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Resumo 

 

 A leishmaniose cutânea (LC) é causada pelo parasita Leishmania e 
é uma das doenças tropicais transmitidas por vetores mais negligenciadas 
do mundo. O Brasil é o país com maior incidência da doença na América 
Latina e um dos 10 países do mundo com maior número de casos.  No 
Brasil, a leishmaniose cutânea é uma doença essencialmente zoonótica, e 
tem como vetor espécies de mosquito palha (Plebotominae) e como 
reservatório, diversas espécies de mamíferos. A distribuição espaço-
temporal da doença no país ainda é pouco conhecida e depende de fatores 
ambientais que favorecem o desenvolvimento e a coexistência das 
espécies de parasitas, reservatórios e vetores. Desta forma, o objetivo 
principal deste estudo foi analisar a dinâmica espaço-temporal dos casos 
de Leishmaniose Cutânea no Brasil, buscando a relação com fatores 
ambientais. Foram utilizados dados de casos confirmados de 
leishmaniose cutânea em nível de município entre os anos de 2001 e 
2017. No primeiro artigo, foram aplicados métodos de análise de 
tendência de Mann-Kendall, varredura espaço-temporal de Kuldorff e 
análise de hotspots emergentes para identificar os aglomerados e a 
dinâmica espaço-temporal da doença.  Observou-se que a incidência da 
LC tem diminuido ao longo do tempo, mas que em alguns municípios o 
número de casos tem aumentado. O principal aglomerado da doença foi 
encontrado na região Amazônica, e a análise de hotspot mostrou que a 
dinâmica espaço-temporal da doença nessa região é bastante heterogênea. 
Também foram encontrados 20 aglomerados secundários da doença, 
sendo a maioria deles localizados na região sudeste e um no estado da 
Bahia. No segundo artigo, foi aplicada uma modelagem bayesiana 
espaço-temporal para avaliar como as mudanças no uso do solo afetam a 
incidência da LC dentro da região Amazônica. Os resultados mostraram 
que o aumento do risco de leishmaniose cutânea na região está associado 
ao desmatamento, e por uma interação positiva entre a cobertura florestal 
e a pecuária. As paisagens com desmatamento contínuo para a criação de 
gado extensivo são normalmente encontradas em municípios da fronteira 
amazônica, onde também encontramos diversos hotspots da doença. 
Espera-se que os resultados desse estudo possam guiar estudos 
ecológicos, epidemiológicos e ações de vigilância e controle nos 
principais focos da doença no país.  Além disso, os resultados desse 
trabalho também ajudam a esclarecer melhor como mudanças ambientais 
afetam a transmissão da leishmaniose cutânea, os quais podem ser 
utilizados para guiar ações de planejamento territorial, especialmente na 
Floresta Amazônica.   
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Abstract 

 

 Cutaneous Leishmaniasis (CL) is a vector-borne disease caused by 
a parasite of the genus Leishmania. It is considered one of the most 
neglected tropical diseases. Brazil has the highest incidence of CL in 
America and is one of the ten countries in the world with the highest 
number of cases. In Brazil, cutaneous leishmaniasis is mainly a zoonotic 
disease. Vectors are species of Phlebotomies sandflies and reservoirs are 
several species of mammals. The spatiotemporal distribution of disease 
cases in Brazil is not well understood and is dependent on environmental 
factors that are suitable for the development and coexistence of species of 
parasites, vectors and reservoirs. The main objective of this study is to 
analyze the spatiotemporal dynamics of Cutaneous Leishmaniasis cases 
in Brazil and their environmental relationship. Data from CL cases at the 
municipality level from 2001 to 2017 were used. The first paper 
employed the Mann-Kendall trend test, Kuldorff scan method, and 
emerging hotspot analysis to identify the spatiotemporal dynamics and 
clusters of the disease. Although the incidence of CL has been decreasing 
over time, there are still a few municipalities with an increased trend. The 
main cluster of the disease was found in the Amazon region, and the 
hotspot analysis showed that the spatiotemporal dynamics of the disease 
in this region is highly heterogeneous. The analysis also identified 20 
secondary clusters, primarily located in the southeast region and the state 
of Bahia. In the second chapter, a spatio-temporal Bayesian model was 
applied to evaluate how land-use changes have affected CL incidence in 
the Amazon region. The results showed that the increased risk of 
Cutaneous Leishmaniasis in the region was associated with deforestation 
and a positive interaction between forest cover and livestock. Landscapes 
with ongoing deforestation for extensive cattle ranching are typically 
found in municipalities within the Amazon Frontier, where we also have 
several hotspots of the disease.These results can inform future ecological 
and epidemiological studies, as well as surveillance and control actions in 
the main focus of the disease in Brazil. Additionally, our findings provide 
valuable insights into how environmental changes affect the transmission 
risk of cutaneous leishmaniasis, which can be used to guide land-use 
planning policies, particularly in the Amazon forest. 
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Introdução Geral 

 

 

Cutaneous Leishmaniasis is a vector-borne disease caused by a 

parasite of the genus Leishmania (Order Kinetoplatida), which includes 

22 pathogenic species for humans. It is endemic in 89 countries, mainly 

in tropical, arid, and mediterranean regions, with an estimated number of 

cases ranging from 0.7 to 1.2 million per year (Alvar et al., 2012; PAHO, 

2024).The disease has three main clinical presentations: (1) localized 

cutaneous leishmaniasis, characterized by one or more ulcerated skin 

lesions; (2) diffuse cutaneous leishmaniasis, characterized by nodular 

lesions disseminated throughout the body; and (3) mucocutaneous 

leishmaniasis, characterized by necrosis of the nasopharyngeal mucosa 

(Reithinger et al., 2017). Although this disease does not have high 

mortality rates, the treatment is lengthy and costly (Desjeux, 2004). 

Patients may also develop sequels, such as permanent scars or facial 

disfigurement, which can lead to social stigmatization and depressive 

disorders (Bailey et al., 2019). 

Brazil is one of the countries with the highest number of cases of 

CL in the world, and alongside Afghanistan, Algeria, Colombia, Iran, 

Syria, Ethiopia, Northern Sudan, Costa Rica, and Peru, account together 

for 70–75% of the global incidence of the disease (Alvar et al., 2012). A 

previous study conducted in the Americas showed that CL cases in Brazil 

have been decreasing over time. However, there are still regions with 

high incidence rates of the disease, mainly located in the northern states 

of Brazil, such as Amazonas, Pará, and Mato Grosso, as well as in the 

northeastern of Brazil, in the Bahia state (Maia-Elkhoury, et al. 2016). 
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Identifying territorial units of major epidemiological significance is 

essential for providing guidelines for public health policies, such as 

prevention, surveillance, and control measures (Brasil, 2017). However, 

prior to this thesis (chapter 1), the spatial distribution and temporal 

changes of the disease at a small scale level were not fully understood, 

except for some local studies conducted in specific states, such as Acre 

(Melchior et al., 2017),  Amazonas (Teles et al., 2019), Paraná (Melo et 

a.l 2017) and Minas Gerais (Cardoso et al., 2019).  

In Brazil, CL is a zoonotic disease transmitted to humans by an 

infected female phlebotomine sandfly (Psychodidae, Phlebotominae) 

(Ready et al., 2013). Several mammalian species have been found 

infected with the parasite. However, for a species to be considered a 

reservoir it must be capable of sustaining the infection in its organism 

and have the potential to transmit the parasite to the vector (Ashford, 

1996; Haydon et al. 2002; Roque & Jansen 2014ab). The role of different 

species of neotropical mammals in the transmission of Leishmania is not 

yet fully known, because epidemiological investigations that include 

ecological and experimental studies in the region are still scarce. 

However, in Brazil, the potential reservoirs of the disease are wild 

mammalian species, such as sloths, anteaters (Order Pilosa), armadillos 

(Order Cingulata), monkeys (Order Primates), and also synanthropic 

species, such as Didelphis spp. (Order Didelphimorphia), and some 

rodents, such as Rattus rattus, and species of the 

genus Proechimys and Thrichomys (Order Rodentia) (Roque & Jansen, 

2014a,b).  

The spatial distribution of cutaneous leishmaniasis depends on 

favorable environmental conditions for the coexistence and interaction of 

parasites, vectors, and reservoirs (Desjeux 2001). In Brazil, most of the 

species of vectors and reservoirs of CL are usually dependent on forested 
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habitats. However, the modification of habitats by anthropogenic land 

use changes has led some of these species to occupy disturbed 

environments, such as fragmented forests and rural and urban landscapes 

(Ramos et al., 2014; Filho et al., 2015; Guimarães et al. 2022). For 

instance, out of the 22 sandfly species responsible for transmitting 

Leishmania to humans and animals in Brazil, 17 (77%) have already been 

found in anthropogenic environments (Aguiar & Vieira, 2008). In these 

environments, sandflies may have access to new resources such as 

artificial shelters and the blood of domestic animals (Guimarães et al., 

2022; Costa et al., 2021). In addition, populations of some mammal 

species, such as opossums and rodents, can benefit from the expansion of 

crops and the accumulation of domestic waste (Guerra et al., 2015; 

Mendoza et al., 2020). 

The adaptation of vectors and reservoirs to anthropogenic habitats 

may be altering the dynamics of CL transmission in Brazil (Brasil, 2017). 

Previously, the disease was mainly limited to the sylvatic zoonotic cycle. 

Humans typically get infected when they entered protected forests for 

occupational and recreational activities, such as fishing, hunting, military 

training, or ecotourism. However, disease transmission dynamics have 

been changing and expanding geographically over time, particularly in 

rural and peri-urban regions (Guerra et al., 1998, 2019; Membrive et al., 

2012; Rangel et al., 2014; Brazil, 2017). Understanding how different 

environmental changes have affected the risk of disease transmission is 

essential to guide policies for developing healthier landscapes (Loh et al., 

2015). 
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Spatiotemporal analyses are powerful tools for exploring and 

understanding the geographic distribution and impact of environmental 

changes on the incidence of various infectious diseases (Waller & 

Gotway, 2004). For example, disease cluster detection methods have 

been extensively used to identify areas with unusually high disease 

incidence, temporal trends, and priority areas for surveillance and control 

measures (Waller & Gotway, 2004; Melchior et al., 2017; Cardoso et al., 

2019; Freitas et al., 2019). Statistical methods where the disease 

dynamics are modeled in function of environmental and socio-economic 

variables while controlling for spatial-temporal random effects have also 

been essential to understanding the impact of environment changes on the 

risk of several diseases (Bangliardo et al., 2013; Hagan et al., 2016; 

Moraga et al., 2019;  Forbes et al., 2021). 

Many spatial analyses of diseases utilize health outcome data 

collected and summarized by governmental agencies, often national 

health departments, and then released for public use (Waller & Gotway, 

2004). Brazil has an important database called SINAN (Notifiable 

Diseases Information System), which is mainly filled by the notification 

and investigation data of several diseases cases that are included in the 

national list of compulsory notifiable diseases in Brazil (Brasil, 2007), 

including cutaneous leishmaniasis. SINAN is a primary tool for disease 

surveillance and control in Brazil. It contains essential demographic 

information for estimating disease risk, including age, sex, municipality 

of residence, probable municipality of infection, and date of symptom 

onset. The data is available for download in aggregated format on the 

website (http://portalsinan.saude.gov.br/sinan-net) or can be requested in 

individualized and anonymized format through the Ministry of Health. 

This data source has been used in several research studies worldwide, 

providing valuable insight into the epidemiology and ecological aspects 
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of various infectious diseases, such as dengue, chikungunya and Zika 

(Freitas et al., 2019) malaria (Lorenz et al., 2015), and leishmaniasis 

(Valero et al. 2021) 

This study investigates the spatio-temporal dynamics of cutaneous 

leishmaniasis cases in Brazil and how environmental changes have 

affected these dynamics. To achieve this, we applied different spatio-

temporal statistical approaches and used data from cutaneous 

leishmaniasis notifications from municipalities in Brazil over 18 years. 

The thesis is divided into two chapters in the format of articles. The first 

chapter applies cluster analyses to identify priority areas for surveillance 

and to describe the spatial and temporal distribution pattern of cutaneous 

leishmaniasis in Brazil. The second chapter uses a structured 

spatiotemporal Bayesian model to assess how different land cover classes 

and land-use changes affected the incidence of CL in the main cluster of 

the disease, while adjusting for well-known risk factors such as 

population, climate, and socioeconomic disadvantage. 
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Abstract 

Background: Cutaneous leishmaniasis (CL) is a vector-borne disease 

classified by the World Health Organization as one of the most neglected 

tropical diseases. Brazil has the highest incidence of CL in America and 

is one of the ten countries in the world with the highest number of cases. 

Understanding the spatiotemporal dynamics of CL is essential to provide 

guidelines for public health policies in Brazil. . In the present study we 

used a spatial and temporal statistical approach to evaluate the dynamics 

of CL in Brazil.. 

Methods: We used data of cutaneous leishmaniasis cases provided by the 

Ministry of Health of Brazil from 2001 to 2017. We calculated incidence 

rates and used the Mann-Kendall trend test to evaluate the temporal trend 

of CL in each municipality.. In addition, we used Kuldorff scan method 

to identify spatiotemporal clusters and emerging hotspots test to evaluate 

hotspot areas and their temporal trends. 

Results: We found a general decrease in the number of CL cases in 

Brazil  (from 15.3 to 8.4 cases per 100,000 habitants) , although 3.2% of  

municipalities still have an increasing tendency of CL incidence and 

72.5% showed no tendency at all. The scan analysis identified a primary 

cluster in northern and central regions and 21 secondary clusters located 

mainly in south and southeast regions. The emerging hotspots analysis 

detected a high spatial and temporal variability of hotspots inside the 

main cluster area, diminishing hotspots in eastern Amazon and 

permanent, emerging, and new hotspots in the states of Amapá and parts 

of Pará, Roraima, Acre and Mato Grosso. The central coast the state of 

Bahia is one of the most critical areas due to the detection of a cluster of 

the highest rank in a secondary cluster, and because it is the only area 

identified as an intensifying hotspot. 
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Conclusions: Using a combination of statistical methods we were able to 

detect areas of higher incidence of CL and understand how it changed 

over time. We suggest that these areas, especially those identified as 

permanent, new, emerging and intensifying hotspots, should be targeted 

for future research, surveillance, and implementation of vector control 

measures. 

Keywords: Cutaneous leishmaniasis, Spatiotemporal cluster, Emerging 

hotspot, Temporal trend, Brazil 

 

Background 

Cutaneous leishmaniasis (CL) is a vector-borne disease infecting 

from 0.7 to 1.2 million people per year [1] and it is classified as one of 

the most neglected tropical diseases [2]. CL is caused by an obligate 

parasite of the genus Leishmania and is transmitted to humans by the bite 

of infected female sandflies [3]. It has three primary clinical forms: (1) 

localized cutaneous, which is characterized by one or multiple ulcerated 

skin lesions; (2) diffuse, in which the patients present nodular lesions 

disseminated all over the body; and (3) mucocutaneous, which is 

characterized by necrosis of the nasopharyngeal mucous tissue [4]. CL is 

treatable and has a low mortality rate, but it can generate social stigma 

and depressive disorder due to permanent scars and facial disfigurement 

[5].  

CL occurs in at least 83 countries, mainly in the tropical, arid, and 

Mediterranean regions [6]. Recently, the World Health Organization 

classified this disease as a public health problem in the Americas and 

estimated that between 187 200 and 307 800 cases occur every year [7,8]. 

Most of CL cases in the Americas occur in Brazil, with an annual mean 

of newly infected people of 28 166 from 2001 to 2005 and 21 632 from 

2006 to 2011 [7]. Brazil is also one of the countries with the highest 
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number of cases of CL in the world, and alongside Afghanistan, Algeria, 

Colombia, Iran, Syria, Ethiopia, Northern Sudan, Costa Rica, and Peru 

account together for 70–75% of the global incidence of the disease [1]. 

A number of epidemiologic studies report that spatio-temporal 

distribution of CL is an important factor to be considered when planning 

mitigation measures to control this disease in seriously affected countries. 

For example, it has been shown that despite the higher incidence of CL in 

Costa Rica, Colombia and Syria the majority of the cases are aggregated 

in spatio-temporal clusters restricted to a few regions scattered 

throughout these countries [9,10, 11]. The only long-term study assessing 

spatial and temporal distribution of CL cases in Brazil analyzed temporal 

variation for the entire country and spatial distribution of cases 

aggregated by Brazilian states [7]. A few studies in Brazil assessed 

spatial and temporal variability of CL incidence in a higher resolution 

(i.e. for each municipality), and all of them were restricted to individual 

Brazilian states, namely:  Paraná [12], Minas Gerais [13], Acre [14] and 

Amazonas [15]. 

According to the American Cutaneous Leishmaniasis Surveillance 

Program in Brazil [16], identifying territorial units of major 

epidemiological significance is essential to provide guidelines for public 

health policies as prevention, surveillance, and control measures. In order 

to contribute to this effort in this study we analyzed a dataset ranging 

from 2001 to 2017 to investigate for the first time the spatial and 

temporal dynamics of CL at the municipality level in Brazil. Using 

exploratory maps, built with Geographic Information System (GIS), and 

spatial and temporal statistical methods, we determined in which areas in 

Brazil CL incidence is higher and whether it increased, stabilized or 

decreased over time. In addition to an up-to-date discussion on 
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spatiotemporal aspects of CL, we also suggest which areas in Brazil 

might be important for future research, monitoring and control measures. 

 

Methods 

 

Study area 

Brazil has 5570 municipalities distributed in 26 states which are 

grouped in five macroregions: north, northeast, midwest, southeast and 

south. These macroregions were established in the 1970s by IBGE 

(Instituto Brasileiro de Geografia e Estatística) to facilitate the survey 

and dissemination of statistical data in Brazil to add a perspective to the 

understanding of national territory organization and to help the federal 

government, as well as states and municipalities, in the implementation 

and management of public policies and investments. In addition, Brazil 

has also an area called Legal Amazon, which was created by the 

government in the 1950s to prompt the development of socio-economic 

policies in this region. Currently, Brazilian Legal Amazon (BLA) area 

covers all states from North region (Amazonas, Acre, Rondônia, 

Roraima, Amapá, Tocantins and Pará), the state of Mato Grosso 

(Midwest) and part of Maranhão (Northeast). It covers 720 

municipalities, with an approximate area of 5 217 423 km², 

corresponding to 61% of the Brazilian territory [17].  
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Fig 1: Map of Brazil and its territorial divisions.  
 

Data collection 

 

A data set on individual-level, anonymized, cases of CL 

comprising a period ranging from 2001 to 2017 was provided by the 

Information System of Notifiable Disease (SINAN – Sistema de 

Informação e Notificação de Agravos) of the Ministry of Health of 

Brazil. Confirmed CL cases were grouped by year and municipality, and 

CL annual incidence was calculated with the estimated annual population 

data extracted from Brazilian Institute for Geography and Statistics 

(IBGE – Instituto Brasileiro de Geografia e Estatística). 

Created in 1990, SINAN is the official nationwide platform for 

epidemiological surveillance of all compulsory notifiable diseases, which 
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are defined by the National Compulsory Notification List of diseases. It 

is responsible for notification, investigation and, in the case of 

communicable diseases, follow-up and the outcome of patient's 

treatment. Notification is usually made by health professionals in the 

most peripheral administrative level (i.e. health care units) through 

standardized individual notification record by disease or condition type. 

All compulsory notifiable disease should be notified by the public, 

private and philanthropic health services. If the notifying health facility 

does not have computerized system, the physical records should be sent 

periodically to the municipal, regional or state office to be further 

digitalized and submitted to the national database [18].  

Cutaneous leishmaniasis has been included by a specific federal 

statement on the national list of compulsory notifiable diseases since 

2001 [19]. Only confirmed CL cases are notified, and they are diagnosed 

through clinical-epidemiological or laboratory criteria, mainly through 

direct parasitological examination, Montenegro Intradermal Test (MIT) 

or histopathological examination [20]. The dataset of confirmed CL cases 

is publicly available and can be accessed on the SINAN webpage 

(http://www2.datasus.gov.br/DATASUS/index.php?area=0203).  

 

Temporal trend analysis 

 

First, we explored temporal trends of incidence for all country and for all 

municipalities affected by the disease. We used the LOESS curve fitting 

(locally weighted scatterplot smoothing) [21] to assess the tendency line 

of annual CL incidence in Brazil. To adjust the curve we used a 

combination of parameters to minimized an excessive weight in the 

smoothing and avoid over-adjustment. We found a better curve 

adjustment with an alpha value of 0.6. Since Brazil has thousands of 



29 
 

municipalities, it is not feasible to visualize the time trend curves for each 

municipality individually. Therefore, we used the Mann Kendall Trend 

Test [22,23] to evaluate if there was a significant temporal trend on the 

time series of each municipality, we categorized the municipalities 

according to their time trend and we plotted the obtained results on a 

map.  The Mann-Kendall trend test is a non-parametric test for 

identifying trends in time series data and it works comparing the relative 

magnitudes of sample data rather than the data values themselves [24]. 

We used the statistical software  R 3.6.3 (Lucent Technologies, Jasmine 

Mountain, USA)to perform the LOESS curve fitting and ARCGIS 10.4 

(ESRI, Red-lands, CA, USA) to perform Mann Kendall Trend test.  

 

Spatial-temporal analysis 

 

Scan statistic method 

The spatial-temporal scanning method proposed by Kulldorffs [25] 

was used to find spatiotemporal clusters of CL by detecting an excess of 

cases in a given region and period of time. This method makes the 

assumption that the disease cases are generated by a non-homogenous 

Poisson process and, under the null hypothesis, the expected cases for 

each municipality are proportional to their population size. This method 

was implemented through a two-dimensional cylindrical window: an 

ellipse base, representing the potential cluster’s geographic areas and the 

height representing the period of study (number of years). The radius of 

the cylinder window varied in both spatial size and temporal length until 

it reached a previously defined maximum area of 15% of the population 

size and 90% of the study period.   

 Within each cylinder, the actual and expected number of disease 

cases, along with a Poisson generalized likelihood ratio (GLR) is 
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calculated. The P-value for detected cluster was assessed using Monte 

Carlos simulation, where the maximum likelihood from the actual data 

was compared to the maximum likelihood from each 999 random 

simulated data sets generated under the null hypothesis. The cylinder 

with the maximum likelihood and with more than its expected number of 

cases was designated the most likely cluster. The other cylinders for 

which the likelihood value was statistically significant were defined as 

secondary clusters, and were ranked according to their likelihood ratio 

test statistics [25,26]. Scan statistics analysis were performed using 

SatScan software v9.6 (Boston, MA, USA) and the results were 

visualized using ArcGIS 10.4 (ESRI, Redlands, CA, USA).  

 

Emerging hotspot analysis 

 

Before running the temporal hotspot analysis we transformed our 

data into a 3D cube format with bins fixed in space (x, y) and time (z). 

The space value (x, y) was assigned as the coordinates of each 

municipality and the time value (z) was the incidence of CL in each 

municipality per year of study. Thereafter, to evaluate spatiotemporal 

hotspots of Cutaneous Leishmaniasis incidence in each municipality we 

applied the Emerging Hot Spot Analysis tool (ArcGIS 10.4,) using a 

combination of Getis ord Gi* statistic and Mann Kendall Trend test. 

The Getis ord Gi* statistic [27] was used to identify areas of 

aggregation of higher incidence of CL in Brazil. This method works by 

summing the incidence value of one municipality and its neighbors 

comparing proportionally to the sum of incidence of all municipalities. 

When the local sum is much different than the expected, and that 

difference is too large to be the result of random chance, a statistically 

significant Z score is the result.  The Getis-Ord Gi* statistic generates Z 
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scores (standard deviations) and P values (statistical probabilities) for 

each bin. A Z score above 1.96 means that there is a statically significant 

hot spot at a significant level of P <0.05 and the larger a bin’s Z-score the 

more intense the hotspot is. Due to the cube structure of the data, 

neighboring bins exist both in time and in space. The emerging hotspot 

package used an adapted formula of kernel density search radius to define 

the neighborhood size in space [28] and temporal neighbors were defined 

using one prior time-step interval.   

The Mann-Kendall statistic [22,23] was used to evaluate a 

statistically significant temporal trend across the time series of Z-scores 

resulting from Getis-Ord Gi statistic. In this test, the bin value of the first 

time period is compared to the bin value for the second. If the first is 

smaller than the second, the result is a +1, if it is larger the result is -1, 

and if the two values are tied, the result is zero, indicating no trend in the 

values over time. Each pair of time steps was compared over the 17-year 

series, generating the Mann-Kendall statistics with associated trend Z-

score and P-value for each bin.  Based on the variance for the values in 

the bin time series, the number of ties, and the number of time periods, 

the observed sum is compared to the expected sum (zero) to determine if 

the difference is statistically significant or not.  A small P-value indicates 

the trend is statistically significant, and the sign associated with the Z-

score determines if the series has a monotonic increase (positive Z-score) 

or decrease trend (negative Z-score). The hotspot and trend results from 

the Getis Ord Gi* and Mann-Kendall statistic were used to categorize 

each municipality [29] (see Table 1 for definition of the hotspots 

categories). 

 

Table 1 – Category name and definition of statistically significant 

hotspots representing different temporal states (ESRI ArcGIS Pro [30]).  
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Hot spot 
category 
name 

Definition 

Intensifying   A location that has been a statistically significant hot spot for 
more than 90% of temporal series, including the final time step 
(2017). In addition, the intensity of clustering of high counts in 
each time step is increasing.  

Persistent  A location that has been a statistically significant hot spot for more 
than 90% of the temporal series, with no discernible trend 
indicating an increase or decrease in the intensity of clustering 
over time.  

Historical  The most recent time period is not hot, but at least ninety percent 
of the time-step intervals have been statistically significant hot 
spots.  

Consecutive  A location with a single uninterrupted run of statistically 
significant hot spot bins in the final time-step intervals. The 
location has never been a statistically significant hot spot prior to 
the final hot spot run and less than ninety percent of all bins are 
statistically significant hot spots.  

Sporadic  A location that is an on-again then off-again hot spot. Less than 
90% of time series have been statistically significant hot spot.   

New  A location that is a statistically significant hot spot only on the last 
time steps of the time series.  

Diminishing  A location that has been a statistically significant hot spot for more 
than 90% of the time series. In addition, the intensity of clustering 
of high incidence in each time step is decreasing, or the most 
recent year is not hot.  

 

 

 

 

 

Results 

 

CL cases distribution and temporal trends 

During 2001–2017 period, a total of 379 571 cases of CL were 

registered in 73.8% of municipalities in Brazil with an average incidence 

of 11.86 cases per 100 000 inhabitants.  The number of municipalities 
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with confirmed CL cases was highest in 2002 (n = 2156) and lowest in 

2016 (n = 1635). The CL incidence reported per year in Brazil showed 

that there is a tendency for reduction in number of cases. This curve also 

followed the fluctuation of the number of municipalities with CL-positive 

cases, with maximum value in the year 2003 and the minimum value in 

2016 (Figure 2).   

 Despite the wide distribution of cases approximately 80% of them 

occurred in only 10% of municipalities which were located mainly in 

Brazilian Legal Amazon (BLA), especially in the states namely 

Maranhão (MA), Mato Grosso (MT), Pará (PA) and Rondônia (RO), and 

outside of BLA in the state of Bahia (BA) (Figure 3A). The temporal 

trend analysis for each municipality showed that 24.2% of them had a 

decrease in CL incidence, 3.2% had an increase, whereas 72.5% showed 

no tendency at all (Figure 3B).  

 

 

Fig. 2 Number of municipalities with cutaneous leishmaniasis records 
and cutaneous leishmaniasis incidence rates per 100 000 habitants 
reported in Brazil during 2001–2017 period. The plotted points 
correspond to incidence rates and the lines consist in short term trends 
(fitted with locally estimated scatterplot smoothing LOESS). 
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Fig. 3 Spatial distribution of cutaneous leishmaniasis incidence mean rate 
per 100 000 inhabitants (A) and temporal trend of CL incidence stratified 
at the municipality level (B) during 2001–2017 period 
 

 

Spatial-temporal clusters and hotspots 

 

The most likely cluster detected has a relative risk of 12 (P < 

0.001) for 2001–2015 period and covers the whole BLA (Figure 4). In 

the secondary clusters the first cluster in the rank was located in the 

central coast of Bahia (BA) and has a relative risk of 39.2 (P < 0.001) for 

2003–2017 period. The scan statistics also identified 20 more secondary 

clusters located in 90 municipalities scattered throughout mainly in the 

states of Minas Gerais (MG), São Paulo (SP), and Paraná (PR), with a 

relative risk ranging from 1.7 (from 2001 to 2004 and P < 0.05) to 22.7 

(2001 to 2009 and P < 0.001) (Table 2). 

The emerging hotspot analysis identified significant areas of 

agglomeration of high incidence of CL in space and time (Figure 5). 

These hotspots were located inside the most likely cluster area, excluding 
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the central part of the Amazonas State (AM), east of Pará (PA), and most 

of Maranhão (MA) (Figure 5). Another hotspot detected in the analysis 

was located in the central coast of Bahia, overlapping the area covered by 

the first in the rank of secondary clusters, as showed in Figure 4.    

 

 

Fig. 4 Cutaneous leishmaniasis space–time clusters (colored) obtained 
with spatial–temporal scan analysis, and hotspot areas (grid) obtained 
with emerging hotspot analysis (period of time ranging 2001–2017) 
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Table 2- Cutaneous leishmaniasis secondary clusters detected in Brazil 

between 2001–2017 using the space-time scan statistic.  

Nº Center State 
Nº 

Cities 
Observed 

Cases 
Expected 

Cases 
Relative 

Risk 
Year P-Value 

2 Nilo Peçanha BA 20 26752 731.42 39.27 2003-2017 <0.001 

3 Jussara PR 9 1553 229.79 6.78 2001-2015 <0.001 

4 Itariri SP 2 592 26.08 22.73 2001-2009 <0.001 

5 
Conceição de 
Ipanema MG 33 2828 933.26 3.05 2003-2017 <0.001 

6 Itaoca SP 10 916 142.87 6.42 2002-2016 <0.001 

7 Cerro Azul PR 1 324 30.35 10.68 2002-2016 <0.001 

8 Paraty RJ 2 418 74.98 5.58 2001-2006 <0.001 

9 
Rio Bonito do 
Iguaçu PR 1 76 4.35 17.48 2004-2005 <0.001 

10 Prudentópolis PR 1 97 10.81 8.98 2002-2003 <0.001 

11 Bandeirantes PR 4 252 77.89 3.24 2001-2013 <0.001 

12 Sarutaiá SP 3 75 10.74 6.99 2002-2003 <0.001 

13 Florestópolis PR 2 57 6.38 8.94 2001-2002 <0.001 

14 Blumenau SC 1 107 34.79 3.08 2006 <0.001 

15 
Trajano de 
Moraes RJ 4 72 15.65 4.60 2005-2006 <0.001 

16 Rio Acima MG 1 58 12.98 4.47 2006-2017 <0.001 

17 Luz MG 9 87 25.26 3.45 2014-2015 <0.001 

18 
Conceição do 
Pará MG 3 53 14.65 3.62 2002-2005 <0.001 

19 Pirassununga SP 1 96 39.69 2.42 2001-2005 <0.001 

20 Careaçu MG 1 17 1.37 12.39 2001-2002 <0.001 

21 Mangaratiba RJ 2 130 73.10 1.78 2001-2004 <0.05 

       BA: Bahia; CE: MG: Minas Gerais; PR: Paraná; RJ: Rio de Janeiro; SC: Santa 
Catarina; SP: São Paulo. 
 

A general decreasing trend in CL incidence was also found in the 

hotspot temporal analysis, whereas most of the hotspots identified were 

classified as historical or reducing hotspot. Most of the reducing hotspots 

were located in western BLA, although the temporal hotspot analysis also 

showed an intensifying hotspot placed in the coast of Bahia, in addition 

to persistent and recent hotspots located mainly in Amapá (AP), most of 
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Roraima (RO), east of Acre (AC), west of Pará and south of Mato Grosso 

do Sul (MS) (Figure 5).    

 

 

Fig. 5 Cutaneous leishmaniasis hotspots using gets Ord Gi analysis and 
categorized according to their temporal trend using Mann Kendall Trend 
test (period of time ranging 2001–2017) 

  

Discussion 

 

To our knowledge, the present study describes for the first time 

spatial and temporal patterns of cutaneous leishmaniasis cases at 

municipality level for entirely Brazil. Despite Brazil being one of the 

countries with the highest incidence of CL in the world, most of the cases 

recorded from 2001 to 2017 were concentrated to specific regions. In 

addition, although we have found a general reduction of cases in Brazil, 
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our results also showed that some municipalities had a stationary or an 

increasing tendency of CL incidence.  

The spatiotemporal statistical scan showed that all municipalities 

in Brazilian Legal Amazon are included in the CL primary cluster. This 

is in agreement with a previous study that found that the states of Amapá, 

Roraima, Amazonas, Pará and Acre had the highest incidence of CL 

between 2001 and 2011 [7]. However, differently from this study, [7] 

evaluated the distribution of CL cases aggregated by Brazilian states and 

could not detect high incidence of CL in relatively small geographic 

areas in south, southeast and northeast of Brazil. Previous studies that 

accessed CL distribution in municipalities of Paraná [12] and Minas 

Gerais [13] also detected similar cluster areas as detected in this study, 

even using different methodologies. The only exception was the 

Jequitinhonha region and northern Minas Gerais, which were not 

included in any cluster in the present study, probably due to differences 

in the data sets composition. Therefore, the detection of similar regions 

with high incidence of CL in previous studies corroborates our results 

and highlights the relevance of the detected cluster areas to the 

surveillance and control of CL Leishmaniasis in Brazil.  

Based on the emerging hotspot analysis, we found a high spatial 

and temporal heterogeneity of hotspots inside the primary cluster. This 

method did not find a large agglomeration of CL cases in the central part 

of Amazonas and eastern Pará, but it did find a predominance of reducing 

hotspot in western BLA and permanent and emerging hotspots in 

northern and eastern BLA. These results corroborate previous studies that 

showed a high spatial and temporal variability of CL cases in some states 

in northern Brazil. In accordance to our study, Teles et al. [15] found a 

smaller incidence of the disease in the interior of Amazonas and a high 

number of cases neighboring the State capital (Manaus), where we found 
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a reducing hotspot. Additionally, similarly to this study Teles et al. [15] 

also found a higher number of CL cases in municipalities located in the 

southern border of Amazonas with Acre. Analyzing a period of time 

ranging from 2007 to 2013, Melchior et al. [14] found only one high-risk 

cluster of CL in southern part of Acre, but similarly to our study they also 

found that this region had a diminishing temporal trend of CL incidence.  

Although a high incidence of CL has been historically found in the 

central coast of Bahia [31], this is the first time that this region has been 

identified as a cluster and an intensifying hotspot. It worth emphasizing 

that due to the risk of an increased trend of CL incidence and the risk of 

expansion of CL to neighboring regions, as previously reported for Rio 

de Janeiro state [32], the central cost of Bahia should be targeted as a 

high priority region for future surveillance and control measures of 

cutaneous leishmaniasis. 

The clusters and hotspots found in this study may suggest that CL 

tend to be spatially and temporally distributed in Brazil and that 

environmental factors might play a role in modulating this distribution 

[33]. Previous studies have shown that the incidence of American 

cutaneous leishmaniasis is positively associated with the amount of forest 

cover, high diversity of possible reservoir mammal species and favorable 

climatic conditions for the development of sand-flies vectors, such as 

warm and hot weather and low annual seasonality of temperature and 

precipitation [34,35,36].  These environmental variables are typical of the 

Legal Amazon region in which we detected the most likely cluster of CL. 

Other studies have also shown positive association of CL cases and 

human environmental changes such as deforestation [37], settlements 

near forested areas [32, 38] and development of agriculture crops [39,40]. 

These activities are predominant at the border of the Legal Amazon in a 

location called “Arc of Deforestation” [41], where we found most of the 
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CL hotspots. Future studies should focus on understanding how these 

anthropogenic variables are affecting spatiotemporal dynamics of the 

disease in this area.  

The presence of permanent and intensifying areas included in 

hotspots suggests that the strategies adopted for the control of CL in these 

regions might have not been efficient in reducing the number of cases. In 

Brazil, prevention strategies have mainly focused on diagnosis and 

treatment of the human disease, reducing morbidity, deformities and 

deaths, rather than on the control of vectors [42]. According to World 

Health Organization [43] an effective strategy for reducing human 

leishmaniasis is to control sand fly vectors and implementing health 

education in local communities, giving them important knowledge about 

individual protection measures and environmental modifications that can 

reduce the presence and frequency of vectors and hosts in the 

peridomicile and intradomicile areas [44]. Such an approach requires the 

proper knowledge of local epidemiology, which vector and host species 

are involved, their habitats, vector flight range, and seasonality [43]. 

However, the transmission patterns of CL are highly variable in Brazil, 

and little is known about the ecology of vector and mammalian reservoir 

species involved in the transmission cycle in many regions of the country 

[45,46]. Therefore, the CL hotspot areas identified in this study should be 

considered as priorities in public health campaigns and should be used to 

guide future baseline studies about eco-epidemiology of CL transmission.  

This study has two key limitations: First, is the use of secondary data, 

that can have different sources of errors including typing errors and the 

occurrence of underreporting cases due to the low coverage of public 

health agencies in remote areas of the country. However, the SINAN 

have seen considerable improvements in the last decades, including the 

mandatory notification of CL on both public and private service since 
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2001. Furthermore, CL diagnoses and treatment is free for all Brazilian 

citizens in the unified public health system (SUS), and thus the records of 

most of the CL cases in Brazil must have been included in SINAM [40]. 

Second, the analysis at the municipality level could not have revealed the 

actual site of disease focus. For more accurate analysis, future studies 

should examine the spatial distribution of CL at a finer scale (eg. zip 

code), however this data are poorly available in SINAN. 

The use of two complementary approaches employed in this study 

allowed us to describe more precisely the spatial and temporal patterns of 

CL in Brazil. However, similar to all spatial clustering approaches, the 

statistical methods used in this study have limitations in accuracy and 

sensitivity. The scan is one of the most frequently employed methods of 

spatial and temporal cluster analysis and has the advantage of being 

adjusted for heterogeneous population and to look for clusters without 

specifying their specific localities overcoming the pre-selection bias [47]. 

However, this method has the disadvantage of not identify accurately the 

right format of very irregular clusters, and thus often report large clusters 

that contain several low-risk areas inside it [48,49]. Therefore, we believe 

that this happened in our primary cluster due to the presence of some 

municipalities with low incidence rates. According to Han et al. [49], this 

issue could be improved by choosing ellipse radius values lower than 

50%. However, due to the low population in northern Brazil 

(approximately 12.13% of Brazilian population) the analysis continued 

detecting a big and a few informative clusters, even when we reduce the 

radius length. In this sense, the gets Ord Gi analysis improved our study 

describing greater spatial and temporal heterogeneity in this area. 

 

Conclusions 
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In this study the spatial-temporal dynamics of CL in Brazil has 

been analyzed for at the municipality level and with a wider temporal 

range than previous works. The scan method showed that the main 

cluster is located in the Brazilian Legal Amazon and that most of the 

secondary clusters are located in the southern and southeastern regions of 

Brazil. The emerging hotspot analysis identified a higher spatiotemporal 

variability of hotspot inside the BLA. Using this method, it was also 

possible to detect diminishing hotspots in the east and persistent, 

emergent, and new hotspots, mainly in municipalities of the states of 

Pará, Rondônia, and Roraima, Acre and south of Mato Grosso. 

Furthermore, we showed that the central coast of Bahia was one of the 

most critical regions for CL due to the presence of a cluster with the 

highest rank in a secondary cluster and an intensifying hotspot. Despite a 

general decrease trend of CL cases in Brazil found in this study, the 

identification of areas of persistent, emergent, new, and intensifying 

hotspots suggest that the control measures in these regions are not 

effective in controlling the disease. The results reported herein may assist 

and guide future research about CL eco-epidemiology and the 

implementation of disease control measures in Brazil. 
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Cutaneous Leishmaniasis is a vector-borne disease caused by a 

protozoan of the genus Leishmania and is considered one of the most 

important neglected tropical diseases. The Brazilian Amazon Forest 

harbors one of the highest diversity of Leishmania parasites and vectors 

and is one of the main focuses of the disease in the Americas. Previous 

studies showed that anthropogenic disturbances are an important 

predictor for the occurrence of the disease in the region, however, little is 

known about the effect of different types of land cover and land-use 

changes on the disease transmission risk. Here we quantify the effect of 

land use and land-cover changes on the incidence of Cutaneous 

Leishmaniasis in all municipalities within the Brazilian Amazon Forest, 

from 2001-2017. We used a structured spatiotemporal Bayesian model to 

assess the effect of forest cover, agriculture, livestock, extractivism, and 

deforestation on CL incidence, accounting for confounding variables 

such as population, climate, socioeconomic, and spatiotemporal random 

effects. We found that the increased risk of Cutaneous Leishmaniasis was 

associated with deforestation, especially modulated by a positive 

interaction between forest cover and livestock. Landscapes with ongoing 

deforestation for extensive cattle ranching are typically found in 

municipalities within the Amazon Frontier, where a high relative risk for 

Cutaneous Leishmaniasis was also identified. These findings provide 

valuable insights into developing effective public health policies and 

land-use planning to ensure healthier landscapes for people. 

 

Keywords:  Disease risk, Zoonosis, land use change, Spatio-temporal, 

Bayesian modeling 

 

 

1. Introduction 



54 
 

 

Anthropogenic land-use changes are the major drivers for the 

emergence of zoonotic diseases, especially for diseases transmitted by 

vectors and direct animal contact (Loh et al., 2015).  The Amazon forest 

is considered a region of high concern for the emergence of zoonotic 

diseases, due to its high diversity of vector-borne pathogens and 

extensive land-use changes (Lorenz et al., 2021). An estimated 116,000 

km² of forests have been lost in Amazon between 2008 and 2022 (INPE, 

2022), driven mainly by agriculture, cattle ranching, logging, mining, and 

infrastructure buildings (Garret et al., 2021). The effect of these land-use 

changes on the disease transmission risk in the Amazon has been widely 

studied for malaria, where studies have found a positive association 

between both deforestation and fragmentation on the disease incidence 

(Hahn et al., 2014; Santos & Almeida 2018; Chaves et al., 2018). 

However, for many other vector-borne pathogens, the effect of land-use 

changes on the transmission risk has still been understudied. 

Cutaneous Leishmaniasis (CL) ranks among one of the most 

important neglected tropical diseases (PAHO, 2017); and the majority of 

CL cases occur in Brazil, mainly in the Amazon region (Alavar et al., 

2012; Portella & Kraenkel, 2021). Cutaneous leishmaniasis is caused by 

a protozoan of the genus Leishmania (Kinetoplastida: Trypanosomatidae) 

and is transmitted to mammals by the bite of infected Phlebotominae 

sandflies (Diptera: Psychodidae) (Ready et al., 2013). When humans are 

infected, they develop skin ulcers that can evolve into the mucocutaneous 

form, which can cause permanent tissue scars and partial or total 

destruction of the mucosal tissues of the nose, throat, and mouth 

(Reithinger et al. 2007). CL is a life-burden disease and its skin sequels 

can also cause further psychological disorders such as depression (Bailey 

et al., 2019).  
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Landscape transformation in the Amazon has affected the 

distribution and population dynamics of Leishmania vectors and hosts. In 

the Brazilian Amazon, most sandflies are found mainly in forested areas 

where these insects have suitable moisture conditions, rich organic 

matter, and available shelter for development (Aguiar & Vieira, 2018). 

However, the modification of habitats by anthropogenic land-use changes 

has led some of these species to occupy disturbed environments such as 

fragmented forests, and rural and urban landscapes (Ramos et al., 2014; 

Filho et al., 2015; Guimarães et al. 2022). In addition, the land use 

conversion caused by the expansion of agriculture has offered a great 

abundance of food for the Leishmania reservoirs, such as rodents, which 

can reach higher abundance in those regions (Mendoza et al., 2020). 

Despite the evidence on the influence of land-use changes on the 

distribution of CL vectors and hosts, the effect of land-use changes on the 

incidence of CL in humans in the Brazilian Amazon is still not 

completely understood. Most of the studies that investigated 

environmental effects on the incidence of CL in tropical regions 

suggested that climate variables are the most important predictor of CL 

risk (Karagiannis-Voules et al. 2013; Purse et al., 2017). However, these 

studies analyzed CL transmission risk over a wider geographical range 

and they considered that different ecological geographic zones have the 

same risk factor, which may not be appropriate to identify specific 

disease risks at a local level (Loh et al., 2015).  

In that sense, a recent study focusing only on the Amazon forest 

found that anthropogenic factors rather than climate have the greatest 

impact on the risk of CL transmission (Chavy et al. 2019). In this study, 

the authors used an ecological niche modeling approach to assess the 

influence of the human footprint index (HFI)  on the occurrence of CL 

over a specific period. Land cover and land-use changes are the main 
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drivers of changes in HFI in the Amazon. Considering these factors in 

risk modeling is fundamental to understanding how CL risk responds to 

human occupation and land use in a complex and dynamic environment 

such as the Brazilian Amazon Rainforest. 

In this study, we used a spatiotemporal Bayesian approach to 

explore how different land cover classes and land-use changes affected 

the incidence of CL in the municipalities  Brazilian Amazon while 

adjusting for well-known risk factors such as population, climate, and 

socioeconomic disadvantage. With this study, we provide an important 

understanding of how anthropogenic pressures in the Amazon affect the 

CL transmission risk in humans and identify landscape characteristics 

that must be prioritized in epidemiological surveillance and control 

strategies. 

 

2. Material and Methods 

 

2.1 Study Area  

 

The Brazilian Amazon has an area of approximately 4.2 million km² 

(49% of Brazilian territory), which encompasses 503 municipalities 

located in the states of Acre (AC), Amapá (AP), Amazonas (AM), Pará 

(PA), Rondônia (RO), Roraima (RR), and part of Maranhão (MA), 

Tocantins (TO), and Mato Grosso (MT) (IBGE, 2021) (Figure 1). It has a 

population of ~ 22 million people, which is ~ 10% of the Brazilian 

population (IBGE, 2021). At present, 78,32 % of the region is covered by 

native vegetation, which comprises mainly dense and tropical rainforests, 

and 14,96% is covered by agriculture, which consists mainly of cattle 

pasture and soybean crops (Mapbiomas, 2020). 
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Figure 1- States and municipalities of the Brazilian Amazon Forest 

(green area). States names: Acre (AC), Amapá (AP), Amazonas (AM), 

Pará (PA), Rondônia (RO), Roraima (RR), and part of Maranhão (MA), 

Tocantins (TO), and Mato Grosso (MT). 

 

2.2. Data Collection 

 

2.2.1. Disease Cases and Population  

 

The database of CL cases reported in the 503 municipalities from 

2011 to 2017 was provided by the Brazilian Ministry of Health. The 

notification of CL cases has been mandatory in Brazil since 2001, and all 

the CL records from public and private healthcare facilities are stored in a 

national database called SINAN  (Sistema de Informação de Agravos de 

Notificação). The data provided were at the individual level and 
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anonymized and all new CL cases confirmed by laboratory or clinical-

epidemiological criteria were filtered and aggregated by year and 

municipality of infection.  

The population data per year and municipality were extracted from 

IBGE (2021). Since men are most affected by CL in both rural and peri-

urban environments in Amazon (Benício et al., 2015; Guerra et al., 

2015), we also considered the proportion of the male population in each 

municipality in the model. The population data stratified by sex were 

available only from 2000 and 2010 on the IBGE dataset, so we used the 

male population of 2000 to analyze disease data from 2000 to 2007 and 

data from 2010 to analyze disease data from 2009 to 2017. 

 

2.2.3. Land-use Data 

 

We selected five land cover and land use changes based on their 

extension on the Amazon biome and their expected influence on the 

population of vectors and hosts and their interaction with humans (Table 

1). Because most species of vectors and hosts are mainly forest-

dependent (Aguiar & Vieira, 2018; Roque & Jansen 2014), we also tested 

the interaction effect of forest on livestock and permanent agriculture.  

Data on forest cover and deforestation were obtained from the 

MapBioma 5.1. database for the years 2001 to 2017 (Projeto Mapbiomas, 

2020). We calculated the percentage of natural forest area and the total 

amount (ha) of yearly forest loss for each year and municipality. Data on 

permanent agriculture area (ha), amount of non-timber forest product 

(NTFP) material collected (ton), and the number of heads of cattle per 

municipality and year were obtained from the IBGE Automatic Recovery 

System (SIDRA) database (IBGE, 2021). 
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Table 1: Predictor land-use variables considered in the spatial-temporal 

model and their expected influence on the disease. 

Land use 

variable 

Expected 

effect 

Influence on the disease Source 

Forest cover + It is the main habitat of vectors and 

mammal hosts.  

 Aguiar & Vieira, 

2018; Roque & 

Jansen 2014 

Permanent 

crops  

+ It can serve as a habitat and food source for 

hosts and vectors and influence their 

abundance.  

 Alexander et al. 

2001, 2009; 

Mendoza et al., 

2020 

Deforestation  

 

+ It can increase interaction between vectors 

and humans. 

Nogueira-Neto et 

al (1998) 

Extrativism 

(NTFP)  

 + It can increase the exposure of humans to 

vectors.  

Guerra et al. 

(2019) 

Heads of 

cattle 

+ It could serve as a blood-meal source for 

sandflies which can affect their distribution 

and abundance. 

Bern et al, (2010) 

 

 

 

 

2.2.4. Climate and Socioeconomic covariates 

 

Rainfall data were obtained from the University of California 

Santa Barbara from Climate Hazard Group Infrared Precipitation Stations 

(CHIRPS) with a spatial resolution of 0.05º, and surface temperature data 

was extracted from National Centers for Environmental Prediction 
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(NOAA NCEP) with a spatial resolution of 0.5º. We calculated total 

annual rainfall (mm) from monthly data, and annual mean temperature 

(ºC) from 7-day average data for each municipality and year (2001-

2017).   

CL transmission risk is associated with poor socioeconomic 

conditions (Alvar et al., 2006), so we used data from the Basic Human 

Needs dimension of the Social Progress Index (SPI) as a model covariate. 

This dimension provides information about the capacity of a municipality 

to meet basic human necessities such as health care, sanitation, and 

adequate housing. It is measured using several variables provided by 

IBGE, PNUD, and the Brazilian Ministry of Health for 2010 and 2012. 

Its values range from 0 (worst) to 100 (best) (Santos et al., 2018). 

 

2.3. Data Preprocessing 

 

Before the analysis, we checked the summary statistics and 

missing values for all covariates. We excluded six municipalities from 

the analysis that did not have complete demographic or land-use data. 

Most of these municipalities were created after 2010 and were not 

included in the Brazilian demographic census.  

We also checked the correlation between the fixed-effect variables 

by performing a Pearson’s rank correlation index with the corrplot 

package in R (Wei & Sinko 2021). Next, we tested multicollinearity 

between variables by computing the variance-inflation factors (VIF), 

which represents the amount of variability of a covariate that is explained 

by other covariates (Craney et al., 2002). VIF was assessed using the vif 

function of the HH package in R (Heiberger et al., 2015). Before the 

analysis, all the fixed-effect variables were standardized by subtracting 

the mean from each value and dividing by the standard deviation. 
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2.4. Statistical Analysis 

 

To quantify the effect of landscape and their climate and 

socioeconomic covariates on the incidence of Cutaneous Leishmaniasis 

we fitted a hierarchical spatiotemporal Bayesian model. We assumed that 

the observed counts of Cutaneous Leishmaniasis cases (Οit )for the ith 

municipality in the year t followed a Negative Binomial distribution with 

mean it and scale parameter  : 

 

Οit ~ NegBin ( it ) 

 

And 

 

Log( it) = log(Εit) + log(Ɵit) 

 

Where Εit (the expected number of cases in i postal area and year (t) is an 

offset to control for population size. The mean log relative risk (RR), log(

it) for each predictor was modeled as: 

 

log( it) = α0 + (Rainit) β1 + (Tempit) β2 + (BHNit) β3  + (%Forit) β4 + 

(log(Agriit) β5+ (log(Extit)) β6 +(log(Deforit)) β7 + (log(Cattleit)) β8 + 

(log(Cattleit))* (%Forit) β9 + (log(Agriit))* (%Forit) β10    + µi + νi + γt + ρt 

+ ψit 

 

where: 

 

1. α0 is an overall intercept term 
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2. β1 through β3 are coefficients for fixed effects of time-varying climate 

and socioeconomic covariates in each municipality: β1 is the coefficient 

for total rainfall (Rainit); β2 is the coefficient for mean temperature 

(Tempit); β3 is the coefficient for Basic Human Needs Index (BHNit).  

3. β4 through β8 are coefficients for fixed effects of time-varying land use 

covariates in each municipality: β4 is the coefficient for the percentage of 

forest habitat (%Forit); β5 is the coefficient log Permanent Agriculture 

area (log(Agriit); β6 is the coefficient for log extractivist ton (log(Extit))); 

β7 is the coefficient for the log of forest area loss (log(Extit))), β8 is the 

coefficient for the number of cattle heads (log(Cattleit))  

4. β9 is the coefficient for the interaction term between the forest and the 

number of cattle heads, and β10 is the coefficient for the interaction term 

between the forest and the amount of Permanent Agriculture; 

5. µi is a spatially structured random effect with mean zero and variance σu 

modeled using a Besag ICAR model (Besag, 1974) to account for spatial 

autocorrelation, and νi is a spatially unstructured random effect with 

mean zero and variance σv. The two spatial components were modeled 

together using Besag-York-Mollie (BYM) model (Besag et al. 1991) 

6. γt is a temporally structured random effect, modeled with a first-ordered 

random walk (rw1) model, and ρt is a temporal unstructured random 

effect. 

7. ψit is a space-time interaction effect, incorporated in the model to 

account for any residual spatiotemporal variation that was not captured 

by the spatial or temporal main effects, and was assumed to be 

temporally structured (rw1) and spatially unstructured (IID). 

 

All priors were assigned as uninformative distributions (log-Gamma 

with parameters 1 and 0.00005). We also tested different options of 

random effects and compared them using the deviance information 
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criterion (DIC) (Spiegelhalter et al., 2002). We have found that the model 

with all random effects described previously produced lower DIC values, 

and we, therefore, used this as the preferred model. Full details on model 

selection for spatial and temporal effects are found in Table S1 of the 

Supplementary material.  

  We evaluated the performance of the final model by calculating the 

RMSE and R² between the predicted and observed LC relative risk. We 

also get the probability integral transform (PIT) histogram to evaluate the 

model goodness fit. According to Gneiting et al. (2007), a uniform PIT 

distribution means the predictive distribution is coherent with the data, 

suggesting a well-fitted model.   

Finally, we used model results to map CL Relative Risk (RR) for 

The Brazilian Amazon. Relative risk is the disease risk in each 

municipality compared to the average risk in all municipalities. Thus, a 

value above one means a higher than average risk, while a value below 

one means a lower than average risk. The mean RR and coefficient of 

variation of model results among years were summarized for each 

municipality. The annual map of CL's relative risk is found in Figure S1 

in the Supplementary material. 

The models were fitted using the Integrated Nested Laplace 

Approximation (INLA) method through the R-INLA package (Rue et al., 

2009). INLA is a computationally alternative approach to MCMC 

(Markov Chain Monte Carlo), and it has been used successfully in a great 

variety of applications, including spatial-temporal disease modeling 

(Bangliardo et al., 2013; Moraga, 2019). All the data processing, 

visualization, and analysis were made using R package 4.1.1 (R Core 

Team, 2021), and the codes are available in a public repository . 

 

3. Results 
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3.1. Description of CL cases and covariates 

 

Between 2001-2017, the 503 municipalities of the Brazilian 

Amazon had a total of 204,605 CL cases recorded, with an average 

incidence of 6.5 per 100 000 inhabitants. The highest cumulative 

incidence of CL is concentrated in the southern Amazon Frontier, 

followed by the north of the states of Amazonas and Amapá, and the 

center of Pará State. In general, the incidence of CL on Amazon 

decreased over the years, with the largest number of CL cases occurring 

in 2003 (17,683) and the lowest in 2016 (6,691) (Fig. S2, Supplementary 

material) 

Table 2 shows the mean, standard deviation, and range values of 

land use, climate, and socio-economic covariates for the municipalities of 

the Brazilian Amazon Forest between 2001 and 2017. The municipalities 

with the highest percentage of forest cover are located in the central-

western of the Amazon. The largest number of cattle heads and 

deforestation rates are concentrated in municipalities of the Amazon 

forest frontier and the southeast of Pará state. Areas of permanent 

agriculture were located mainly in the municipalities of the central Pará, 

Rondônia, and northern Mato Grosso states, and NTFP in central 

Amazonas and Maranhão (Fig. S3 Supplementary material). Between 

2001 and 2017, there was an increase in the total  number of cattle heads 

and a decrease in the amount of forest cover, deforestation, NTFP, and 

areas of permanent agriculture over the Amazon (Fig. S4 Supplementary 

material) 
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Table 02 – Descriptive statistics of land use, climate, and socio-

economic covariates (2001-2017) at the level of municipality in the 

Brazilian Amazon 

Variable Mean (± SD) Range 

Forest cover (%) 58.1 (26.4) 2.9 - 99.7 

Deforestation (ha) 3800.7 (6656.1) 3.7 - 138200.4 

Permanent Agriculture (ha) 1299.4 (3273.4) 0.0 - 43568.0 

Extrativism (ton) 1271.4 (10265.4) 0.0 - 506888.0 

Cattle heads (nº) 109384.1 (166012.7)  0.0 - 2282445.0 

Mean temperature (ºC) 27.2 (1.2)  22.4 - 34.3 

Total precipitation (mm) 2122.6 (480.5) 815.8 - 4209.5 

Population (nº) 37991.3 (118537.9) 1109.0 - 2130264.0  

SPI – basic human needs 57.7  (6.9)   31.24 – 83.72 

Male population (%) 52 (1.5) 46.7-60.3 

 

3.2. Statistical modeling 

 

Overall, our model fitted well the data (R²= 0.87, RMSE=1.14). The 

predicted SIR value is very close to the observed one, and PIT had an 

overall uniform distribution (Fig. S5 - Supplementary material). All 

variables included in the model had a correlation < 0.45 and the Variance 

Inflation Factor (VIF) of all variables was lower than 2.3, which indicates 

no strong collinearity among the fixed-effects variables (Table S2 and 

Fig.S6 - Supplementary material) 

Our model found that municipalities with higher forest cover  (RR 

1.21, Credible interval:  1.15-1.27), cattle herds (RR 1.19, CI 1.13-1.25), 

and deforestation rates (RR 1.05, CI 1.01-1.10) had a higher number of 
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CL cases. We also found a positive interaction effect between forest 

cover and livestock (RR 1.05, CI 1.01-1.10), indicating that CL incidence 

was even higher in the municipalities that had the higher values of these 

two factors together. No significant relationship was found between 

permanent agriculture, NTFP, or the interaction between permanent 

agriculture and forest cover on the CL incidence (see Figure 2 and Table 

S3 in the Supplementary Material). 

Regarding the socioeconomic and climate covariates, we found that 

municipalities with higher proportion of males (RR 1.21, CI 1.16-1.26) 

had a greater incidence of CL, while municipalities with higher total 

rainfall (RR 0.92, CI 0.89-0.95), mean temperature (RR 0.90, CI 0.86-

0.94),  and human basic needs index (RR 0.94, CI 0.89-0.98 ) had lower 

incidence of CL (Figure 2, Table S3 of Supplementary material).  

The coefficient values of random effects are shown in Table S3 of 

Supplementary material. These random effects represent the residual 

spatiotemporal heterogeneity of CL risk that was not explained by the 

fixed effects. The remained non-explainable variation in CL risk was 

captured mainly by the spatially structured and spatial-time interaction 

random effect.  
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Figure 2- Relative Risk with credible interval (95%) for standardized 

coefficients for the effects of land use, climate, and socioeconomic 

covariates of municipalities  on the relative risk of CL cases estimated by 

the spatiotemporal model.  

 

 

3.3. Map of Relative Risk 

 

The map of average CL Relative Risk for the entire study period 

and their 95% credible interval width are shown in Figure 3. As expected, 

the intensity of Relative Risk (RR) follows the spatial patterns of the 

cumulative relative incidence. In general, the municipalities with the 

highest RR are located in the Amazon frontier region, where we also 

found high amounts of forest cover, deforestation rates, and cattle herds 

(Figure 3  Supplementary material). We also found high RR of CL in the 
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municipalities located in the northern part of the Brazilian Amazon, 

especially in the north of the states of Amazonas, Pará, and in the entire 

state of Roraima. 

 

Figure 3- Mean estimated Relative Risk (RR) (A) and 95% credible 

interval width (B) across the Brazilian Amazon Forest.  

 

4. Discussion 

 

This study examined the impact of land use and land cover 

changes on Cutaneous Leishmaniasis incidence in the municipalities of 

the Brazilian Amazon Forest. Our research identified a positive 
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association between forest cover, livestock, deforestation, and an 

increased risk of CL incidence. Our relative risk map corroborates with 

the incidence map, which shows the highest relative risk of CL in 

municipalities of the Amazon Frontier, where there is a combination of 

high amounts of forest cover, cattle ranching, and deforestation rates 

(Calentano & Verissimo, 2007; Rodrigues et al., 2009). Previous research 

has also found increased risk factors for Malaria transmission in 

municipalities with these landscape characteristics (Castro et al., 2006; 

Santos & Almeida 2018), and we now demonstrate that these regions also 

display significant risk factors for CL transmission in humans.  

The increased incidence of CL in municipalities with a 

combination of high forest cover and livestock might be related to an 

increased sandfly abundance and a higher likelihood of human-vector 

contact in these regions. Although most sandfly species are dependent on 

forest habitat, several studies have reported high densities of CL vectors 

in vegetation near rural settlements, particularly in association with 

animal shelters (Ramos et al., 2014; Guimarães et al., 2022; Costa et al., 

2021; Pereira Junior et al., 2019). These studies indicate that animal 

shelters may provide sandflies with abundant food and places to rest and 

lay eggs. Sandflies are also typically attracted to peri- and 

intradomiciliary areas of rural properties near forested areas to seek blood 

from humans and domestic animals ( Rosário et al., 2017; Chagas et al., 

2018; Neitzke-Abreu et al., 2020), which may increase contact rates 

between humans and sandflies, and hence the transmission risk of CL in 

these areas. 

In addition, other studies showed that deforestation and pasture 

matrix in the Amazon forest prompted a reduction in the diversity of 

small mammals and an increase in the density of important reservoirs of 

Leishmania, such as Didelphis marsupialis and Proechimis species 
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(Palmerin et al., 2020; Roque & Jansen, 2014). According to the 

hypothesis of the dilution effect, areas with low biodiversity and a high 

density of competent reservoirs tend to show an increase in the risk of 

disease transmission due to the amplification of infected hosts and a 

higher chance of encounters between vectors and infected reservoirs 

(Keesing et al., 2006). The impact of biodiversity loss on the risk of 

infectious disease transmission has been extensively studied for some 

vector-borne diseases, such as malária,  Lyme disease and West Nile 

virus (Ostfeld and Keesing, 2012; Laporta et al. 2013). Therefore, similar 

mechanisms may also play a role in the transmission of CL as 

demonstrated in a recent study by Kocher et al. (2023) in French Guiana. 

In this study, they found a higher prevalence of Leishmania parasites on 

sandflies in disturbed environments with fewer mammal species and a 

greater abundance of Leishmania reservoirs. 

We did not find an association between NTFP and permanent 

crops with CL incidence. In contrast to our study, Guerra et al. (2019) 

found higher incidence rates of CL in municipalities that contained the 

highest amounts of latex and nuts production in the state of Acre in 

Brazil. This study, however, did an exploratory and descriptive analysis 

and did not use statistical modeling that accounts for spatial 

autocorrelation and confounder effects. The association between 

permanent crop and CL cases was also previously found elsewhere 

(Purse et al., 2017; Gutierrez et al., 2018). However, differently from our 

study, other researchers investigated the effect of specific types of 

permanent crops, such as coffee (Ocampo et al., 2012; Lana et al. 2021), 

cocoa (Figueroa et al., 2014), and banana (Membrive et al., 2012), on the 

risk of CL transmission. Different crop types may have distinct effects on 

Leishmania vectors and host species, as Alexander et al. (2001) 

demonstrated in two systems of coffee cultivation in Colombia. Because 
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we found a marginal effect between permanent crop and CL incidence, 

we suggest that future studies investigate the effects of different types of 

cultivation on the CL transmission risk. 

Our risk map showed that municipalities within the Amazonian 

frontier have a higher relative risk for CL. This result is consistent with 

our findings that forest cover, livestock,  deforestation, and the 

proportion of the male population have a positive effect on CL risk, while 

the socioeconomic conditions have a negative effect, as the combination 

of these landscape and socioeconomic characteristics is typically found in 

the Amazonian frontier region (Guerra et al., 2015; Guerra et al., 2019; 

Calentano & Verissimo, 2007; Rodrigues et al., 2009). It is also in 

accordance with the findings of Codeço (2021), who observed a positive 

association between areas of farmer and cattle production with a higher 

prevalence of Cutaneous leishmaniasis. Therefore, to reduce the 

transmission of CL we recommend the implementation of prevention and 

control strategies in municipalities with these characteristics. These 

actions should include recommendations for residents and workers in the 

region such as the use of insect repellents, and personal protective 

equipment, and implementation of environmental management strategies 

such as improving housing conditions and building homes distantly 

located from forested areas and animal shelters (PAHO, 2017). 

Our model also identified some residual risk components that were 

attributed to the spatial random effect. This result means that there must 

be other characteristics affecting the risk of CL transmission in these 

municipalities that were not captured by the fixed effects in our model 

(Figure S7 Supplementary material). We hypothesize that the expansion 

of urban areas close to the forest and the presence of newly arrived 

immigrants with low immunity to CL may also play an important role in 

the risk of CL transmission in these municipalities. Unfortunately, to our 
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knowledge the data required to test this hypothesis was unavailable. We 

recommend that further studies investigate additional environmental and 

social factors that may impact the risk of CL transmission in these areas. 

Although we have made the most geographically comprehensive 

assessment of the effects of land use change on CL incidence based on 

statistical modeling, this study has a few drawbacks. First, we used data 

from the surveillance system that may have issues, such as typing errors 

and incomplete information. Moreover, we analyzed environmental and 

disease data aggregated at the municipal level, which do not capture the 

fine-scale determinants of disease transmission risk. Additionally, 

socioeconomic variables for Amazonian municipalities were not 

available for all years of the study period. However, we incorporated 

structured and non-structured temporary random effects in our model, 

which captures any other temporal variability that may not have been 

explained by the fixed effects. Hence, to our knowledge, our results are 

based on the best data available. 

 

5. Conclusion 

 

In summary, this study used rigorous spatiotemporal statistical 

analysis to identify land use factors associated with an increase in 

cutaneous leishmaniasis incidence in the Brazilian Amazon Forest. 

Additionally, we also showed that deforestation and the interaction 

between forest cover and cattle ranching are landscape risk factors for 

cutaneous leishmaniasis transmission in this region. Based on our results 

and current literature we believe that these environmental changes, 

commonly found in municipalities of the Amazon Frontier, are probably 

creating suitable conditions for the proliferation of vectors and reservoirs, 

as well as an increase in human-vector contact rates. Therefore, to control 
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CL in the Brazilian Amazon forest, we recommend reducing this 

settlement model and replacing it with a more sustainable and healthier 

landscape for the environment and people. We also recommend targeting 

the high-risk areas identified in our study for surveillance and control 

measures. 
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 Cutaneous Leishmaniasis is a neglected tropical disease that affects 

from 0.7 to 1.2 million of people per year in at least 89 countries. Brazil 

is among the top ten countries with the highest number of CL cases 

worldwide (Alvar et al. 2012; PAHO, 2024), but how the disease is 

distributed and the environmental factors that have been modulating it are 

not well understood. This thesis presents a detailed analysis of the 

spatial-temporal disease distribution over a long period of time and in a 

finer spatial scale in Brazil. 

In the first chapter, we used different methods to investigate the 

spatiotemporal pattern of the disease in Brazil. Our goal was to identify 

priority areas for surveillance and to develop hypotheses about the 

environmental factors that may have been influencing these spatial and 

temporal patterns. 

We found that the disease was registered in 73,8% of the 

municipalities, with most cases (80%)  concentrated in only 10%, located 

mainly in the northern states of Brazil and the southeastern region of 

Bahia. This result supports the findings of Maia-Elkhoury (2016) who 

found that the highest incidence of the disease was in the states of north 

and northeast of Brazil. Our results also indicate a reduction in CL cases 

in Brazil over time, but a small percentage of municipalities (3.2%) 

showed an increasing trend. These municipalities were located mainly in 

the Amazonas, Pará, Acre, Amapá, Roraima, Mato Grosso, Tocantins, 

Minas Gerais, São Paulo, and Bahia states. 

The cluster analysis revealed that the most likely cluster of the 

disease occurred in the northern region, covering the entire legal 
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Amazon. Additionally, significant clusters of the disease were found in 

Bahia, São Paulo, Minas Gerais, and Paraná states during different 

periods. The hotspot analysis revealed a high spatial and temporal 

heterogeneity within the main cluster of the disease incidence. Hotspots 

were detected on the border of the Legal Amazon, spanning across Acre, 

Rondonia, and Mato Grosso states, the central region of Pará, a few areas 

of Amazon state, and the northern part of Legal Amazon, including 

Amapá and Roraima state. While many of these hotspots have decreased 

over time, some of them have persisted or emerged more recently 

(consecutive, new, or emerging hotspots). 

The geographic and temporal pattern of the hotspots found in the 

main cluster of CL indicates that the disease dynamics are highly 

heterogeneous within the Amazon region. This finding is consistent with 

previous studies conducted in Acre (Melchior et al. 2017) and Amazon 

states (Teles et al., 2010). As the hotspots were mainly found in regions 

with high pressure of land occupation and exploitation, we hypothesized 

that land-use changes played a significant role in modulating disease 

dynamics in those municipalities. This assumption was supported by 

Chavy et al (2019), who found that the human footprint was the most 

important environmental variable to explain CL occurrence in the 

Brazilian Amazon. 

In line with this hypothesis, the second chapter focuses on 

understanding how land use changes have affected disease incidence 

within the primary cluster. Because disease risk factors can vary across 

ecological regions (Loh et al., 2015), we restricted our analysis to the 

Amazon biome and excluded municipalities with more than 50% of their 

territory in the Cerrado. 



86 
 

We used a structured spatiotemporal Bayesian model to assess how 

different land cover classes affected the incidence of CL, while adjusting 

for well-known risk factors such as population, climate, and 

socioeconomic disadvantage. We found that the increased risk of 

Cutaneous Leishmaniasis was associated with deforestation, especially 

modulated by a positive interaction between forest cover and livestock. 

These land-use characteristics are typically found in municipalities 

on the Amazon frontier. These areas often have a high percentage of 

forest cover, which is cleared for livestock farming. Over time, the 

amount of forest cover is reduced, cattle ranching is abandoned, and 

deforestation decreases (Rodrigues et al., 2009; Codeço et al. 2021). 

Based on our findings, there is a negative relationship between the age of 

settlement and the incidence of cutaneous leishmaniasis. This may 

explain the decreasing hotspots observed in areas with older occupation 

of the Amazon Frontier and persistent, new, consecutive, and emerged 

hotspots in municipalities with more recent occupation.  

Our results showed that other environmental and socioeconomic 

determinants also influenced the disease incidence in the region. Mean 

temperature and total precipitation had a negative effect, while the 

proportion of males and the socioeconomic index had a positive effect. 

Additionally, the spatial random effect captured an important residual 

risk component, indicating the possible existence of other variables that 

affect the incidence pattern in the region that were not included in our 

model. It is possible that the expansion of urban areas close to the forest 

and the presence of newly arrived immigrants with low immunity to CL 

may also play an important role in the risk of CL transmission in these 

municipalities, as suggested in other studies elsewhere (Ashford, 2000; 

Pigott et al., 2014). 
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This study did not investigate the environmental factors that 

affected all clusters of the disease. We believed that it is important to 

investigate the cluster of the central coast of Bahia in future studies, as 

the hotspot analysis found an intensifying hotspot in this area. According 

to a recent study by Sevá et al. (2023), the incidence of CL in Bahia is 

related to the proximity of rural and peri-urban areas adjacent to forests. 

Additionally, the Nyssomyia whitmani, which is the one of the main 

vector of CL in Bahia, has increased its range of climatic suitability 

(Peterson & Shaw, 2003; Da Costa et al., 2008) and has been favored by 

anthropogenic disturbances (Fernandéz et al., 2020). It would be 

worthwhile to explore the influence of environment and climate changes 

on the eco-epidemiology of the disease in this region. 

We hope our results contribute to the understanding of the 

spatiotemporal dynamics of CL cases in Brazil and the effects of 

environmental changes on their incidence. In this study, we identified 

areas of higher cluster and hotspots of the disease, which can guide 

priority areas for surveillance, control measures, and future eco-

epidemiological studies. Additionally, our results highlight how 

anthropogenic pressures have affected the disease incidence in the region 

of higher CL transmission risk. These findings could guide land-use 

planning policies, especially in the Amazon Forest, to provide healthier 

landscapes for humans and the environment. 
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 Supplementary Material – Chapter 1 

 

 S1. Clusters Detected from Spatial-temporal Scan analysis 
 
1.Location IDs included.: 130353, 130356, 130260, 130320, 130185, 130115, 
130250, 130255, 
                          130083, 130110, 130030, 130190, 130400, 130008, 130310, 130200, 
                          130440, 130395, 130063, 130430, 130010, 130080, 130068, 130290, 
                          130130, 140023, 140050, 140047, 140060, 130050, 130040, 130330, 
                          150300, 130300, 130340, 150797, 130120, 150390, 130270, 140020, 
                          150530, 140028, 150510, 140030, 150360, 140017, 150375, 130410, 
                          150805, 130420, 140010, 150285, 130002, 150100, 150145, 130014, 
                          140005, 130426, 130360, 150040, 150680, 140015, 150475, 150619, 
                          130280, 140002, 140040, 150480, 130160, 150565, 130220, 130170, 
                          130090, 150815, 150600, 140045, 140070, 130230, 130210, 150503, 
                          130240, 150445, 130380, 130100, 150050, 510325, 150172, 110013, 
                          160027, 160080, 110080, 110094, 110020, 150590, 130423, 110110, 
                          150060, 510080, 510337, 130370, 150835, 110175, 510615, 510140, 
                          110026, 130006, 510895, 110040, 510629, 150310, 110002, 510517, 
                          160005, 110160, 160015, 110180, 150780, 110011, 510025, 110060, 
                          110140, 510757, 150085, 160040, 510279, 110015, 130350, 110100, 
                          110045, 160053, 110012, 130390, 160060, 110155, 160030, 150580, 
                          510285, 110143, 150730, 110070, 510626, 110120, 160023, 150450, 
                          130195, 110025, 110130, 110170, 510515, 510410, 510621, 510880, 
                          110004, 110009, 150180, 150548, 510510, 110034, 110090, 510560, 
                          510642, 160025, 160021, 110018, 510805, 510627, 160070, 510794, 
                          150030, 150110, 110028, 510680, 110050, 110147, 510320, 110033, 
                          110014, 130070, 160055, 110148, 110029, 110032, 150808, 510619, 
                          160050, 160010, 110001, 150543, 150070, 160020, 130406, 150520, 
                          510455, 150250, 110150, 150280, 110010, 110037, 110145, 130060, 
                          150506, 510190, 150120, 120001, 130020, 150810, 150770, 150210, 
                          150460, 110092, 150178, 510558, 110149, 150400, 120080, 150034, 
                          110030, 510454, 510305, 150490, 510790, 130140, 120038, 150553, 
                          150276, 510452, 150640, 110007, 510724, 150125, 510787, 510830, 
                          150330, 150309, 150215, 110006, 150795, 120013, 150200, 150370, 
                          120040, 120050, 510774, 150010, 150380, 150570, 150277, 110005, 
                          120045, 110008, 510800, 150470, 150840, 150616, 510850, 150497, 
                          510792, 510890, 130150, 510735, 150420, 150130, 150295, 150775, 
                          120017, 110003, 120034, 110146, 510370, 150140, 150630, 150790, 
                          510330, 150613, 150080, 150304, 150442, 150750, 510268, 510525, 
                          150260, 150150, 150157, 150635, 150715, 510263, 150020, 510730, 
                          150650, 150800, 150700, 150820, 510624, 510860, 170740, 211153, 
                          150563, 150013, 150190, 171630, 120030, 150710, 510335, 150275, 
                          120070, 150670, 150340, 150240, 150746, 150796, 150175, 510677, 
                          510269, 150290, 170380, 172030, 170215, 150720, 150740, 150745, 
                          150618, 150549, 172210, 211285, 170230, 150658, 120060, 150440, 
                          150293, 170390, 171886, 150270, 150320, 170389, 170220, 510618, 
                          510622, 150095, 170600, 150405, 170190, 150660, 150410, 171395, 
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                          120010, 120025, 510336, 150345, 171180, 150760, 170320, 150350, 
                          170130, 171880, 170255, 150430, 210325, 171720, 150812, 170388, 
                          150500, 171830, 171855, 150690, 510885, 130180, 510776, 150550, 
                          170100, 510777, 150560, 210542, 150160, 150620, 172010, 170290, 
                          170382, 170305, 510130, 510726, 120043, 510600, 510795, 171245, 
                          210005, 150220, 171488, 510350, 171665, 172080, 170210, 150747, 
                          150540, 170105, 172020, 150610, 510035, 171250, 150230, 150307, 
                          510550, 510050, 170830, 172208, 211085, 210530, 170550, 510345, 
                          510623, 150495, 120005, 150611, 210550, 210375, 171070, 171110, 
                          171670, 171430, 150555, 171280, 510530, 172000, 170720, 170650, 
                          150655, 510715, 150803, 510706, 170360, 211176, 510385, 210455, 
                          510675, 510590, 210955, 171840, 510775, 510185, 510788, 170025, 
                          150170, 510835, 510770, 171380, 170710, 170300, 172120, 210255, 
                          210900, 170030, 510170, 510720, 510500, 210405, 170930, 210203, 
                          510785, 171570, 510523, 150090, 510380, 170825, 150195, 210235, 
                          172130, 210700, 171090, 510125, 510450, 170460, 170307, 510685, 
                          171190, 170770, 171370, 171870, 210280, 210598, 510718, 510010, 
                          510645, 510490, 171330, 510631, 211105, 171750, 172125, 130165, 
                          510710, 210197, 170310, 171650, 170330, 210060, 510343, 510630, 
                          210232, 510562, 171610, 171050, 170610, 120020, 510395, 211102, 
                          171320, 211180, 120042, 172110, 510620, 510270, 210317, 150830, 
                          170900, 510682, 210565, 171845, 171888, 171200, 120032, 210315, 
                          171500, 210055, 120033, 210290, 210632, 510300, 171550, 510340, 
                          170755, 210467, 510840, 171875, 210637, 120039, 210620, 171889, 
                          210923, 170730, 510610, 210407, 510250, 211003, 210430, 172100, 
                          210047, 510779, 210095, 211157, 210260, 170820, 170625, 210735, 
                          510267, 510020, 510260, 210480, 510780, 210087, 210950, 211400, 
                          170110, 171850, 210465, 170384, 170035, 170410, 211000, 510617, 
                          211227, 171820, 210200, 210409, 120035, 170370, 210535, 171884, 
                          210215, 170950, 510650, 211240, 510628, 170386, 210927, 210725, 
                          171510, 510704, 510360, 210410, 210825, 210040, 211245, 210980, 
                          210990, 171900, 510160, 210850, 210547, 171360, 170980, 510625, 
                          210635, 510480, 210177, 170765, 210690, 172085, 510740, 510700, 
                          210130, 210830, 210515, 211178, 211172, 170200, 210596, 211300, 
                          510520, 210083, 210860, 522020, 172065, 210870, 210810, 171195, 
                          210650, 210140, 210740, 210745, 210250, 211280, 170070, 210570, 
                          210760, 210370, 210207, 210160, 171890, 211170, 210840, 210580, 
                          210312, 211050, 171660, 211290, 171790, 210355, 210680, 210190, 
                          211100, 521405, 210594, 211163, 510310, 210135, 211167, 210590, 
                          210890, 210100, 171240, 172097, 210240, 521525, 211160, 210520, 
                          210120, 510760, 210490, 172049, 171700, 210905, 520357, 210070, 
                          510810, 521483, 210193, 510390, 210310, 210675, 210970, 211140, 
                          510729, 210663, 170510, 210400, 211223, 171150, 210560, 510637, 
                          210020, 510420, 210820, 172015, 171420, 211200, 210408, 211150, 
                          520250, 210610, 211230, 210270, 210043, 210540, 210125, 211125, 
                          211020, 211130, 210600, 521800, 210050, 220890, 220920, 210960, 
                          210975, 521400, 210845, 210910, 210380, 510180, 522157, 510665, 
                          521410, 210880, 520170, 220115, 520380, 211030, 210275, 210750, 
                          172025, 210945, 510100, 211120, 210920, 210110, 210510, 210237, 
                          170040, 210710, 171575, 520082, 510820, 521377, 520310, 520495, 
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                          210440, 211080, 210450, 210360, 211070, 210470, 520640, 171270, 
                          521960, 210930, 520215, 522145, 211065, 520810, 171620, 210460, 
                          171800, 520750, 521970, 171865, 521280, 210720, 211270, 520055, 
                          520340, 510719, 521487, 211210, 210670, 210545, 210350, 510040, 
                          510460, 211174, 210420, 521295, 170560, 210180, 210330, 210462, 
                          221120, 170700, 520945, 521925, 510670, 510120, 520470, 500793, 
                          520465, 521370, 211190, 521690, 521470, 521308, 211107, 520980, 
                          172093, 520753, 211040, 210173, 220130, 521720, 210500, 522160, 
                          520725, 220855, 521220, 210800, 171525, 210940, 521385, 220660, 
                          220440, 210230, 521090, 210770, 521890, 210730, 220080, 520235, 
                          211260, 520710, 521100, 522015, 521015, 510030, 220975, 521940, 
                          210030, 210320, 210790, 521486, 522028, 211027, 521200, 521520, 
                          210010, 520500, 520929, 171780, 521120, 520540, 221063, 521860, 
                          210300, 520760, 220600, 220560, 211110, 521020, 521030, 210592, 
                          500640, 522170, 521935, 521460, 521565, 210640, 521810, 210080, 
                          520552, 220170, 170240, 520440, 521870, 521945, 211195, 520320, 
                          520890, 520960, 220290, 172090, 520393, 520090, 220323, 220885, 
                          520570, 220450, 220740, 500320, 220870, 500520, 220300, 210340, 
                          521390, 510060, 220190, 521900, 210660, 520860, 220310, 210390, 
                          210220, 521060, 210170, 520530, 220590, 520490, 521340, 521310, 
                          521160, 170555, 220225, 220620, 171215, 521350, 220530, 500330, 
                          170270, 171515, 210780, 521040, 220930, 522108, 210210 
  Coordinates...........: (-2.02981,-60.0234) 
  Semiminor axis........: 17.35 
  Semimajor axis........: 17.35 
  Angle (degrees).......: 0 
  Shape.................: 1.00 
  Time frame............: 2001/1/1 to 2015/12/31 
  Population............: 25956648 
  Number of cases.......: 234486 
  Expected cases........: 44858.05 
  Annual cases / 100000.: 61.2 
  Observed / expected...: 5.23 
  Relative risk.........: 12.06 
  Log likelihood ratio..: 266530.419225 
  Test statistic........: 266530.419225 
  P-value...............: < 0.00000000000000001 
 
2.Location IDs included.: 292260, 293120, 290540, 291730, 291345, 293290, 
292467, 293160, 
                          293350, 292575, 291120, 290580, 292275, 291570, 292240, 291820, 
                          291890, 290195, 293210, 292070 
  Coordinates...........: (-13.604,-39.1091) 
  Semiminor axis........: 0.50 
  Semimajor axis........: 0.76 
  Angle (degrees).......: 90.00 
  Shape.................: 1.50 
  Time frame............: 2003/1/1 to 2017/12/31 
  Population............: 412548 
  Number of cases.......: 26752 
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  Expected cases........: 731.42 
  Annual cases / 100000.: 428.4 
  Observed / expected...: 36.58 
  Relative risk.........: 39.27 
  Log likelihood ratio..: 71184.659077 
  Test statistic........: 69746.436901 
  P-value...............: < 0.00000000000000001 
 
3.Location IDs included.: 411300, 410550, 412720, 412610, 411240, 411160, 
412530, 410730, 
                          410750 
  Coordinates...........: (-23.6219,-52.4693) 
  Semiminor axis........: 0.27 
  Semimajor axis........: 0.27 
  Angle (degrees).......: 0 
  Shape.................: 1.00 
  Time frame............: 2001/1/1 to 2015/12/31 
  Population............: 132738 
  Number of cases.......: 1553 
  Expected cases........: 229.79 
  Annual cases / 100000.: 79.2 
  Observed / expected...: 6.76 
  Relative risk.........: 6.78 
  Log likelihood ratio..: 1646.521990 
  Test statistic........: 1646.521990 
  P-value...............: < 0.00000000000000001 
 
4.Location IDs included.: 352330, 353720 
  Coordinates...........: (-24.2834,-47.1736) 
  Semiminor axis........: 0.062 
  Semimajor axis........: 0.062 
  Angle (degrees).......: 0 
  Shape.................: 1.00 
  Time frame............: 2001/1/1 to 2009/12/31 
  Population............: 25828 
  Number of cases.......: 592 
  Expected cases........: 26.08 
  Annual cases / 100000.: 265.9 
  Observed / expected...: 22.70 
  Relative risk.........: 22.73 
  Log likelihood ratio..: 1282.919384 
  Test statistic........: 1282.919384 
  P-value...............: < 0.00000000000000001 
 
5.Location IDs included.: 311740, 316360, 311600, 313120, 316805, 313770, 
314400, 315890, 
                          312352, 315190, 320245, 314053, 316760, 320265, 315015, 315415, 
                          313055, 320115, 320300, 315935, 315725, 311340, 313940, 313950, 
                          317005, 310220, 316447, 316095, 310205, 315350, 313090, 320010, 
                          317115 
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  Coordinates...........: (-19.9326,-41.6908) 
  Semiminor axis........: 0.59 
  Semimajor axis........: 0.59 
  Angle (degrees).......: 0 
  Shape.................: 1.00 
  Time frame............: 2003/1/1 to 2017/12/31 
  Population............: 527176 
  Number of cases.......: 2828 
  Expected cases........: 933.26 
  Annual cases / 100000.: 35.5 
  Observed / expected...: 3.03 
  Relative risk.........: 3.05 
  Log likelihood ratio..: 1245.253649 
  Test statistic........: 1245.253649 
  P-value...............: < 0.00000000000000001 
 
6.Location IDs included.: 352215, 410020, 354280, 352120, 350270, 352265, 
350535, 350540, 
                          351480, 412863 
  Coordinates...........: (-24.6393,-48.8413) 
  Semiminor axis........: 0.25 
  Semimajor axis........: 0.76 
  Angle (degrees).......: 80.00 
  Shape.................: 3.00 
  Time frame............: 2002/1/1 to 2016/12/31 
  Population............: 81355 
  Number of cases.......: 916 
  Expected cases........: 142.87 
  Annual cases / 100000.: 75.1 
  Observed / expected...: 6.41 
  Relative risk.........: 6.42 
  Log likelihood ratio..: 929.634175 
  Test statistic........: 805.086812 
  P-value...............: < 0.00000000000000001 
 
7.Location IDs included.: 410520 
  Coordinates...........: (-26.0891,-52.8691) 
  Semiminor axis........: 0 
  Semimajor axis........: 0 
  Angle (degrees).......: 0 
  Shape.................: 1.00 
  Time frame............: 2002/1/1 to 2016/12/31 
  Population............: 17256 
  Number of cases.......: 324 
  Expected cases........: 30.35 
  Annual cases / 100000.: 125.0 
  Observed / expected...: 10.68 
  Relative risk.........: 10.68 
  Log likelihood ratio..: 473.697847 
  Test statistic........: 473.697847 



96 
 

  P-value...............: < 0.00000000000000001 
 
8.Location IDs included.: 330380, 355540 
  Coordinates...........: (-23.2221,-44.7175) 
  Semiminor axis........: 0.28 
  Semimajor axis........: 0.56 
  Angle (degrees).......: 30.00 
  Shape.................: 2.00 
  Time frame............: 2001/1/1 to 2006/12/31 
  Population............: 115803 
  Number of cases.......: 418 
  Expected cases........: 74.98 
  Annual cases / 100000.: 65.3 
  Observed / expected...: 5.57 
  Relative risk.........: 5.58 
  Log likelihood ratio..: 375.363460 
  Test statistic........: 353.896064 
  P-value...............: < 0.00000000000000001 
 
9.Location IDs included.: 412215 
  Coordinates...........: (-25.4874,-52.5292) 
  Semiminor axis........: 0 
  Semimajor axis........: 0 
  Angle (degrees).......: 0 
  Shape.................: 1.00 
  Time frame............: 2004/1/1 to 2005/12/31 
  Population............: 15098 
  Number of cases.......: 76 
  Expected cases........: 4.35 
  Annual cases / 100000.: 204.8 
  Observed / expected...: 17.48 
  Relative risk.........: 17.48 
  Log likelihood ratio..: 145.799657 
  Test statistic........: 145.799657 
  P-value...............: < 0.00000000000000001 
 
10.Location IDs included.: 412060 
   Coordinates...........: (-25.2111,-50.9754) 
   Semiminor axis........: 0 
   Semimajor axis........: 0 
   Angle (degrees).......: 0 
   Shape.................: 1.00 
   Time frame............: 2002/1/1 to 2003/12/31 
   Population............: 48906 
   Number of cases.......: 97 
   Expected cases........: 10.81 
   Annual cases / 100000.: 105.1 
   Observed / expected...: 8.98 
   Relative risk.........: 8.98 
   Log likelihood ratio..: 126.682508 
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   Test statistic........: 126.682508 
   P-value...............: < 0.00000000000000001 
 
11.Location IDs included.: 410240, 411100, 412310, 410010 
   Coordinates...........: (-23.1078,-50.3704) 
   Semiminor axis........: 0.14 
   Semimajor axis........: 0.21 
   Angle (degrees).......: 0 
   Shape.................: 1.50 
   Time frame............: 2001/1/1 to 2013/12/31 
   Population............: 51099 
   Number of cases.......: 252 
   Expected cases........: 77.89 
   Annual cases / 100000.: 37.9 
   Observed / expected...: 3.24 
   Relative risk.........: 3.24 
   Log likelihood ratio..: 121.820496 
   Test statistic........: 119.359222 
   P-value...............: < 0.00000000000000001 
 
12.Location IDs included.: 355120, 353880, 410470 
   Coordinates...........: (-23.2721,-49.4763) 
   Semiminor axis........: 0.074 
   Semimajor axis........: 0.29 
   Angle (degrees).......: 60.00 
   Shape.................: 4.00 
   Time frame............: 2002/1/1 to 2003/12/31 
   Population............: 46644 
   Number of cases.......: 75 
   Expected cases........: 10.74 
   Annual cases / 100000.: 81.8 
   Observed / expected...: 6.98 
   Relative risk.........: 6.99 
   Log likelihood ratio..: 81.521507 
   Test statistic........: 65.217206 
   P-value...............: < 0.00000000000000001 
 
13.Location IDs included.: 410800, 410280 
   Coordinates...........: (-22.8623,-51.3882) 
   Semiminor axis........: 0.080 
   Semimajor axis........: 0.24 
   Angle (degrees).......: -60.00 
   Shape.................: 3.00 
   Time frame............: 2001/1/1 to 2002/12/31 
   Population............: 26916 
   Number of cases.......: 57 
   Expected cases........: 6.38 
   Annual cases / 100000.: 104.7 
   Observed / expected...: 8.94 
   Relative risk.........: 8.94 
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   Log likelihood ratio..: 74.235028 
   Test statistic........: 64.289420 
   P-value...............: < 0.00000000000000001 
 
14.Location IDs included.: 420240 
   Coordinates...........: (-26.9155,-49.0709) 
   Semiminor axis........: 0 
   Semimajor axis........: 0 
   Angle (degrees).......: 0 
   Shape.................: 1.00 
   Time frame............: 2006/1/1 to 2006/12/31 
   Population............: 306872 
   Number of cases.......: 107 
   Expected cases........: 34.79 
   Annual cases / 100000.: 36.0 
   Observed / expected...: 3.08 
   Relative risk.........: 3.08 
   Log likelihood ratio..: 48.017940 
   Test statistic........: 48.017940 
   P-value...............: 0.000000000000089 
 
15.Location IDs included.: 330590, 330460, 330530, 330480 
   Coordinates...........: (-22.0638,-42.0643) 
   Semiminor axis........: 0.15 
   Semimajor axis........: 0.58 
   Angle (degrees).......: 45.00 
   Shape.................: 4.00 
   Time frame............: 2005/1/1 to 2006/12/31 
   Population............: 67095 
   Number of cases.......: 72 
   Expected cases........: 15.65 
   Annual cases / 100000.: 53.9 
   Observed / expected...: 4.60 
   Relative risk.........: 4.60 
   Log likelihood ratio..: 53.534909 
   Test statistic........: 42.827927 
   P-value...............: 0.0000000000083 
 
16.Location IDs included.: 315480 
   Coordinates...........: (-20.0876,-43.7878) 
   Semiminor axis........: 0 
   Semimajor axis........: 0 
   Angle (degrees).......: 0 
   Shape.................: 1.00 
   Time frame............: 2006/1/1 to 2017/12/31 
   Population............: 8834 
   Number of cases.......: 58 
   Expected cases........: 12.98 
   Annual cases / 100000.: 52.3 
   Observed / expected...: 4.47 
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   Relative risk.........: 4.47 
   Log likelihood ratio..: 41.807699 
   Test statistic........: 41.807699 
   P-value...............: 0.000000000020 
 
17.Location IDs included.: 313880, 310510, 312320, 314050, 312340, 311980, 
313030, 316820, 
                           310020 
   Coordinates...........: (-19.7911,-45.6794) 
   Semiminor axis........: 0.23 
   Semimajor axis........: 1.13 
   Angle (degrees).......: 36.00 
   Shape.................: 5.00 
   Time frame............: 2014/1/1 to 2015/12/31 
   Population............: 105020 
   Number of cases.......: 87 
   Expected cases........: 25.26 
   Annual cases / 100000.: 40.3 
   Observed / expected...: 3.44 
   Relative risk.........: 3.45 
   Log likelihood ratio..: 45.863223 
   Test statistic........: 34.184428 
   P-value...............: 0.000000016 
 
18.Location IDs included.: 311760, 315140, 314580 
   Coordinates...........: (-19.7456,-44.8945) 
   Semiminor axis........: 0.091 
   Semimajor axis........: 0.091 
   Angle (degrees).......: 0 
   Shape.................: 1.00 
   Time frame............: 2002/1/1 to 2005/12/31 
   Population............: 33449 
   Number of cases.......: 53 
   Expected cases........: 14.65 
   Annual cases / 100000.: 42.4 
   Observed / expected...: 3.62 
   Relative risk.........: 3.62 
   Log likelihood ratio..: 29.797115 
   Test statistic........: 29.797115 
   P-value...............: 0.00000075 
 
19.Location IDs included.: 353930 
   Coordinates...........: (-21.996,-47.4257) 
   Semiminor axis........: 0 
   Semimajor axis........: 0 
   Angle (degrees).......: 0 
   Shape.................: 1.00 
   Time frame............: 2001/1/1 to 2005/12/31 
   Population............: 70832 
   Number of cases.......: 96 
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   Expected cases........: 39.69 
   Annual cases / 100000.: 28.3 
   Observed / expected...: 2.42 
   Relative risk.........: 2.42 
   Log likelihood ratio..: 28.486883 
   Test statistic........: 28.486883 
   P-value...............: 0.0000023 
 
20.Location IDs included.: 311360 
   Coordinates...........: (-22.0424,-45.696) 
   Semiminor axis........: 0 
   Semimajor axis........: 0 
   Angle (degrees).......: 0 
   Shape.................: 1.00 
   Time frame............: 2001/1/1 to 2002/12/31 
   Population............: 6271 
   Number of cases.......: 17 
   Expected cases........: 1.37 
   Annual cases / 100000.: 145.1 
   Observed / expected...: 12.39 
   Relative risk.........: 12.39 
   Log likelihood ratio..: 27.157414 
   Test statistic........: 27.157414 
   P-value...............: 0.0000075 
 
21.Location IDs included.: 330260, 330010 
   Coordinates...........: (-22.9594,-44.0409) 
   Semiminor axis........: 0.19 
   Semimajor axis........: 0.29 
   Angle (degrees).......: 90.00 
   Shape.................: 1.50 
   Time frame............: 2001/1/1 to 2004/12/31 
   Population............: 195255 
   Number of cases.......: 130 
   Expected cases........: 73.10 
   Annual cases / 100000.: 20.8 
   Observed / expected...: 1.78 
   Relative risk.........: 1.78 
   Log likelihood ratio..: 17.949910 
   Test statistic........: 17.587248 
   P-value...............: 0.033 

 

 

 

 



101 
 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Material – Chapter 2 

 

Table S1- Model selection results for random effect  
Models Random  DIC WAIC 
MODEL1 No random effect 63827 63840 
MODEL2 besag 54107 54174 
MODEL3 bym 54091 54158 
MODEL4 bym+idtime 53586 53657 
MODEL5 bym+idtime+rw1 53582 53652 
MODEL6 bym+idtime+rw1+id.area:id.time 53389 53494 
MODEL7 bym+idtime+rw1+id.area:rw1 51750 51836 
 
Figure S1- Cutaneous Leishmaniasis relative risk per year in the 
municipalities of the Brazilian Amazon Forest estimated by the model.  



102 
 

 
 
 
 
 
 
 
Figure S2- Total number of Cutaneous Leishmaniasis cases per year in 
the municipalities of Brazilian Amazon.  
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Figure S3- Spatial distribution of land cover and land use covariates in 
the municipalities of the Brazilian amazon Forest, 2002-2017.

 
 
Figure S4- Temporal distribution of covariates in the municipalities of 
the Brazilian Amazon Forest, 2001-2017 
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Figure S5 – Scatterplot with the number of observed and predict risk 
values (above) and distribution of PIT (probability integral 
transformation) values.  

 
 
 
Table S2 – Variation Inflation Factor results 
 
Variable VIF 
Temperature 1.19 
Precipitation 1.55 
Forest 1.67 
GINI 1.16 
Permanent Crop 1.36 
Deforestation 1.71 
NTFP 1.15 
Cattle 2.29 
 
Figure S6 – Pearson correlation result among the model covariates  
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Table S3- Parameters estimates for the covariates and random effects of 
spatiotemporal model.  

Variable 
Regression Coefficient Relative 

Risk 
IC (95%) 

Mean ±SD 
Fixed Effects     
Forest 0,19 0,03 1,21 (1,15-1,27) 
Deforestation 0,06 0,01 1,06 (1,03-1,09) 
Permanent crop 0,03 0,02 1,03 (0,99-1,07) 
NTFP 0 0,02 1 (0,97-1,03) 
Cattle 0,17 0,02 1,19 (1,13-1,25) 
Forest:Cattle 0,06 0,02 1,06 (1,01-1,1) 
Forest:Permanent crop 

-0,02 0,02 0,98 (0,95-1,02) 
Temperature -0,1 0,02 0,9 (0,86-0,94) 
Rainfall -0,08 0,01 0,92 (0,9-0,95) 
HBN -0,07 0,03 0,94 (0,89-0,98) 
Male 0,19 0,02 1,21 (1,16-1,26) 
     

Random Effects     
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Spatial heterogeneity (IID, spatially 
unstructured) 0.0003 0.0001   
Spatial heterogeneity (CAR, spatially 
structured) 0.15 0.03   
Temporal heterogeneity (IID, temporally 
unstructured) 0.02 0.01   
Temporal heterogeneity (RW1,temporally 
structured) 0.002 0.003   

Space-time interaction term (IID:RW1) 0.12 0.008   

 
 
 
 
 

 
 
 
Figure S7 – Posterior mean of the residual spatial relative risk for the 
Cutaneous Leishmaniasis in the Brazilian Amazon using the Bayesian 
spatiotemporal model  

 

 

 

 

 

 

 

 


