(dTSA)) 
                print('Samples = ' + str(len(samplesA))) 
                print('deltaArr = ' + str(len(deltaArrA))) 
             
            deltaArrA = [] 
            samplesA = [] 
            timeStampsA = [] 
         
        selected = '' 
        if buttons: 
             
            selected = min(buttons, key=buttons.get) 
            print('\n Final Selection ' + selected) 
            self.textBox.insert(tkinter.END, selected) 
            self.main_window.update() 
                              
        print('length buttons ' + str(buttons))          
         
        deltaArr = [] 
        samples = [] 
        avgDeltaArr = [] 
        timeSamples = [] 
        timeStamps = [] 
        timeDiff = [] 
         
        self.labelK.grid_remove() 
        self.labelL.grid_remove() 
        self.labelM.grid_remove() 
        self.labelN.grid_remove() 
        self.labelO.grid_remove() 
        self.labelABCDE.grid() 
        self.labelFGHIJ.grid() 
        self.labelKLMNO.grid() 
        self.labelPQRST.grid() 
        self.labelUVWXYZ.grid()         
        self.flashBlocksSelection()    
 
    def flashLettersSelectionPQRST(self): 
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        global deltaArr, samples, timeSamples, timeStamps, timeDiff, duration, 
timeFlashes 
        global AmaxVec, tpAMaxVec, tpSMaxVec, SmaxVec, SminVec, dTSVec, 
avgDeltaArr  
        global rodada, piscadas, piscadaErrada  
        global tpAmaxMean, tpSMaxMean, AmaxThreshold, SmaxThreshold, 
dTSLThreshold, dTSHThreshold, tpSMaxLThreshold, tpSMaxHThreshold  
        global textOfTextBox 
       
        sleep(1) 
        self.flashLetters('Start') 
        sleep(0.1) 
        self.unFlashLetters('Start') 
        sleep(1) 
         
        # first resolve an EOG stream on the lab network 
        print("\nlooking for an EOG stream...") 
        streams = resolve_stream('type', 'EEG') 
        # create a new inlet to read from the stream 
        inlet = StreamInlet(streams[0]) 
        sample, timestamp = inlet.pull_sample() 
        while len(sample) == 0: 
            samples, timestamp = inlet.pull_sample() 
        x1 = sample[0] 
        initialTimeStamp = timestamp 
        timeStamps.append(0) 
        samples.append(x1) 
        deltaArr.append(0) 
        oldTimestamp = timestamp 
         
        self.flashLetters('P') 
         
        start = time.time()         
         
        while time.time() <= (start + (timeFlashes*0.04+1)): 
            sample, timestamp = inlet.pull_sample() 
            if timestamp > oldTimestamp: 
                timeStamps.append(timestamp - initialTimeStamp ) 
                timeSample = time.time() - start 
                timeSamples.append(timeSample) 
                x2 = sample[0] 
                samples.append(x2) 
                deltaX = x2 - x1 
                deltaArr.append(deltaX) 
                x1 = x2 
                oldTimestamp = timestamp 
                 
                tempoA =  time.time() - start 
                if (tempoA >= 0.1 and self.labelP.cget("bg") == "darkgreen"): 
                    self.unFlashLetters('P') 
                elif ( tempoA >= 0.01*timeFlashes and tempoA < (0.01*timeFlashes + 
0.1)  and self.labelQ.cget("bg")!= "darkgreen"): 
                    self.flashLetters('Q') 
                elif ( tempoA >= (0.01*timeFlashes + 0.1)  and 
self.labelQ.cget("bg")== "darkgreen" ): 
                    self.unFlashLetters('Q') 
                elif ( tempoA >= 0.02*timeFlashes and tempoA < (0.02*timeFlashes + 
0.1) and self.labelR.cget("bg")!= "darkgreen"): 
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                    self.flashLetters('R') 
                elif ( tempoA >= (0.02*timeFlashes + 0.1) and 
self.labelR.cget("bg")== "darkgreen" ): 
                    self.unFlashLetters('R')     
                elif ( tempoA >= 0.03*timeFlashes and tempoA < (0.03*timeFlashes + 
0.1) and self.labelS.cget("bg")!= "darkgreen"): 
                    self.flashLetters('S') 
                elif ( tempoA >= (0.03*timeFlashes + 0.1) and 
self.labelS.cget("bg")== "darkgreen" ): 
                    self.unFlashLetters('S') 
                elif ( tempoA >= 0.04*timeFlashes and tempoA < (0.04*timeFlashes + 
0.1) and self.labelT.cget("bg")!= "darkgreen"): 
                    self.flashLetters('T') 
                elif ( tempoA >= (0.04*timeFlashes + 0.1) and 
self.labelT.cget("bg")== "darkgreen" ): 
                    self.unFlashLetters('T')     
                 
                 
        avgDeltaArr.insert(0,deltaArr[0]) 
        avgDeltaArr.insert(1,deltaArr[1]) 
        for i in range(2,len(deltaArr),1): 
            a = i-1 
            aa = i -2  
            value = (deltaArr[i] + deltaArr[a] + deltaArr[aa])/ 3 
            avgDeltaArr.insert(i , value ) 
         
        buttons = {} 
         
        for i in range(1,6,1):  
            timeStampsIndex = [idx for idx, val in enumerate(timeStamps) if (val > 
0.1+(i-1)*0.01*timeFlashes and val < 0.8+(i-1)*0.01*timeFlashes)]                
            timeStampsA = [timeStamps[index] for index in timeStampsIndex]    
            samplesA = [samples[index] for index in timeStampsIndex] 
            deltaArrA = [avgDeltaArr[index] for index in timeStampsIndex] 
            delayT = 0.01*timeFlashes*(i-1) 
            timeStampsA[:] = [timeStampA - delayT for timeStampA in timeStampsA] 
             
            if(samplesA):  
                AmaxA = max(samplesA) 
                tpAMaxIndexA = samplesA.index(AmaxA) 
                SmaxA = max(deltaArrA) 
                tpSMaxIndexA = deltaArrA.index(SmaxA) 
                tpSMaxA = timeStampsA[tpSMaxIndexA] 
                SminA = min(deltaArrA[tpSMaxIndexA:(tpSMaxIndexA+50)]) 
            
                tpMinIndexA = deltaArrA.index(SminA) 
                dTSA = timeStampsA[tpMinIndexA] - timeStampsA[tpSMaxIndexA]  
                 
                             
            if( (SmaxA > SmaxThreshold) and (dTSA > dTSLThreshold) and (dTSA < 
dTSHThreshold) and (tpSMaxA > tpSMaxLThreshold) and (tpSMaxA < tpSMaxHThreshold)): 
                 
                if i == 1: 
                    buttons["P"] =  abs(tpSMaxA - tpSMaxMean) 
                elif i == 2: 
                    buttons["Q"] =  abs(tpSMaxA - tpSMaxMean) 
                elif i == 3: 
                    buttons["R"] =  abs(tpSMaxA - tpSMaxMean)  
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                elif i == 4: 
                    buttons["S"] =  abs(tpSMaxA - tpSMaxMean)  
                elif i == 5: 
                    buttons["T"] =  abs(tpSMaxA - tpSMaxMean) 
                 
                print('\nBotao '+ str(i) + 'Pré-Selecionado') 
                print('Amax = ' + str(AmaxA)) 
                print('tpAmax = ' + str(timeStampsA[tpAMaxIndexA]))     
                print('tpSmax = ' + str(timeStampsA[tpSMaxIndexA])) 
                print('Smax = ' + str(SmaxA)) 
                print('tpSmin = ' + str(timeStampsA[tpMinIndexA])) 
                print('Smin = ' + str(SminA)) 
                print('dTS = ' + str(dTSA)) 
                print('Samples = ' + str(len(samplesA))) 
                print('deltaArr = ' + str(len(deltaArrA))) 
             
            deltaArrA = [] 
            samplesA = [] 
            timeStampsA = [] 
         
        selected = '' 
        if buttons: 
             
            selected = min(buttons, key=buttons.get) 
            print('\n Final Selection ' + selected) 
            self.textBox.insert(tkinter.END, selected) 
            self.main_window.update() 
                              
        print('length buttons ' + str(buttons))          
         
        deltaArr = [] 
        samples = [] 
        avgDeltaArr = [] 
        timeSamples = [] 
        timeStamps = [] 
        timeDiff = [] 
         
         
        self.labelP.grid_remove() 
        self.labelQ.grid_remove() 
        self.labelR.grid_remove() 
        self.labelS.grid_remove() 
        self.labelT.grid_remove() 
        self.labelABCDE.grid() 
        self.labelFGHIJ.grid() 
        self.labelKLMNO.grid() 
        self.labelPQRST.grid() 
        self.labelUVWXYZ.grid()         
        self.flashBlocksSelection() 
 
    def flashLettersSelectionUVWXYZ(self): 
         
        global deltaArr, samples, timeSamples, timeStamps, timeDiff, duration, 
timeFlashes  
        global AmaxVec, tpAMaxVec, tpSMaxVec, SmaxVec, SminVec, dTSVec, 
avgDeltaArr  
        global rodada, piscadas, piscadaErrada  
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        global tpAmaxMean, tpSMaxMean, AmaxThreshold, SmaxThreshold, 
dTSLThreshold, dTSHThreshold, tpSMaxLThreshold, tpSMaxHThreshold  
        global textOfTextBox 
         
        sleep(1) 
        self.flashLetters('Start') 
        sleep(0.1) 
        self.unFlashLetters('Start') 
        sleep(1) 
         
        # first resolve an EOG stream on the lab network 
        print("\nlooking for an EOG stream...") 
        streams = resolve_stream('type', 'EEG') 
        # create a new inlet to read from the stream 
        inlet = StreamInlet(streams[0]) 
        sample, timestamp = inlet.pull_sample() 
        while len(sample) == 0: 
            samples, timestamp = inlet.pull_sample() 
        x1 = sample[0] 
        initialTimeStamp = timestamp 
        timeStamps.append(0) 
        samples.append(x1) 
        deltaArr.append(0) 
        oldTimestamp = timestamp 
         
        self.flashLetters('U') 
         
        start = time.time()         
         
        while time.time() <= (start + (timeFlashes*0.05+1)): 
            sample, timestamp = inlet.pull_sample() 
            if timestamp > oldTimestamp: 
                timeStamps.append(timestamp - initialTimeStamp ) 
                timeSample = time.time() - start 
                timeSamples.append(timeSample) 
                x2 = sample[0] 
                samples.append(x2) 
                deltaX = x2 - x1 
                deltaArr.append(deltaX) 
                x1 = x2 
                oldTimestamp = timestamp 
                 
                tempoA =  time.time() - start 
                if (tempoA >= 0.1 and self.labelU.cget("bg") == "darkgreen"): 
                    self.unFlashLetters('U') 
                elif ( tempoA >= 0.01*timeFlashes and tempoA < (0.01*timeFlashes + 
0.1)  and self.labelV.cget("bg")!= "darkgreen"): 
                    self.flashLetters('V') 
                elif ( tempoA >= (0.01*timeFlashes + 0.1)  and 
self.labelV.cget("bg")== "darkgreen" ): 
                    self.unFlashLetters('V') 
                elif ( tempoA >= 0.02*timeFlashes and tempoA < (0.02*timeFlashes + 
0.1) and self.labelW.cget("bg")!= "darkgreen"): 
                    self.flashLetters('W') 
                elif ( tempoA >= (0.02*timeFlashes + 0.1) and 
self.labelW.cget("bg")== "darkgreen" ): 
                    self.unFlashLetters('W')     
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                elif ( tempoA >= 0.03*timeFlashes and tempoA < (0.03*timeFlashes + 
0.1) and self.labelX.cget("bg")!= "darkgreen"): 
                    self.flashLetters('X') 
                elif ( tempoA >= (0.03*timeFlashes + 0.1) and 
self.labelX.cget("bg")== "darkgreen" ): 
                    self.unFlashLetters('X') 
                elif ( tempoA >= 0.04*timeFlashes and tempoA < (0.04*timeFlashes + 
0.1) and self.labelY.cget("bg")!= "darkgreen"): 
                    self.flashLetters('Y') 
                elif ( tempoA >= (0.04*timeFlashes + 0.1) and 
self.labelY.cget("bg")== "darkgreen" ): 
                    self.unFlashLetters('Y')  
                elif ( tempoA >= 0.05*timeFlashes and tempoA < (0.05*timeFlashes + 
0.1) and self.labelZ.cget("bg")!= "darkgreen"): 
                    self.flashLetters('Z') 
                elif ( tempoA >= (0.05*timeFlashes + 0.1) and 
self.labelZ.cget("bg")== "darkgreen" ): 
                    self.unFlashLetters('Z')        
                 
                 
        avgDeltaArr.insert(0,deltaArr[0]) 
        avgDeltaArr.insert(1,deltaArr[1]) 
        for i in range(2,len(deltaArr),1): 
            a = i-1 
            aa = i -2  
            value = (deltaArr[i] + deltaArr[a] + deltaArr[aa])/ 3 
            avgDeltaArr.insert(i , value ) 
         
        buttons = {} 
         
        for i in range(1,7,1):  
            timeStampsIndex = [idx for idx, val in enumerate(timeStamps) if (val > 
0.1+(i-1)*0.01*timeFlashes and val < 0.8+(i-1)*0.01*timeFlashes)]                
            timeStampsA = [timeStamps[index] for index in timeStampsIndex]    
            samplesA = [samples[index] for index in timeStampsIndex] 
            deltaArrA = [avgDeltaArr[index] for index in timeStampsIndex] 
            delayT = 0.01*timeFlashes*(i-1) 
            timeStampsA[:] = [timeStampA - delayT for timeStampA in timeStampsA] 
             
            if(samplesA):  
                AmaxA = max(samplesA) 
                tpAMaxIndexA = samplesA.index(AmaxA) 
                SmaxA = max(deltaArrA) 
                tpSMaxIndexA = deltaArrA.index(SmaxA) 
                tpSMaxA = timeStampsA[tpSMaxIndexA] 
                SminA = min(deltaArrA[tpSMaxIndexA:(tpSMaxIndexA+50)]) 
            
                tpMinIndexA = deltaArrA.index(SminA) 
                dTSA = timeStampsA[tpMinIndexA] - timeStampsA[tpSMaxIndexA]  
                 
                             
            if( (SmaxA > SmaxThreshold) and (dTSA > dTSLThreshold) and (dTSA < 
dTSHThreshold) and (tpSMaxA > tpSMaxLThreshold) and (tpSMaxA < tpSMaxHThreshold)): 
                 
                if i == 1: 
                    buttons["U"] =  abs(tpSMaxA - tpSMaxMean) 
                elif i == 2: 
                    buttons["V"] =  abs(tpSMaxA - tpSMaxMean) 
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                elif i == 3: 
                    buttons["W"] =  abs(tpSMaxA - tpSMaxMean)  
                elif i == 4: 
                    buttons["X"] =  abs(tpSMaxA - tpSMaxMean)  
                elif i == 5: 
                    buttons["Y"] =  abs(tpSMaxA - tpSMaxMean) 
                elif i == 5: 
                    buttons["Z"] =  abs(tpSMaxA - tpSMaxMean) 
                 
                print('\nBotao '+ str(i) + 'Pré-Selecionado') 
                print('Amax = ' + str(AmaxA)) 
                print('tpAmax = ' + str(timeStampsA[tpAMaxIndexA]))     
                print('tpSmax = ' + str(timeStampsA[tpSMaxIndexA])) 
                print('Smax = ' + str(SmaxA)) 
                print('tpSmin = ' + str(timeStampsA[tpMinIndexA])) 
                print('Smin = ' + str(SminA)) 
                print('dTS = ' + str(dTSA)) 
                print('Samples = ' + str(len(samplesA))) 
                print('deltaArr = ' + str(len(deltaArrA))) 
             
            deltaArrA = [] 
            samplesA = [] 
            timeStampsA = [] 
         
        selected = '' 
        if buttons: 
             
            selected = min(buttons, key=buttons.get) 
            print('\n Final Selection ' + selected) 
            self.textBox.insert(tkinter.END, selected) 
            self.main_window.update() 
                              
        print('length buttons ' + str(buttons))          
        
        deltaArr = [] 
        samples = [] 
        avgDeltaArr = [] 
        timeSamples = [] 
        timeStamps = [] 
        timeDiff = [] 
         
         
        self.labelU.grid_remove() 
        self.labelV.grid_remove() 
        self.labelW.grid_remove() 
        self.labelX.grid_remove() 
        self.labelY.grid_remove() 
        self.labelZ.grid_remove() 
        self.labelABCDE.grid() 
        self.labelFGHIJ.grid() 
        self.labelKLMNO.grid() 
        self.labelPQRST.grid() 
        self.labelUVWXYZ.grid()         
        self.flashBlocksSelection() 
 
    def deleteTextChar(self): 
        self.textBox.delete("1." + str(len(self.textBox.get('1.0', tkinter.END))-
2),tkinter.END)  
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    def open_keyboard(self): 
 
        global textOfTextBox 
         
        self.button.grid_remove() 
        self.button1.grid_remove() 
        self.button2.grid_remove() 
        self.button3.grid_remove() 
        self.button4.grid_remove() 
        self.button5.grid_remove()        
         
        self.textBox = tkinter.Text(self.main_window, height=1) 
        self.textBox.grid(row = 0, column = 0, columnspan= 5) 
        myFont = tkFont.Font(family = "Times New Roman", size = 25, weight 
="bold") 
        self.textBox.configure(font = myFont) 
         
         
        if textOfTextBox: 
            self.textBox.insert(tkinter.END,textOfTextBox.strip()) 
         
        self.start = tkinter.Button( self.main_window, text = 'Começar', 
                                       font = ("Arial Bold", 33)) 
        self.start.grid(column=0, row=2, sticky ="WENS", pady = 30, padx = 30, 
columnspan =1 ) 
   
        self.labelABCDE = tkinter.Label(self.main_window, 
                                        text = 'A B C D E', 
                                        font = ("Arial Bold", 33)) 
        self.labelABCDE.grid(column=2, row=2, sticky ="WENS", pady = 30, padx = 
30) 
         
        self.labelFGHIJ = tkinter.Label(self.main_window, 
                                        text = 'F G H I J', 
                                        font = ("Arial Bold", 33)) 
        self.labelFGHIJ.grid(column=4, row=3, sticky ="WENS", pady = 30, padx = 
30) 
         
        self.labelKLMNO = tkinter.Label(self.main_window, 
                                        text = 'K L M N O', 
                                        font = ("Arial Bold", 33)) 
        self.labelKLMNO.grid(column=3, row=4, sticky ="WENS", pady = 30, padx = 
30) 
                 
        self.labelPQRST = tkinter.Label(self.main_window, 
                                        text = 'P Q R S T', 
                                        font = ("Arial Bold", 33)) 
        self.labelPQRST.grid(column=1, row=4, sticky ="WENS", pady = 30, padx = 
30) 
                 
        self.labelUVWXYZ = tkinter.Label(self.main_window, 
                                        text = 'U V W X Y Z', 
                                        font = ("Arial Bold", 33)) 
        self.labelUVWXYZ.grid(column=0, row=3, sticky ="WENS", pady = 30, padx = 
30) 
                 
        self.backspace = tkinter.Button( self.main_window, text = 'Apagar', 
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                                       font = ("Arial Bold", 35), 
command=self.deleteTextChar) 
        self.backspace.grid(column=0, row=5, sticky ="WENS", pady = 30, padx = 30, 
columnspan =1 ) 
         
        self.space = tkinter.Button( self.main_window, text = 'Espaço', 
                                       font = ("Arial Bold", 35), 
command=self.textBox.insert(tkinter.END, '')) 
        self.space.grid(column=1, row=5, sticky ="WENS", pady = 33, padx = 30, 
columnspan =1 ) 
         
        self.returnMenu = tkinter.Button( self.main_window, text = 'retornar para 
o Menu', 
                                       font = ("Arial Bold", 33), 
command=self.rebuild_Menu) 
        self.returnMenu.grid(column=2, row=5, sticky ="WENS", pady = 30, padx = 
30, columnspan =3 ) 
         
        self.main_window.update() 
         
        self.flashBlocksSelection() 
    
    def open_keyboardABCDE(self):    
        global textOfTextBox 
         
        self.labelABCDE.grid_remove() 
        self.labelFGHIJ.grid_remove() 
        self.labelKLMNO.grid_remove() 
        self.labelPQRST.grid_remove() 
        self.labelUVWXYZ.grid_remove() 
         
        self.labelA = tkinter.Label(self.main_window, 
                                        text = '       A       ', 
                                        font = ("Arial Bold", 35)) 
        self.labelA.grid(column=2, row=2, sticky ="WENS", pady = 30, padx = 30) 
         
        self.labelB = tkinter.Label(self.main_window, 
                                        text = '       B       ', 
                                        font = ("Arial Bold", 35)) 
        self.labelB.grid(column=4, row=3, sticky ="WENS", pady = 30, padx = 30) 
         
        self.labelC = tkinter.Label(self.main_window, 
                                        text = '       C       ', 
                                        font = ("Arial Bold", 35)) 
        self.labelC.grid(column=3, row=4, sticky ="WENS", pady = 30, padx = 30) 
                 
        self.labelD = tkinter.Label(self.main_window, 
                                        text = '       D       ', 
                                        font = ("Arial Bold", 35)) 
        self.labelD.grid(column=1, row=4, sticky ="WENS", pady = 30, padx = 30) 
                 
        self.labelE = tkinter.Label(self.main_window, 
                                        text = '       E       ', 
                                        font = ("Arial Bold", 35)) 
        self.labelE.grid(column=0, row=3, sticky ="WENS", pady = 30, padx = 30) 
 
        self.main_window.update() 
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        self.flashLettersSelectionABCDE() 
         
    def open_keyboardFGHIJ(self):    
        global textOfTextBox 
         
        self.labelABCDE.grid_remove() 
        self.labelFGHIJ.grid_remove() 
        self.labelKLMNO.grid_remove() 
        self.labelPQRST.grid_remove() 
        self.labelUVWXYZ.grid_remove() 
         
        self.labelF = tkinter.Label(self.main_window, 
                                        text = '       F       ', 
                                        font = ("Arial Bold", 35)) 
        self.labelF.grid(column=2, row=2, sticky ="WENS", pady = 30, padx = 30) 
         
        self.labelG = tkinter.Label(self.main_window, 
                                        text = '       G       ', 
                                        font = ("Arial Bold", 35)) 
        self.labelG.grid(column=4, row=3, sticky ="WENS", pady = 30, padx = 30) 
         
        self.labelH = tkinter.Label(self.main_window, 
                                        text = '       H       ', 
                                        font = ("Arial Bold", 35)) 
        self.labelH.grid(column=3, row=4, sticky ="WENS", pady = 30, padx = 30) 
                 
        self.labelI = tkinter.Label(self.main_window, 
                                        text = '       I       ', 
                                        font = ("Arial Bold", 35)) 
        self.labelI.grid(column=1, row=4, sticky ="WENS", pady = 30, padx = 30) 
                 
        self.labelJ = tkinter.Label(self.main_window, 
                                        text = '       J       ', 
                                        font = ("Arial Bold", 35)) 
        self.labelJ.grid(column=0, row=3, sticky ="WENS", pady = 30, padx = 30) 
 
        self.main_window.update() 
         
        self.flashLettersSelectionFGHIJ() 
 
    def open_keyboarKLMNO(self):    
            global textOfTextBox 
             
            self.labelABCDE.grid_remove() 
            self.labelFGHIJ.grid_remove() 
            self.labelKLMNO.grid_remove() 
            self.labelPQRST.grid_remove() 
            self.labelUVWXYZ.grid_remove() 
             
            self.labelK = tkinter.Label(self.main_window, 
                                            text = '       K       ', 
                                            font = ("Arial Bold", 35)) 
            self.labelK.grid(column=2, row=2, sticky ="WENS", pady = 30, padx = 
30) 
             
            self.labelL = tkinter.Label(self.main_window, 
                                            text = '       L       ', 
                                            font = ("Arial Bold", 35)) 
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            self.labelL.grid(column=4, row=3, sticky ="WENS", pady = 30, padx = 
30) 
             
            self.labelM = tkinter.Label(self.main_window, 
                                            text = '       M       ', 
                                            font = ("Arial Bold", 35)) 
            self.labelM.grid(column=3, row=4, sticky ="WENS", pady = 30, padx = 
30) 
                     
            self.labelN = tkinter.Label(self.main_window, 
                                            text = '       N       ', 
                                            font = ("Arial Bold", 35)) 
            self.labelN.grid(column=1, row=4, sticky ="WENS", pady = 30, padx = 
30) 
                     
            self.labelO = tkinter.Label(self.main_window, 
                                            text = '       O       ', 
                                            font = ("Arial Bold", 35)) 
            self.labelO.grid(column=0, row=3, sticky ="WENS", pady = 30, padx = 
30) 
     
            self.main_window.update() 
             
            self.flashLettersSelectionKLMNO() 
                 
    def open_keyboarPQRST(self):    
        global textOfTextBox 
         
        self.labelABCDE.grid_remove() 
        self.labelFGHIJ.grid_remove() 
        self.labelKLMNO.grid_remove() 
        self.labelPQRST.grid_remove() 
        self.labelUVWXYZ.grid_remove() 
         
        self.labelP = tkinter.Label(self.main_window, 
                                        text = '       P       ', 
                                        font = ("Arial Bold", 35)) 
        self.labelP.grid(column=2, row=2, sticky ="WENS", pady = 30, padx = 30) 
         
        self.labelQ = tkinter.Label(self.main_window, 
                                        text = '       Q       ', 
                                        font = ("Arial Bold", 35)) 
        self.labelQ.grid(column=4, row=3, sticky ="WENS", pady = 30, padx = 30) 
         
        self.labelR = tkinter.Label(self.main_window, 
                                        text = '       R       ', 
                                        font = ("Arial Bold", 35)) 
        self.labelR.grid(column=3, row=4, sticky ="WENS", pady = 30, padx = 30) 
                 
        self.labelS = tkinter.Label(self.main_window, 
                                        text = '       S       ', 
                                        font = ("Arial Bold", 35)) 
        self.labelS.grid(column=1, row=4, sticky ="WENS", pady = 30, padx = 30) 
                 
        self.labelT = tkinter.Label(self.main_window, 
                                        text = '       T       ', 
                                        font = ("Arial Bold", 35)) 
        self.labelT.grid(column=0, row=3, sticky ="WENS", pady = 30, padx = 30) 
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        self.main_window.update()  
         
        self.flashLettersSelectionPQRST() 
         
    def open_keyboarUVWXYZ(self):    
        global textOfTextBox 
         
        self.labelABCDE.grid_remove() 
        self.labelFGHIJ.grid_remove() 
        self.labelKLMNO.grid_remove() 
        self.labelPQRST.grid_remove() 
        self.labelUVWXYZ.grid_remove() 
         
        self.labelU = tkinter.Label(self.main_window, 
                                        text = '       U       ', 
                                        font = ("Arial Bold", 35)) 
        self.labelU.grid(column=2, row=2, sticky ="WENS", pady = 30, padx = 30) 
         
        self.labelV = tkinter.Label(self.main_window, 
                                        text = '       V       ', 
                                        font = ("Arial Bold", 35)) 
        self.labelV.grid(column=4, row=3, sticky ="WENS", pady = 30, padx = 30) 
         
        self.labelW = tkinter.Label(self.main_window, 
                                        text = '       W       ', 
                                        font = ("Arial Bold", 35)) 
        self.labelW.grid(column=3, row=4, sticky ="WENS", pady = 30, padx = 30) 
                 
        self.labelX = tkinter.Label(self.main_window, 
                                        text = '       X       ', 
                                        font = ("Arial Bold", 35)) 
        self.labelX.grid(column=1, row=4, sticky ="WENS", pady = 30, padx = 30) 
                 
        self.labelY = tkinter.Label(self.main_window, 
                                        text = '       Y       ', 
                                        font = ("Arial Bold", 35)) 
        self.labelY.grid(column=0, row=3, sticky ="WENS", pady = 30, padx = 30) 
         
        self.labelZ = tkinter.Label(self.main_window, 
                                        text = '       Z       ', 
                                        font = ("Arial Bold", 35)) 
        self.labelZ.grid(column=0, row=3, sticky ="WENS", pady = 30, padx = 30) 
 
        self.main_window.update()      
         
        self.flashLettersSelectionUVWXYZ()               
                 
    def flashLetters(self, letter): 
        if letter == 'A': 
            self.labelA.config(bg = "darkgreen") 
            self.labelA.update() 
        elif letter == 'B': 
            self.labelB.config(bg = "darkgreen") 
            self.labelB.update() 
        elif letter == 'C': 
            self.labelC.config(bg = "darkgreen") 
            self.labelC.update() 
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        elif letter == 'D': 
            self.labelD.config(bg = "darkgreen") 
            self.labelD.update() 
        elif letter == 'E': 
            self.labelE.config(bg = "darkgreen") 
            self.labelE.update() 
        elif letter == 'F': 
            self.labelF.config(bg = "darkgreen") 
            self.labelF.update() 
        elif letter == 'G': 
            self.labelG.config(bg = "darkgreen") 
            self.labelG.update() 
        elif letter == 'H': 
            self.labelH.config(bg = "darkgreen") 
            self.labelH.update() 
        elif letter == 'I': 
            self.labelI.config(bg = "darkgreen") 
            self.labelI.update() 
        elif letter == 'J': 
            self.labelJ.config(bg = "darkgreen") 
            self.labelJ.update() 
        elif letter == 'K': 
            self.labelK.config(bg = "darkgreen") 
            self.labelK.update() 
        elif letter == 'L': 
            self.labelL.config(bg = "darkgreen") 
            self.labelL.update() 
        elif letter == 'M': 
            self.labelM.config(bg = "darkgreen") 
            self.labelM.update() 
        elif letter == 'N': 
            self.labelN.config(bg = "darkgreen") 
            self.labelN.update() 
        elif letter == 'O': 
            self.labelO.config(bg = "darkgreen") 
            self.labelO.update() 
        elif letter == 'P': 
            self.labelP.config(bg = "darkgreen") 
            self.labelP.update() 
        elif letter == 'Q': 
            self.labelQ.config(bg = "darkgreen") 
            self.labelQ.update() 
        elif letter == 'R': 
            self.labelR.config(bg = "darkgreen") 
            self.labelR.update() 
        elif letter == 'S': 
            self.labelS.config(bg = "darkgreen") 
            self.labelS.update() 
        elif letter == 'T': 
            self.labelT.config(bg = "darkgreen") 
            self.labelT.update() 
        elif letter == 'U': 
            self.labelU.config(bg = "darkgreen") 
            self.labelU.update() 
        elif letter == 'V': 
            self.labelV.config(bg = "darkgreen") 
            self.labelV.update() 
        elif letter == 'W': 
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            self.labelW.config(bg = "darkgreen") 
            self.labelW.update() 
        elif letter == 'X': 
            self.labelX.config(bg = "darkgreen") 
            self.labelX.update() 
        elif letter == 'Y': 
            self.labelY.config(bg = "darkgreen") 
            self.labelY.update() 
        elif letter == 'Z': 
            self.labelZ.config(bg = "darkgreen") 
            self.labelZ.update() 
        elif letter == 'Backspace': 
            self.backspace.config(bg = "darkgreen") 
            self.backspace.update() 
        elif letter == 'Start': 
            self.start.config(bg = "darkgreen") 
            self.start.update() 
        elif letter == 'Space': 
            self.space.config(bg = "darkgreen") 
            self.space.update() 
        elif letter == 'Return': 
            self.returnMenu.config(bg = "darkgreen") 
            self.returnMenu.update() 
     
    def flashBlocks(self,block): 
        if block == 1: 
                self.labelABCDE.config(bg = "darkgreen") 
                self.main_window.update() 
        elif block == 2: 
                self.labelFGHIJ.config(bg = "darkgreen") 
                self.main_window.update() 
        elif block == 3: 
                self.labelKLMNO.config(bg = "darkgreen") 
                self.main_window.update() 
        elif block == 4: 
                self.labelPQRST.config(bg = "darkgreen") 
                self.main_window.update() 
        elif block == 5: 
                self.labelUVWXYZ.config(bg = "darkgreen") 
                self.main_window.update() 
 
    def unflashBlocks(self,block): 
        if block == 1: 
                self.labelABCDE.config(bg = "#F0F0F0") 
                self.main_window.update() 
        elif block == 2: 
                self.labelFGHIJ.config(bg = "#F0F0F0") 
                self.main_window.update() 
        elif block == 3: 
                self.labelKLMNO.config(bg = "#F0F0F0") 
                self.main_window.update() 
        elif block == 4: 
                self.labelPQRST.config(bg = "#F0F0F0") 
                self.main_window.update() 
        elif block == 5: 
                self.labelUVWXYZ.config(bg = "#F0F0F0") 
                self.main_window.update() 
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    def unFlashLetters(self,letter): 
        if letter == 'A': 
            self.labelA.config(bg = "#F0F0F0") 
            self.labelA.update() 
        elif letter == 'B': 
            self.labelB.config(bg = "#F0F0F0") 
            self.labelB.update() 
        elif letter == 'C': 
            self.labelC.config(bg = "#F0F0F0") 
            self.labelC.update()     
        elif letter == 'D': 
            self.labelD.config(bg = "#F0F0F0") 
            self.labelD.update() 
        elif letter == 'E': 
            self.labelE.config(bg = "#F0F0F0") 
            self.labelE.update() 
        elif letter == 'F': 
            self.labelF.config(bg = "#F0F0F0") 
            self.labelF.update() 
        elif letter == 'G': 
            self.labelG.config(bg = "#F0F0F0") 
            self.labelG.update() 
        elif letter == 'H': 
            self.labelH.config(bg = "#F0F0F0") 
            self.labelH.update() 
        elif letter == 'I': 
            self.labelI.config(bg = "#F0F0F0") 
            self.labelI.update() 
        elif letter == 'J': 
            self.labelJ.config(bg = "#F0F0F0") 
            self.labelJ.update() 
        elif letter == 'K': 
            self.labelK.config(bg = "#F0F0F0") 
            self.labelK.update() 
        elif letter == 'L': 
            self.labelL.config(bg = "#F0F0F0") 
            self.labelL.update() 
        elif letter == 'M': 
            self.labelM.config(bg = "#F0F0F0") 
            self.labelM.update() 
        elif letter == 'N': 
            self.labelN.config(bg = "#F0F0F0") 
            self.labelN.update() 
        elif letter == 'O': 
            self.labelO.config(bg = "#F0F0F0") 
            self.labelO.update() 
        elif letter == 'P': 
            self.labelP.config(bg = "#F0F0F0") 
            self.labelP.update() 
        elif letter == 'Q': 
            self.labelQ.config(bg = "#F0F0F0") 
            self.labelQ.update() 
        elif letter == 'R': 
            self.labelR.config(bg = "#F0F0F0") 
            self.labelR.update() 
        elif letter == 'S': 
            self.labelS.config(bg = "#F0F0F0") 
            self.labelS.update() 
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        elif letter == 'T': 
            self.labelT.config(bg = "#F0F0F0") 
            self.labelT.update() 
        elif letter == 'U': 
            self.labelU.config(bg = "#F0F0F0") 
            self.labelU.update() 
        elif letter == 'V': 
            self.labelV.config(bg = "#F0F0F0") 
            self.labelV.update() 
        elif letter == 'W': 
            self.labelW.config(bg = "#F0F0F0") 
            self.labelW.update() 
        elif letter == 'X': 
            self.labelX.config(bg = "#F0F0F0") 
            self.labelX.update() 
        elif letter == 'Y': 
            self.labelY.config(bg = "#F0F0F0") 
            self.labelY.update() 
        elif letter == 'Z': 
            self.labelZ.config(bg = "#F0F0F0") 
            self.labelZ.update() 
        elif letter == 'Backspace': 
            self.backspace.config(bg = "#F0F0F0") 
            self.backspace.update() 
        elif letter == 'Start': 
            self.start.config(bg = "#F0F0F0") 
            self.start.update() 
        elif letter == 'Space': 
            self.space.config(bg = "#F0F0F0") 
            self.space.update() 
        elif letter == 'Return': 
            self.returnMenu.config(bg = "#F0F0F0") 
            self.returnMenu.update() 
     
    def rebuild_Menu(self): 
        for items in self.main_window.grid_slaves(): 
            items.grid_remove() 
        self.button.grid() 
        self.button1.grid() 
        self.button2.grid() 
        self.button3.grid() 
        self.button4.grid() 
        self.button5.grid() 
        
window = EOGInterface() 
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APPENDIX C – PYTHON CODE OF THE TEST INTERFACE 

import tkinter 
from pylsl import StreamInlet, resolve_stream 
import time 
import matplotlib.pyplot as plt 
from time import sleep 
import statistics 
import xlsxwriter 
 
deltaArr = [] 
samples = [] 
timeSamples = [] 
timeStamps = [] 
 
timeDiff = [] 
duration = 0.8 
 
AmaxVec = [] 
tpAMaxVec = [] 
tpSMaxVec = [] 
SmaxVec = [] 
SminVec = [] 
dpnVec = [] 
avgDeltaArr = [] 
 
AmaxVec = [] 
tpAMaxVec = [] 
tpSMaxVec = [] 
SmaxVec = [] 
SminVec = [] 
dpnVec = [] 
 
rodada = 1 
piscadas = 0 
piscadaErrada = 0 
 
tpAMaxMean = 0.2989 
tpSMaxMean = 0.2848 
AmaxThreshold = 50 
SmaxThreshold = 10 
dpnLThreshold = 0.01719546178285966 
dpnHThreshold = 0.09648825820838099 
tpSMaxLThreshold  = 0.17852545621477722 
tpSMaxHThreshold = 0.391202563781769 
dpnCalibration = [] 
tpSMaxCalibration = [] 
 
class FlashingInterface: 
    def __init__(self): 
 
        self.main_window = tkinter.Tk() 
 
        self.main_window.geometry('770x250') 
         
        self.button = tkinter.Button( self.main_window, text = 'Segmento', 
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                                       font = ("Arial Bold",30), 
command=self.extractSegment) 
        self.button.grid(column=0, row=0) 
 
        self.button2 = tkinter.Button( self.main_window, text = 'Calibrar', 
                                       font = ("Arial Bold", 30), 
command=self.calibrar) 
        self.button2.grid(column=1, row=0) 
         
        self.button2 = tkinter.Button( self.main_window, text = 'Acurácia', 
                                       font = ("Arial Bold", 30), 
command=self.acuracia) 
        self.button2.grid(column=2, row=0) 
         
        self.button2 = tkinter.Button( self.main_window, text = 'Iniciar', 
                                       font = ("Arial Bold", 30), 
command=self.iniciar) 
        self.button2.grid(column=3, row=0) 
 
        self.label1 = tkinter.Label(self.main_window, 
                                        text = 'Pisque', 
                                        font = ("Arial Bold", 30)) 
        self.label1.grid(column=1, row=1) 
         
        self.labelA = tkinter.Label(self.main_window, 
                                        text = 'A', 
                                        font = ("Arial Bold", 30)) 
        self.labelA.grid(column=0, row=2) 
         
        self.labelB = tkinter.Label(self.main_window, 
                                        text = 'B', 
                                        font = ("Arial Bold", 30)) 
        self.labelB.grid(column=1, row=2) 
         
        self.labelC = tkinter.Label(self.main_window, 
                                        text = 'C', 
                                        font = ("Arial Bold", 30)) 
        self.labelC.grid(column=2, row=2) 
         
        tkinter.mainloop() 
     
    def extractSegment(self): 
        global deltaArr, samples, timeSamples, timeStamps, timeDiff, duration  
        global AmaxVec, tpAMaxVec, tpSMaxVec, SmaxVec, SminVec, dpnVec, 
avgDeltaArr  
        global rodada, piscadas, piscadaErrada  
         
        # first resolve an EOG stream on the lab network 
        print("\nlooking for an EOG stream...") 
        streams = resolve_stream('type', 'EEG') 
        # create a new inlet to read from the stream 
        inlet = StreamInlet(streams[0]) 
        sample, timestamp = inlet.pull_sample() 
        while len(sample) == 0: 
            sample, timestamp = inlet.pull_sample() 
        x1 = sample[0] 
        initialTimeStamp = timestamp 
        timeStamps.append(0) 
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        samples.append(x1) 
        deltaArr.append(0) 
        oldTimestamp = timestamp 
         
        self.flash() 
         
        start = time.time() 
         
        while time.time() <= start + duration: 
            sample, timestamp = inlet.pull_sample() 
            if timestamp > oldTimestamp: 
                timeStamps.append(timestamp - initialTimeStamp ) 
                timeSample = time.time() - start 
                timeSamples.append(timeSample) 
                x2 = sample[0] 
                samples.append(x2) 
                deltaX = x2 - x1 
                deltaArr.append(deltaX) 
                x1 = x2 
                timeDiff.append(timestamp - oldTimestamp) 
                oldTimestamp = timestamp 
                tempo = time.time() 
                lim = start + 0.1 
                if (tempo > lim ): 
                    self.unFlash()              
         
        avgDeltaArr.insert(0,deltaArr[0]) 
        avgDeltaArr.insert(1,deltaArr[1]) 
        for i in range(2,len(deltaArr),1): 
            a = i-1 
            aa = i -2  
            value = (deltaArr[i] + deltaArr[a] + deltaArr[aa])/ 3 
            avgDeltaArr.insert(i , value) 
             
        # plotting the points  
        plt.rcParams.update({'font.size': 18}) 
        plt.plot(timeStamps, samples) 
        plt.plot(timeStamps, deltaArr) 
        plt.plot(timeStamps, avgDeltaArr) 
        # naming the x axis 
        plt.xlabel('x - time (s)') 
        plt.xlabel 
        # naming the y axis 
        plt.ylabel('y - voltage (\u03BCV)') 
        # giving a title to my graph 
        plt.title('EOG Blink Segment') 
        # function to show the plot 
        plt.grid() 
         
         
        samples = samples[20:] 
        deltaArr = avgDeltaArr[20:] 
        timeStamps = timeStamps[20:] 
         
        Amax = max(samples) 
        tpAMaxIndex = samples.index(Amax) 
        Smax = max(deltaArr) 
        tpSMaxIndex = deltaArr.index(Smax) 
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        Smin = min(deltaArr[tpSMaxIndex:(tpSMaxIndex+25)]) 
        tpMinIndex = deltaArr.index(Smin) 
        dpn = timeStamps[tpMinIndex] - timeStamps[tpSMaxIndex]  
         
        print('Amax = ' + str(Amax)) 
        print('tpAmax = ' + str(timeStamps[tpAMaxIndex]))     
        print('tpSmax = ' + str(timeStamps[tpSMaxIndex])) 
        print('Smax = ' + str(Smax)) 
        print('tpSmin = ' + str(timeStamps[tpMinIndex])) 
        print('Smin = ' + str(Smin)) 
        print('dpn = ' + str(dpn)) 
        print('Samples Len= ' + str(len(samples))) 
        print('deltaArr len= ' + str(len(deltaArr))) 
         
        plt.show() 
         
        timeSamples = [] 
        deltaArr = [] 
        samples = [] 
        timeStamps = [] 
        timeDiff = [] 
        avgDeltaArr = [] 
       
    def calibrar(self): 
           
        global deltaArr, samples, timeSamples, timeStamps, timeDiff, duration  
        global AmaxVec, tpAMaxVec, tpSMaxVec, SmaxVec, SminVec, dpnVec, 
avgDeltaArr  
        global rodada, piscadas, piscadaErrada  
        global AmaxMean, tpAMaxMean, tpSMaxMean 
        global AmaxThreshold, SmaxThreshold, dpnLThreshold, dpnHThreshold, 
tpSMaxLThreshold, tpSMaxHThreshold  
        global dpnCalibration, tpSMaxCalibration, SMaxMeanCalibration 
 
         
        while len(SmaxVec) < 10: 
             
             
            self.label2 = tkinter.Label(self.main_window, 
                                        text = '3', 
                                        font = ("Arial Bold", 30)) 
            self.label2.grid(column=0, row=1) 
            self.label2.update() 
            sleep(0.75) 
            self.label2.config(text = "2") 
            self.label2.update() 
            sleep(0.75) 
            self.label2.config(text = "1") 
            self.label2.update() 
            sleep(0.75) 
            self.label2.config(text = "0") 
            self.label2.update() 
            self.label2.destroy() 
 
            # first resolve an EOG stream on the lab network 
            print("\nlooking for an EOG stream...") 
            streams = resolve_stream('type', 'EEG') 
            # create a new inlet to read from the stream 
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            inlet = StreamInlet(streams[0]) 
            sample, timestamp = inlet.pull_sample() 
            while len(sample) == 0: 
                sample, timestamp = inlet.pull_sample() 
            x1 = sample[0] 
            initialTimeStamp = timestamp 
            timeStamps.append(0) 
            samples.append(x1) 
            deltaArr.append(0) 
            oldTimestamp = timestamp 
             
            self.flash() 
            start = time.time() 
             
            while time.time() <= start + duration: 
                sample, timestamp = inlet.pull_sample() 
                if timestamp > oldTimestamp: 
                    timeStamps.append(timestamp - initialTimeStamp ) 
                    timeSample = time.time() - start 
                    timeSamples.append(timeSample) 
                    x2 = sample[0] 
                    samples.append(x2) 
                    deltaX = x2 - x1 
                    deltaArr.append(deltaX) 
                    x1 = x2 
                    timeDiff.append(timestamp - oldTimestamp) 
                    oldTimestamp = timestamp 
                    tempo = time.time() 
                    lim = start + 0.1 
                    if (tempo > lim ): 
                        self.unFlash()              
             
            avgDeltaArr.insert(0,deltaArr[0]) 
            avgDeltaArr.insert(1,deltaArr[1]) 
            for i in range(2,len(deltaArr),1): 
                a = i-1 
                aa = i -2  
                value = (deltaArr[i] + deltaArr[a] + deltaArr[aa])/ 3 
                avgDeltaArr.insert(i , value) 
                 
            samples = samples[20:] 
            deltaArr = avgDeltaArr[20:] 
            timeStamps = timeStamps[20:] 
             
            Amax = max(samples) 
            tpAMaxIndex = samples.index(Amax) 
            Smax = max(deltaArr) 
            tpSMaxIndex = deltaArr.index(Smax) 
            Smin = min(deltaArr[tpAMaxIndex:(tpAMaxIndex+25)]) 
            tpMinIndex = deltaArr.index(Smin) 
            dpn = timeStamps[tpMinIndex] - timeStamps[tpSMaxIndex]  
             
            print('Amax = ' + str(Amax)) 
            print('tpAmax = ' + str(timeStamps[tpAMaxIndex]))     
            print('tpSmax = ' + str(timeStamps[tpSMaxIndex])) 
            print('Smax = ' + str(Smax)) 
            print('tpSmin = ' + str(timeStamps[tpMinIndex])) 
            print('Smin = ' + str(Smin)) 
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            print('dpn = ' + str(dpn)) 
            print('Samples Len= ' + str(len(samples))) 
            print('deltaArr len= ' + str(len(deltaArr))) 
             
            AmaxVec.append(Amax) 
            tpAMaxVec.append(timeStamps[tpAMaxIndex]) 
            tpSMaxVec.append(timeStamps[tpSMaxIndex]) 
            SmaxVec.append(Smax) 
            SminVec.append(Smin) 
            dpnVec.append(dpn) 
             
            timeSamples = [] 
            deltaArr = [] 
            samples = [] 
            timeStamps = [] 
            timeDiff = [] 
            avgDeltaArr = [] 
             
        self.buttonContinuar = tkinter.Button( self.main_window, text = 
'Continuar', 
                                       font = ("Arial Bold", 30), 
command=self.calibrar2) 
        self.buttonContinuar.grid(column = 2, row=3) 
         
    def calibrar2(self): 
         
        self.buttonContinuar.destroy()   
        global deltaArr, samples, timeSamples, timeStamps, timeDiff, duration  
        global AmaxVec, tpAMaxVec, tpSMaxVec, SmaxVec, SminVec, dpnVec, 
avgDeltaArr  
        global rodada, piscadas, piscadaErrada  
        global AmaxMean, tpAMaxMean, tpSMaxMean 
        global AmaxThreshold, SmaxThreshold, dpnLThreshold, dpnHThreshold, 
tpSMaxLThreshold, tpSMaxHThreshold  
        global dpnCalibration, tpSMaxCalibration, SMaxMeanCalibration 
 
         
        while len(SmaxVec) < 20: 
             
             
            self.label2 = tkinter.Label(self.main_window, 
                                        text = '3', 
                                        font = ("Arial Bold", 30)) 
            self.label2.grid(column=0, row=1) 
            self.label2.update() 
            sleep(0.75) 
            self.label2.config(text = "2") 
            self.label2.update() 
            sleep(0.75) 
            self.label2.config(text = "1") 
            self.label2.update() 
            sleep(0.75) 
            self.label2.config(text = "0") 
            self.label2.update() 
            self.label2.destroy() 
 
            # first resolve an EOG stream on the lab network 
            print("\nlooking for an EOG stream...") 
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            streams = resolve_stream('type', 'EEG') 
            # create a new inlet to read from the stream 
            inlet = StreamInlet(streams[0]) 
            sample, timestamp = inlet.pull_sample() 
            while len(sample) == 0: 
                sample, timestamp = inlet.pull_sample() 
            x1 = sample[0] 
            initialTimeStamp = timestamp 
            timeStamps.append(0) 
            samples.append(x1) 
            deltaArr.append(0) 
            oldTimestamp = timestamp 
             
            self.flash() 
            start = time.time() 
             
            while time.time() <= start + duration: 
                sample, timestamp = inlet.pull_sample() 
                if timestamp > oldTimestamp: 
                    timeStamps.append(timestamp - initialTimeStamp ) 
                    timeSample = time.time() - start 
                    timeSamples.append(timeSample) 
                    x2 = sample[0] 
                    samples.append(x2) 
                    deltaX = x2 - x1 
                    deltaArr.append(deltaX) 
                    x1 = x2 
                    timeDiff.append(timestamp - oldTimestamp) 
                    oldTimestamp = timestamp 
                    tempo = time.time() 
                    lim = start + 0.1 
                    if (tempo > lim ): 
                        self.unFlash()              
             
            avgDeltaArr.insert(0,deltaArr[0]) 
            avgDeltaArr.insert(1,deltaArr[1]) 
            for i in range(2,len(deltaArr),1): 
                a = i-1 
                aa = i -2  
                value = (deltaArr[i] + deltaArr[a] + deltaArr[aa])/ 3 
                avgDeltaArr.insert(i , value) 
                 
            samples = samples[20:] 
            deltaArr = avgDeltaArr[20:] 
            timeStamps = timeStamps[20:] 
             
            Amax = max(samples) 
            tpAMaxIndex = samples.index(Amax) 
            Smax = max(deltaArr) 
            tpSMaxIndex = deltaArr.index(Smax) 
            Smin = min(deltaArr[tpAMaxIndex:(tpAMaxIndex+25)]) 
            tpMinIndex = deltaArr.index(Smin) 
            dpn = timeStamps[tpMinIndex] - timeStamps[tpSMaxIndex]  
             
            print('Amax = ' + str(Amax)) 
            print('tpAmax = ' + str(timeStamps[tpAMaxIndex]))     
            print('tpSmax = ' + str(timeStamps[tpSMaxIndex])) 
            print('Smax = ' + str(Smax)) 
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            print('tpSmin = ' + str(timeStamps[tpMinIndex])) 
            print('Smin = ' + str(Smin)) 
            print('dpn = ' + str(dpn)) 
            print('Samples Len= ' + str(len(samples))) 
            print('deltaArr len= ' + str(len(deltaArr))) 
             
            AmaxVec.append(Amax) 
            tpAMaxVec.append(timeStamps[tpAMaxIndex]) 
            tpSMaxVec.append(timeStamps[tpSMaxIndex]) 
            SmaxVec.append(Smax) 
            SminVec.append(Smin) 
            dpnVec.append(dpn) 
             
            timeSamples = [] 
            deltaArr = [] 
            samples = [] 
            timeStamps = [] 
            timeDiff = [] 
            avgDeltaArr = [] 
             
        AmaxMean = sum(AmaxVec) / len(AmaxVec) 
        tpAMaxMean = sum(tpAMaxVec) / len(tpAMaxVec) 
        tpSMaxMean = sum(tpSMaxVec) / len(tpSMaxVec) 
        SMaxMean  = sum(SmaxVec) / len(SmaxVec) 
        SMinMean = sum(SminVec) / len(SminVec) 
        dpnMean = sum(dpnVec) / len(dpnVec) 
         
        print('\nAmaxMean = ' + str(AmaxMean))     
        print('TpAMaxMean = ' + str(tpAMaxMean)) 
        print('TpSMaxMean = ' + str(tpSMaxMean)) 
        print('SmaxMean = ' + str(SMaxMean)) 
        print('SminMean = ' + str(SMinMean)) 
        print('dpnMean = ' + str(dpnMean)) 
         
        for i in dpnVec: 
            if (i > (dpnMean - 2*statistics.stdev(dpnVec))) or (i < (dpnMean + 2* 
statistics.stdev(dpnVec))): 
                if (i > 0): 
                    dpnCalibration.append(i) 
         
        for i in tpSMaxVec: 
            if (i > (tpSMaxMean - 2*statistics.stdev(tpSMaxVec))) or (i < 
(tpSMaxMean + 2* statistics.stdev(tpSMaxVec))): 
                tpSMaxCalibration.append(i) 
                 
        for i in SmaxVec: 
            if (i > (SMaxMean - 2*statistics.stdev(SmaxVec))) or (i < (SMaxMean + 
2* statistics.stdev(SmaxVec))): 
                SMaxMeanCalibration.append(i) 
                 
        print('dpnMean after remove outliers= ' + 
str(sum(dpnCalibration)/len(dpnCalibration))) 
        print('TpSMaxMean after remove outliers= ' + 
str(sum(tpSMaxCalibration)/len(tpSMaxCalibration))) 
        print('SMaxMean after remove outliers= ' + 
str(sum(SMaxMeanCalibration)/len(SMaxMeanCalibration))) 
        tpSDeviation = statistics.stdev(tpSMaxCalibration) 
        dpnDeviation = statistics.stdev(dpnCalibration) 
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        SMaxMeanDeviation = statistics.stdev(SMaxMeanCalibration) 
        print('tpSDeviation = ' + str(tpSDeviation)) 
        print('dpnDeviation = ' + str(dpnDeviation)) 
        print('SMaxMeanDeviation = ' + str(SMaxMeanDeviation)) 
         
        dpnMean =  sum(dpnCalibration) / len(dpnVec)   
        dpnLThreshold = dpnMean - 2*statistics.stdev(dpnCalibration) 
        dpnHThreshold = dpnMean + 2*statistics.stdev(dpnCalibration) 
        tpSMaxLThreshold = tpSMaxMean - 2*statistics.stdev(tpSMaxCalibration) 
        tpSMaxHThreshold = tpSMaxMean + 2*statistics.stdev(tpSMaxCalibration) 
        SmaxThreshold = SMaxMean - 2*statistics.stdev(SMaxMeanCalibration) 
         
        print('\nNew Thresholds') 
        print('Smax Threshold = ' + str(SmaxThreshold)) 
        print('dpnLTh = ' + str(dpnLThreshold)) 
        print('dpnHTh = ' + str(dpnHThreshold)) 
        print('tpSMaxLThreshold = ' + str(tpSMaxLThreshold)) 
        print('tpSMaxHThreshold = ' + str(tpSMaxHThreshold)) 
 
        AmaxVec = [] 
        tpAMaxVec = [] 
        tpSMaxVec = [] 
        SmaxVec = [] 
        SminVec = [] 
        dpnVec = []  
 
    def acuracia(self): 
         
        global deltaArr, samples, timeSamples, timeStamps, timeDiff, duration  
        global AmaxVec, tpAMaxVec, tpSMaxVec, SmaxVec, SminVec, dpnVec, 
avgDeltaArr  
        global rodada, piscadas, piscadaErrada  
         
        while rodada < 21: 
         
            sleep(2) 
            # first resolve an EOG stream on the lab network 
            print("\nlooking for an EOG stream...") 
            streams = resolve_stream('type', 'EEG') 
            # create a new inlet to read from the stream 
            inlet = StreamInlet(streams[0]) 
            sample, timestamp = inlet.pull_sample() 
            while len(sample) == 0: 
                samples, timestamp = inlet.pull_sample() 
            x1 = sample[0] 
            initialTimeStamp = timestamp 
            timeStamps.append(0) 
            samples.append(x1) 
            deltaArr.append(0) 
            oldTimestamp = timestamp 
         
            self.flash() 
            start = time.time() 
         
            while time.time() <= start + duration: 
                sample, timestamp = inlet.pull_sample() 
                if timestamp > oldTimestamp: 
                    timeStamps.append(timestamp - initialTimeStamp ) 
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                    timeSample = time.time() - start 
                    timeSamples.append(timeSample) 
                    x2 = sample[0] 
                    samples.append(x2) 
                    deltaX = x2 - x1 
                    deltaArr.append(deltaX) 
                    x1 = x2 
                    timeDiff.append(timestamp - oldTimestamp) 
                    oldTimestamp = timestamp 
                    tempo = time.time() 
                    lim = start + 0.1 
                    if (tempo > lim and (self.label1.cget("bg")== "darkgreen")): 
                        self.unFlash() 
         
            avgDeltaArr.insert(0,deltaArr[0]) 
            avgDeltaArr.insert(1,deltaArr[1]) 
            for i in range(2,len(deltaArr),1): 
                a = i-1 
                aa = i -2  
                value = (deltaArr[i] + deltaArr[a] + deltaArr[aa])/ 3 
                avgDeltaArr.insert(i , value ) 
                           
            samples = samples[20:] 
            deltaArr = avgDeltaArr[20:] 
            timeStamps = timeStamps[20:] 
             
            Amax = max(samples) 
            tpAMaxIndex = samples.index(Amax) 
            Smax = max(deltaArr) 
            tpSMaxIndex = deltaArr.index(Smax) 
            tpSMax = timeStamps[tpSMaxIndex] 
            Smin = min(deltaArr[tpAMaxIndex:(tpAMaxIndex+25)]) 
            tpMinIndex = deltaArr.index(Smin) 
            dpn = timeStamps[tpMinIndex] - timeStamps[tpSMaxIndex]  
             
            print('Amax = ' + str(Amax)) 
            print('tpAmax = ' + str(timeStamps[tpAMaxIndex]))     
            print('tpSmax = ' + str(timeStamps[tpSMaxIndex])) 
            print('Smax = ' + str(Smax)) 
            print('tpSmin = ' + str(timeStamps[tpMinIndex])) 
            print('Smin = ' + str(Smin)) 
            print('dpn = ' + str(dpn)) 
            print('Samples = ' + str(len(samples))) 
            print('deltaArr = ' + str(len(deltaArr))) 
            
         
            #Count number of blinks 
            if( (Amax > 50) and (Smax >10) and (dpn > 0.021) and (dpn <0.118) and 
(tpSMax > 0.33) and (tpSMax <0.63)): 
                print('\n Piscou') 
                print('rodada = ' + str(rodada)) 
                piscadas += 1 
         
                AmaxVec.append(Amax) 
                tpAMaxVec.append(timeStamps[tpAMaxIndex]) 
                tpSMaxVec.append(timeStamps[tpSMaxIndex]) 
                SmaxVec.append(Smax) 
                SminVec.append(Smin) 
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                dpnVec.append(dpn) 
                if (rodada > 10): 
                    piscadaErrada += 1 
                     
            timeSamples = [] 
            deltaArr = [] 
            samples = [] 
            timeStamps = [] 
            timeDiff = [] 
            avgDeltaArr = [] 
            rodada = rodada + 1  
         
    def iniciar(self): 
         
        global deltaArr, samples, timeSamples, timeStamps, timeDiff, duration  
        global AmaxVec, tpAMaxVec, tpSMaxVec, SmaxVec, SminVec, dpnVec, 
avgDeltaArr  
        global rodada, piscadas, piscadaErrada  
        global tpAmaxMean, tpSMaxMean, AmaxThreshold, SmaxThreshold, 
dpnLThreshold, dpnHThreshold, tpSMaxLThreshold, tpSMaxHThreshold  
         
        sleep(1) 
        # first resolve an EOG stream on the lab network 
        print("\nlooking for an EOG stream...") 
        streams = resolve_stream('type', 'EEG') 
        # create a new inlet to read from the stream 
        inlet = StreamInlet(streams[0]) 
        sample, timestamp = inlet.pull_sample() 
        while len(sample) == 0: 
            samples, timestamp = inlet.pull_sample() 
        x1 = sample[0] 
        initialTimeStamp = timestamp 
        timeStamps.append(0) 
        samples.append(x1) 
        deltaArr.append(0) 
        oldTimestamp = timestamp 
     
        self.flashLetters('A') 
        start = time.time() 
     
        while time.time() <= (start + 1.1): 
            sample, timestamp = inlet.pull_sample() 
            if timestamp > oldTimestamp: 
                timeStamps.append(timestamp - initialTimeStamp ) 
                timeSample = time.time() - start 
                timeSamples.append(timeSample) 
                x2 = sample[0] 
                samples.append(x2) 
                deltaX = x2 - x1 
                deltaArr.append(deltaX) 
                x1 = x2 
                oldTimestamp = timestamp 
                 
                tempoA =  time.time() - start 
                if ( tempoA >= 0.1 and self.labelA.cget("bg") == "darkgreen"): 
                    self.unFlashLetters('A') 
                elif ( tempoA >= 0.15 and tempoA < 0.25 and 
self.labelB.cget("bg")!= "darkgreen"): 
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                    self.flashLetters('B') 
                elif ( tempoA >= 0.25 and self.labelB.cget("bg")== "darkgreen" ): 
                    self.unFlashLetters('B') 
                elif ( tempoA >= 0.3 and tempoA < 0.4 and self.labelC.cget("bg")!= 
"darkgreen"): 
                    self.flashLetters('C') 
                elif ( tempoA >= 0.4 and self.labelC.cget("bg") == "darkgreen"): 
                    self.unFlashLetters('C') 
     
        avgDeltaArr.insert(0,deltaArr[0]) 
        avgDeltaArr.insert(1,deltaArr[1]) 
        for i in range(2,len(deltaArr),1): 
            a = i-1 
            aa = i -2  
            value = (deltaArr[i] + deltaArr[a] + deltaArr[aa])/ 3 
            avgDeltaArr.insert(i , value ) 
                       
        samplesA = samples[20:160] 
        deltaArrA = avgDeltaArr[20:160] 
        timeStampsA = timeStamps[20:160] 
         
        AmaxA = max(samplesA) 
        tpAMaxIndexA = samplesA.index(AmaxA) 
        SmaxA = max(deltaArrA) 
        tpSMaxIndexA = deltaArrA.index(SmaxA) 
        tpSMaxA = timeStampsA[tpSMaxIndexA] 
        if (tpAMaxIndexA < 115): 
            SminA = min(deltaArrA[tpAMaxIndexA:(tpAMaxIndexA+25)]) 
        else: 
            SminA = min(deltaArrA[tpAMaxIndexA:]) 
             
        tpMinIndexA = deltaArrA.index(SminA) 
        dpnA = timeStampsA[tpMinIndexA] - timeStampsA[tpSMaxIndexA]  
         
        print('\nBotao A') 
        print('Amax = ' + str(AmaxA)) 
        print('tpAmax = ' + str(timeStampsA[tpAMaxIndexA]))     
        print('tpSmax = ' + str(timeStampsA[tpSMaxIndexA])) 
        print('Smax = ' + str(SmaxA)) 
        print('tpSmin = ' + str(timeStampsA[tpMinIndexA])) 
        print('Smin = ' + str(SminA)) 
        print('dpn = ' + str(dpnA)) 
        print('Samples = ' + str(len(samplesA))) 
        print('deltaArr = ' + str(len(deltaArrA))) 
        
        # plotting the points  
        plt.plot(timeStampsA, samplesA) 
        plt.plot(timeStampsA, deltaArrA) 
        # naming the x axis 
        plt.xlabel('x - time(s)') 
        # naming the y axis 
        plt.ylabel('y - voltage(uV)') 
        # giving a title to my graph 
        plt.title('EOG Blink Segment') 
        # function to show the plot 
        plt.grid() 
        plt.show() 
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        deltaArrA = [] 
        samplesA = [] 
        timeStampsA = [] 
         
        samplesB = samples[30:190] 
        deltaArrB = avgDeltaArr[30:190] 
        timeStampsB = timeStamps[30:190] 
        timeStampsB[:] = [timeStampB - 0.15 for timeStampB in timeStampsB] 
         
        AmaxB = max(samplesB) 
        tpAMaxIndexB = samplesB.index(AmaxB) 
        SmaxB = max(deltaArrB) 
        tpSMaxIndexB = deltaArrB.index(SmaxB) 
        tpSMaxB = timeStampsB[tpSMaxIndexB] 
        if (tpAMaxIndexB < 165): 
            SminB = min(deltaArrB[tpAMaxIndexB:(tpAMaxIndexB+25)]) 
        else: 
            SminB = min(deltaArrB[tpAMaxIndexB:]) 
             
        tpMinIndexB = deltaArrB.index(SminB) 
        dpnB = timeStampsB[tpMinIndexB] - timeStampsB[tpSMaxIndexB]  
         
        print('\nBotao B') 
        print('Amax = ' + str(AmaxB)) 
        print('tpAmax = ' + str(timeStampsB[tpAMaxIndexB]))     
        print('tpSmax = ' + str(timeStampsB[tpSMaxIndexB])) 
        print('Smax = ' + str(SmaxB)) 
        print('tpSmin = ' + str(timeStampsB[tpMinIndexB])) 
        print('Smin = ' + str(SminB)) 
        print('dpn = ' + str(dpnB)) 
        print('Samples = ' + str(len(samplesB))) 
        print('deltaArr = ' + str(len(deltaArrB))) 
        
        # plotting the points  
        plt.plot(timeStampsB, samplesB) 
        plt.plot(timeStampsB, deltaArrB) 
        # naming the x axis 
        plt.xlabel('x - time(s)') 
        # naming the y axis 
        plt.ylabel('y - voltage(uV)') 
        # giving a title to my graph 
        plt.title('EOG Blink Segment') 
        # function to show the plot 
        plt.grid() 
        plt.show() 
        
        deltaArrB = [] 
        samplesB = [] 
        timeStampsB = [] 
         
        samplesC = samples[60:220] 
        deltaArrC = avgDeltaArr[60:220] 
        timeStampsC = timeStamps[60:220] 
        timeStampsC[:] = [timeStampC - 0.3 for timeStampC in timeStampsC] 
 
        AmaxC = max(samplesC) 
        tpAMaxIndexC = samplesC.index(AmaxC) 
        SmaxC = max(deltaArrC) 



126 

 

 

 

 

        tpSMaxIndexC = deltaArrC.index(SmaxC) 
        tpSMaxC = timeStampsC[tpSMaxIndexC] 
        if (tpAMaxIndexC < 195): 
            SminC = min(deltaArrC[tpAMaxIndexC:(tpAMaxIndexC+25)]) 
        else: 
            SminC = min(deltaArrC[tpAMaxIndexC:]) 
             
        tpMinIndexC = deltaArrC.index(SminC) 
        dpnC = timeStampsC[tpMinIndexC] - timeStampsC[tpSMaxIndexC]  
         
        print('\nBotao C') 
        print('Amax = ' + str(AmaxC)) 
        print('tpAmax = ' + str(timeStampsC[tpAMaxIndexC]))     
        print('tpSmax = ' + str(timeStampsC[tpSMaxIndexC])) 
        print('Smax = ' + str(SmaxC)) 
        print('tpSmin = ' + str(timeStampsC[tpMinIndexC])) 
        print('Smin = ' + str(SminC)) 
        print('dpn = ' + str(dpnC)) 
        print('Samples = ' + str(len(samplesC))) 
        print('deltaArr = ' + str(len(deltaArrC))) 
        
        # plotting the points  
        plt.plot(timeStampsC, samplesC) 
        plt.plot(timeStampsC, deltaArrC) 
        # naming the x axis 
        plt.xlabel('x - time(s)') 
        # naming the y axis 
        plt.ylabel('y - voltage(uV)') 
        # giving a title to my graph 
        plt.title('EOG Blink Segment') 
        # function to show the plot 
        plt.grid() 
        plt.show() 
        
        deltaArrC = [] 
        samplesC = [] 
        timeStampsC = [] 
         
        # plotting the points  
        plt.plot(timeStamps, samples) 
        plt.plot(timeStamps, deltaArr) 
        plt.plot(timeStamps, avgDeltaArr) 
        # naming the x axis 
        plt.xlabel('x - time(s)') 
        # naming the y axis 
        plt.ylabel('y - voltage(uV)') 
        # giving a title to my graph 
        plt.title('EOG Blink Segment') 
        # function to show the plot 
        plt.grid() 
        plt.show() 
 
         
        deltaArr = [] 
        samples = [] 
        avgDeltaArr = [] 
        timeSamples = [] 
        timeStamps = [] 
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        timeDiff = [] 
         
        buttons = {} 
         
        if( (AmaxA > AmaxThreshold) and (SmaxA > SmaxThreshold) and (dpnA > 
dpnLThreshold) and (dpnA < dpnHThreshold) and (tpSMaxA > tpSMaxLThreshold) and 
(tpSMaxA < tpSMaxHThreshold)): 
            print('\n A Selecionado') 
            buttons["A"] =  abs(tpSMaxA - tpSMaxMean) 
         
        if( (AmaxB > AmaxThreshold) and (SmaxB > SmaxThreshold) and (dpnB > 
dpnLThreshold) and (dpnB < dpnHThreshold) and (tpSMaxB > tpSMaxLThreshold) and 
(tpSMaxB < tpSMaxHThreshold)): 
            print('\n B Selecionado') 
            buttons["B"] = abs(tpSMaxB - tpSMaxMean) 
             
        if( (AmaxC > AmaxThreshold) and (SmaxC > SmaxThreshold) and (dpnC > 
dpnLThreshold) and (dpnC < dpnHThreshold) and (tpSMaxC > tpSMaxLThreshold) and 
(tpSMaxC < tpSMaxHThreshold)): 
            print('\n C Selecionado') 
            buttons["C"] =  abs(tpSMaxC - tpSMaxMean) 
             
        if buttons: 
            print('\n Final Selection ' + str( min(buttons, key=buttons.get))) 
         
    def flash(self): 
        self.label1.config(bg = "darkgreen") 
        self.label1.update() 
       
    def flashLetters(self, letter): 
        if letter == 'A': 
            self.labelA.config(bg = "darkgreen") 
            self.labelA.update() 
        elif letter == 'B': 
            self.labelB.config(bg = "darkgreen") 
            self.labelB.update() 
        elif letter == 'C': 
            self.labelC.config(bg = "darkgreen") 
            self.labelC.update() 
     
    def unFlashLetters(self,letter): 
         
        if letter == 'A': 
            self.labelA.config(bg = "#F0F0F0") 
            self.labelA.update() 
        elif letter == 'B': 
            self.labelB.config(bg = "#F0F0F0") 
            self.labelB.update() 
        elif letter == 'C': 
            self.labelC.config(bg = "#F0F0F0") 
            self.labelC.update() 
     
    def unFlash(self): 
        self.label1.config(bg = '#F0F0F0') 
        self.label1.update() 
 
window = FlashingInterface() 
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AmaxMean = sum(AmaxVec) / len(AmaxVec) 
tpAMaxMean = sum(tpAMaxVec) / len(tpAMaxVec) 
tpSMaxMean = sum(tpSMaxVec) / len(tpSMaxVec) 
SMaxMean  = sum(SmaxVec) / len(SmaxVec) 
SMinMean = sum(SminVec) / len(SminVec) 
dpnMean = sum(dpnVec) / len(dpnVec) 
 
print('\nAmaxMean = ' + str(AmaxMean))     
print('TpAMaxMean = ' + str(tpAMaxMean)) 
print('TpSMaxMean = ' + str(tpSMaxMean)) 
print('SmaxMean = ' + str(SMaxMean)) 
print('SminMean = ' + str(SMinMean)) 
print('dpnMean = ' + str(dpnMean)) 
 
for i in dpnVec: 
    if (i > (dpnMean - 2*statistics.stdev(dpnVec))) or (i < (dpnMean + 2* 
statistics.stdev(dpnVec))): 
        dpnCalibration.append(i) 
 
for i in tpSMaxVec: 
    if (i > (tpSMaxMean - 2*statistics.stdev(tpSMaxVec))) or (i < (tpSMaxMean + 2* 
statistics.stdev(tpSMaxVec))): 
        tpSMaxCalibration.append(i) 
 
dpnMean =  sum(dpnCalibration) / len(dpnVec)   
dpnLThreshold = dpnMean - 2*statistics.stdev(dpnCalibration) 
dpnHThreshold = dpnMean + 2*statistics.stdev(dpnCalibration) 
tpSMaxLThreshold = tpSMaxMean - 2*statistics.stdev(tpSMaxCalibration) 
tpSMaxHThreshold = tpSMaxMean + 2*statistics.stdev(tpSMaxCalibration) 
 
print('\nNew Thresholds') 
print('dpnLTh = ' + str(dpnLThreshold)) 
print('dpnHTh = ' + str(dpnHThreshold)) 
print('tpSMaxLThreshold = ' + str(tpSMaxLThreshold)) 
print('tpSMaxHThreshold = ' + str(tpSMaxHThreshold))  
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ATTACHMENT A – SAMPLE APPLICATION OF THE NASA-TLX 

Source: (HART; STA, 1988)  
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ATTACHMENT B – ADAPTED FREE TRANSLATION VERSION OF THE NASA-

TLX PROTOCOL 

 

 


