Jéssica Santiago Bispo da Silva

Investigação genômica de patógenos bacterianos de prioridade crítica isolados de pacientes com COVID-19

Jéssica Santiago Bispo da Silva

Investigação genômica de patógenos bacterianos de prioridade crítica isolados de pacientes com COVID-19

Dissertação apresentada ao Programa de Pósgraduação em Microbiologia do Instituto de Ciências Biomédicas da Universidade de São Paulo, para a obtenção do Título de Mestre em Ciências.

Jéssica Santiago Bispo da Silva

Investigação genômica de patógenos bacterianos de prioridade crítica isolados de pacientes com COVID-19

Dissertação apresentada ao Programa de Pós-graduação em Microbiologia do Instituto de Ciências Biomédicas da Universidade de São Paulo, para obtenção do Título de Mestre em Ciências.

Área de concentração: Microbiologia. Orientador: Prof. Dr. Nilton Lincopan

Versão original.

CATALOGAÇÃO NA PUBLICAÇÃO (CIP) Serviço de Biblioteca e informação Biomédica do Instituto de Ciências Biomédicas da Universidade de São Paulo

Ficha Catalográfica elaborada pelo(a) autor(a)

Santiago Bispo da Silva, Jéssica Investigação genômica de patógenos bacterianos de prioridade crítica isolados de pacientes com COVID19 / Jéssica Santiago Bispo da Silva; orientador Nilton Lincopan São Paulo, 2023. 99 p.

Dissertação (Mestrado)) -- Universidade de São Paulo, Instituto de Ciências Biomédicas.

1. Resistência bacteriana. 2. COVID-19. 3. Bactérias de prioridade crítica. 4. Bactérias Gram negativas. I. Erbet Lincopan Huenuman, Nilton, orientador. II. Título.

UNIVERSIDADE DE SÃO PAULO INSTITUTO DE CIÊNCIAS BIOMÉDICAS

Candidato(a): Jéssica Santiago Bispo da Silva

Título da Dissertação: Investigação genômica de patógenos bacterianos de prioridade crítica isolados de pacientes com COVID-19.

crítica isolados de pacientes com COVID-19.
Orientador: Nilton Lincopan
A Comissão Julgadora dos trabalhos de Defesa da Dissertação de Mestrado/Tese de Doutorado, em sessão pública realizada 28/07/2023, considerou o(a) candidato(a):
(X) Aprovado () Reprovado
Examinador(a):
Assinatura:
Nome: Rita de Cássia Café Ferreira. Instituição: Universidade de São Paulo (USP).
Examinador(a):
Assinatura:
Nome: Terezinha Knöbl. Instituição: Universidade de São Paulo (USP).
Examinador(a):
Assinatura:
Nome: Rodrigo Cayô da Silva. Instituição: Universidade Federal de São Paulo
(UNIFESP).
Presidente:
Assinatura:
Nome: Nilton Lincopan Instituição: Universidade de São Paulo (USP).

Cidade Universitária "Armando de Salles Oliveira", Butantã, São Paulo, SP - Av. Professor Lineu Prestes, 2415 - ICB III - 05508 000

Comissão de Ética em Pesquisa - Telefone(11) 3091-7733 - e-mail: cep@icb.usp.br

CERTIFICADO DE ISENÇÃO 1110/2020 - ERRATA

Certificamos que o Protocolo CEP - ICB nº 1110/2020, referente ao projeto intitulado: "Investigação genômica de patógenos bacterianos de prioridade crítica isolados de pacientes com COVID-19", sob a responsabilidade do(a) aluno(a) "Jéssica Santiago Bispo da Silva", e orientação do(a) Prof.(a) Dr.(a) "Nilton Erbet Lincopan Huenuman", do Departamento de Microbiologia, foi analisado pela CEUA - Comissão de Ética no Uso de Animais e pelo CEPSH - Comitê de Ética em Pesquisa com Seres Humanos, tendo sido deliberado que o referido projeto não utilizará animais que estejam sob a égide da Lei nº 11.794, de 8 de outubro de 2008, nem envolverá procedimentos regulados pela Resolução CONEP nº 466/2012.

São Paulo, 11 de Janeiro de 2023.

Profa. Dra. Luciane Valéria Sita

lucione Valeria Sita

Coordenadora CEUA ICB/USP

Profa. Dra. Camila Squarzoni Dale Coordenadora CEPSH ICB/USP

Dedico ao meu companheiro Guilherme Gomes que tem sido meu apoio constante, nos momentos de alegria e de desafios.

AGRADECIMENTOS

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento88887.508607/2020.

Agradeço ao órgão de fomento por tornar este trabalho possível.

Gostaria de expressar minha gratidão a todos aqueles que estiveram ao meu lado nesta jornada:

Aos meus pais, agradeço pelo apoio constante e por me guiarem pelo caminho do conhecimento, mostrando que é possível realizar sonhos, mesmo quando parecem inatingíveis.

Ao meu orientador, Dr. Nilton Lincopan, sou grata pela oportunidade, paciência e por compartilhar seu valioso conhecimento, proporcionando momentos de aprendizado que enriqueceram meu desenvolvimento profissional e pessoal.

À minha amiga e irmã de coração, Bruna Breternitz, agradeço por tornar minha vida mais leve e divertida. Você me inspira e me motiva.

Aos amigos que conquistei ao longo desses três anos de mestrado, Ingrith Neves, Johana Becerra, Herrison Fontana e Thais Gonçalves, agradeço pelos "cafés com lágrimas" que aqueceram meu coração. A amizade de vocês foi fundamental.

Aos companheiros de laboratório, especialmente ao Elder Sano agradeço a colaboração durante o desenvolvimento deste trabalho.

À grande pesquisadora Milena Dropa, com quem tive o prazer de trabalhar e compartilhar experiências profissionais e pessoais, agradeço a amizade sincera e por todas as oportunidades proporcionadas.

Aos secretários de pós-graduação, Gisele e Renato, agradeço a atenção e prontidão sempre que necessário.

Ao meu companheiro, Guilherme Gomes, agradeço por me apoiar, aguentar meus dias ruins e compartilhar os dias bons. Obrigado por fazer parte dessa trajetória comigo.

Aos colaboradores do laboratório de Microbiologia do HC da Universidade de Campinas, pelas amostras cedidas que foram essenciais para o desenvolvimento deste trabalho.

Por fim, agradeço a todos que tive a oportunidade de conviver e trocar experiências ao longo desses anos, sejam relações profissionais, pessoais ou amizades que se estenderam. Cada um de vocês contribuiu de alguma forma para que eu chegasse até aqui e pudes desfrutar dessa experiência.

RESUMO

Bispo, J, S Investigação genômica de patógenos bacterianos de prioridade crítica isolados de pacientes com COVID-19.

[Dissertação (Mestrado em Microbiologia)] Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, 2023.

O presente estudo teve como objetivo identificar e analisar o genoma de patógenos bacterianos de prioridade crítica isolados de pacientes com COVID-19, em 2020. Sessenta e cinco isolados bacterianos foram identificados por Maldi-Tof, incluindo Pseudomonas aeruginosa (11 isolados, 7,15%), Stenotrophomonas maltophilia (7 isolados, 4,55%), Burklholderia cenocepacia (2 isolados, 1,30%), Klebsiella aerogenes (3 isolados, 1,95%), Klebsiella pneumoniae (8 isolados, 5,20%), Acinetobacter baumannii (8 isolados, 5,20%), Enterobacter bugandensis (1 isolado, 0,65%), Burkholderia cepacia (13 isolados, 8,45%), Proteus mirabilis (1 isolado, 0,65%), Klebsiella variicola (2 isolados, 1,30%), Escherichia coli (1 isolado, 0,65%), Serratia marcescens (5 isolados, 3,25%), Morganella morganii (2 isolados, 1,30%) e Elizabethkingia miricola (1 isolado, 0,65%). Especificamente, 17 cepas (11,5%), incluindo K. pneumoniae (7 isolados), P. aeruginosa (5 isolados), A. baumannii (4 isolados) e E. coli (1 isolado), apresentaram um perfil de resistência a carbapenêmicos e/ou cefalosporinas de amplo espectro, como determinado pelo método de disco-difusão. Essas cepas foram submetidas à sequenciamento pela plataforma Illumina NextSeq. A análise genômica revelou um amplo resistoma para beta-lactâmicos (blakpc-2, blactx-m-14, bla_{CTX-M-15}), aminoglicosídeos (oqxA, oqxB, qnrE1 e aac (6') -Ib-cr) e quinolonas (gyrA-83I e parC-80I) Adicionalmente, foram identificados clones internacionais de alto risco, como K. pneumoniae ST11, ST16, ST17 e ST437, P. aeruginosa ST244 e ST671, A. baumannii ST79 e ST730, e E. coli ST1193. Genes exoU e toxA, relacionados com alta virulência e o sistema de secreção tipo III, foram identificados em uma cepa de P. aeruginosa, enquanto genes responsáveis pela produção dos sideróforos enterobactina (ent) e aerobactina (iuc/iut) foram detectados em E. coli e A. baumannii. Uma limitação do presente estudo é a ausência de dados clínicos dos pacientes. Nossos resultados sugerem que pacientes com COVID-19 são suscetíveis de serem colonizados e/ou adquirir infecções secundárias por clones internacionais de alto risco, endêmicos em hospitais brasileiros. Essa condição pode contribuir para um prognóstico desfavorável da infecção por COVID-19.

Palavras-chave. Resistência bacteriana, COVID-19, Patógenos de prioridade crítica.

ABSTRACT

Bispo, J, S Genomic investigation of critically prioritized bacterial pathogens isolated from patients with COVID-19. [Dissertation (Master's degree in microbiology)] Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil, 2023.

The present study aimed to identify and analyze the genome of critically important bacterial pathogens isolated from COVID-19 patients in 2020. Sixty-five bacterial isolates were identified by Maldi-Tof, including *Pseudomonas aeruginosa* (11 isolates, 7.15%), Stenotrophomonas maltophilia (7 isolates, 4.55%), Burklholderia cenocepacia (2 isolates, 1.30%), Klebsiella aerogenes (3 isolates, 1.95%), Klebsiella pneumoniae (8 isolates, 5.20%), Acinetobacter baumannii (8 isolates, 5.20%), Enterobacter bugandensis (1 isolate, 0.65%), Burkholderia cepacia (13 isolates, 8.45%), Proteus mirabilis (1 isolate, 0.65%), Klebsiella variicola (2 isolates, 1.30%), Escherichia coli (1 isolate, 0.65%), Serratia marcescens (5 isolates, 3.25%), Morganella morganii (2 isolates, 1.30%), and Elizabethkingia miricola (1 isolate, 0.65%). Specifically, 17 strains (11.5%), including K. pneumoniae (7 isolates), P. aeruginosa (5 isolates), A. baumannii (4 isolates), and E. coli (1 isolate), showed a profile of resistance to carbapenems and/or broad-spectrum cephalosporins as determined by the disk diffusion method. These strains were subjected to sequencing using the Illumina NextSeq platform. Genomic analysis revealed a broad resistome for beta-lactams (bla_{KPC-2} , bla_{CTX-M-14}, bla_{CTX-M-15}), aminoglycosides (oqxA, oqxB, qnrE1, and aac(6')-Ib-cr), and quinolones (gyrA-83I e parC-80I). Additionally, internationally recognized high-risk clones were identified, such as K. pneumoniae ST11, ST16, ST17, and ST437, P. aeruginosa ST244 and ST671, A. baumannii ST79 and ST730, and E. coli ST1193. Genes exoU and toxA, related to high virulence and the type III secretion system, were identified in a strain of P. aeruginosa, while genes responsible to produce enterobactin (ent) and aerobactin (iuc/iut) siderophores were detected in E. coli and A. baumannii. A limitation of the present study is the absence of clinical data from the patients. Our results suggest that COVID-19 patients are susceptible to colonization and/or acquisition of secondary infections by internationally recognized high-risk clones endemic in Brazilian hospitals. This condition may contribute to an unfavorable prognosis for COVID-19 infection.

Keywords: Bacterial resistance, COVID-19, Critically prioritized pathogens.

LISTA DE FIGURAS

Figura 1: Perfil de susceptibilidade antimicrobiana dos bacilos Gram negativos	37
Figura 2: Árvore filogenética de <i>P. aeruginosa</i> ST244	57
Figura 3. Árvore filogenética de <i>P. aeruginosa</i> ST252	59
Figura 4. Árvore filogenética de P. aeruginosa ST446	61
Figura 5. Árvore filogenética de <i>P. aeruginosa</i> ST671	63
Figura 6. Árvore filogenética de A. baumannii ST79 e ST730	65
Figura 7. Árvore filogenética de K. pneumoniae ST11	67
Figura 8. Árvore filogenética de K. pneumoniae ST16	69
Figura 9. A e B. Árvore filogenética de K. pneumoniae ST17	71
Figura 10. Árvore filogenética de K. pneumoniae ST437	73
Figura 11. Árvore filogenética de <i>E. coli</i> ST1193	75

LISTA DE TABELAS

Tabela 1. Genes de resistência, elementos genéticos móveis e	39
sequência tipo de cada isolado de Acinetobacter baumannii.	
Tabela 2. Genes de resistência, elementos genéticos móveis e sequência tipo de cada isolado de <i>Pseudomonas aeruginosa</i> .	42
Tabela 3. Genes de resistência, elementos genéticos móveis e	45
sequência tipo de cada isolado de Klebsiella pneumoniae.	46
Tabela 4. Genes de resistência, elementos genéticos móveis e sequência tipo do isolado de <i>Escherichia coli</i> .	49
Tabela 5. Perfil genômico de virulência	52

LISTA DE ABREVIATURAS E SIGLAS

ANI Average Nucleotide Identity

BHI Brain Heart Infusion

bla KPC-2 gene que codifica a enzima KPC-2

CGE Center for Genomic Epidemiology

CIM Concentração Inibitória Mínima

CLSI Clinical and Laboratory Standards Institute

COVID-19 Doença do coronavírus 2019

DNA Ácido Desoxirribonucleico

dsDNA DNA de fita dupla

ESBL β-lactamases de espectro estendido

HC Hospital das Clínicas

HS High Sensitivity

IMP-1 metalo-β-lactamase 1

Itol Interactive Tree of Life

KPC Klebsiella pneumoniae carbapenemase

MALDI-TOF Matrix Associated Laser Desorption-Ionization-Time of Flight

MBL Metalobetalactamases

MBLs Metalo-β-lactamases

MDR Multirresistente

MERS-CoV Coronavírus causador da síndrome respiratória do Oriente Médio

MLST Multi-Locus Sequence Typing

MRSA Staphylococcus aureus resistente à meticilina

NCBI Genome Download Scripts

OMS Organização Mundial da Saúde

OXA Oxacilinase

PCR Reação em Cadeia da Polimerase

PDR Resistente a polimixina classificado como pan-resistente

PubMLST diversity.

Public databases of molecular typing and microbial genome

RGI Resistance Gene Identifier

SARS-CoV-2 Síndrome respiratória aguda grave coronavírus 2

SNP Single Nucleotide Polymorphism

SPM-1 metalo-β-lactamase 1 de São Paulo

ST Sequence Type

UNICAMP Universidade de Campinas

USP Universidade de São Paulo

UTIs Unidades de Terapia Intensiva

VIM-2 metalo-β-lactamase 2

SUMÁRIO

1. INRODUÇÃO	18
1.1.Patógenos de Prioridade Crítica listados pela Organização Mundial da Saúde	18
Saude	
1.2.Clones Bacterianos de Alto Risco	19
1.3.Pseudomonas aeruginosa	19
1.4.Acinetobacter bumannii	21
1.5.Klebsiella pneumoniae	22
1.6.Escherichia coli	24
1.7.O Uso de Antibióticos em Tempos de Pandemia: O Impacto da COVID-19	25
1.8.COVID-19 e Infecções Bacterianas: Uma Dupla Ameaça à Saúde Pública	28
2. OBJETIVO	31
2.1.Geral	31
2.2.Específicos	31
3. MATERIAIS E MÉTODOS	32
3.1.Amostragem e Identificação bacteriana	32
3.2.Teste de Susceptibilidade Antimicrobiana	32
3.3.Sequenciamento do genoma completo	33
	33
3.4.Montagem e análises das sequências completas	2.4
3.5. Análise Filogenômica	34
4. RESULTADOS E DISCUSSÃO.	36
4.1. Caracterização genômica de resistência	36
4.2. Caracterização do Viruloma	51
4.3. Caracterização Filogenômica	56
4.4. Pseudomonas aeruginosa	56
T.T. 1 SEUUOMONUS UELUZINOSU	

4.4.1 ST244	56
4.4.2 ST252	58
4.4.3 ST446	60
4.4.4. ST671	62
4.5.Acinetobacter baumannii	64
4.6. Klebsiella pneumoniae	66
4.6.1. ST11	66
4.6.2 ST16	68
4.6.3 ST17	70
4.6.4 ST437	72
4.7 Escherichia coli	74
5. CONSIDERAÇÕES FINAIS	76
6. CONCLUSÃO	77
REFERÊNCIAS	78
ANEXOS	90
ANEXO A	90
Matriz de SNPs ST244 de <i>P. aeruginosa</i>	
ANEXO B	91
Matriz de SNPs ST252 de P. aeruginosa	
ANEXO C	92
Matriz de SNPs ST446 de <i>P. aeruginosa</i>	
ANEXO D	93
Matriz de SNPs ST671 de <i>P. aeruginosa</i>	

ANEXO E	94
Matriz de SNPs ST79 e ST730 de A. baumannii	
ANEXO F	95
Matriz de SNPs ST11 de K. pneumoniae	
ANEXO G	96
Matriz de SNPs ST16 de K. pneumoniae	
ANEXO H	97
Matriz de SNPs ST17 de K. pneumoniae	
ANEXO I	98
Matriz de SNPs ST437 de K. pneumoniae	
ANEXO J	99
Matriz de SNPs ST1193 de E. coli	

1. INTRODUÇÃO

1.1. Patógenos de Prioridade Crítica listados pela Organização Mundial da Saúde

A resistência bacteriana é um problema de saúde global que pode levar a altas taxas de mortes por infecções não tratáveis. Para conter a resistência, a Organização Mundial da Saúde (OMS) lançou uma lista prioritária de bactérias que devem ser estudadas com maior rigor, classificando-as em prioridade crítica, alta prioridade e prioridade média, de acordo com o perfil de resistência aos antimicrobianos comercialmente disponíveis, principalmente aqueles considerados como última alternativa terapêutica (WHO, 2017).

Essa lista inclui os bacilos Gram-negativos Acinetobacter baumannii e Pseudomonas aeruginosa, resistentes aos carbapenêmicos, além dos Enterobacterales (Klebsiella. pneumoniae, Escherichia coli, Enterobacter spp, Serratia spp, Proteus spp, Providencia spp, Morganella spp) resistentes aos carbapenêmicos e cefalosporinas de terceira geração (OMS, 2017).

A ordem *Enterobacterales* inclui espécies bacterianas comumente encontradas no ambiente e no trato gastrointestinal de seres humanos e animais. No entanto, algumas dessas bactérias podem causar infecções do trato urinário, do trato respiratório e sanguíneo. A resistência dessas bactérias aos antibióticos da classe dos carbapenêmicos e cefalosporinas de terceira geração é particularmente preocupante, já que esses antibióticos são frequentemente usados para tratar infecções graves. Além disso, as bactérias desse grupo têm a capacidade de adquirir resistência facilmente aos antimicrobianos e produzir β-lactamases e carbapenemases de espectro estendido, como ESBL e KPC, bem como outros genes que conferem resistência e levam a infecções severas (EFTEKHAR, NASEH; 2015, SUAY-GARCIA, PÉREZ-GRACIA, 2019).

As espécies *A. baumannii* e *P. aeruginosa* são patógenos oportunistas que representam uma grande ameaça à saúde pública devido à sua capacidade de adquirir resistência facilmente e à sua presença frequente em unidades de terapia intensiva (UTI) onde podem se espalhar facilmente e infectar pacientes imunossuprimidos (ASIF; ALVI; REHMAN, 2018; ROQUE-BORDA *et al*, 2021).

Carbapenêmicos são utilizados no tratamento dessas bactérias, mas a resistência a esses antibióticos se tornou uma preocupação significativa (ELBEHIRY *et al*, 2021).

A resistência bacteriana é um desafio importante para a saúde pública em todo o mundo, e torna-se ainda mais preocupante quando a resistência ultrapassa a eficácia dos medicamentos de primeira linha, resultando em altas taxas de mortalidade devido a infecções que não podem ser tratadas adequadamente (RIDUAN *et al*, 2020; PEREZ, BONOMO, 2018).

1.2 Clones Bacterianos de Alto Risco

1.3. Pseudomonas aeruginosa

Pseudomonas aeruginosa, uma bactéria Gram-negativa pertencente à família Pseudomonadaceae, amplamente distribuída em diversos ambientes, como solo, plantas, água, animais e até mesmo ambientes hospitalares (KOCSIS et al., 2021; TURANO et al, 2016; NASCIMENTO et al, 2016; FONTES et al, 2011; GASPAR et al, 2011; LINCOPAN et al, 2010). Essa espécie possui uma notável capacidade de adaptação e apresenta resistência intrínseca a várias classes de antibióticos. Estudos conduzidos por Snesrud et al. (2018) identificaram a produção de várias enzimas metalo-β-lactamases, como SPM-1, VIM-2 e IMP-1, em P. aeruginosa.

As carbapenemases do tipo OXA em *P. aeruginosa* têm sido pouco relatadas, sendo associadas com uma baixa atividade hidrolítica como no caso da OXA-198 e OXA-488 (FARID EL GARCH *et al.*, 2011). Essas enzimas conferem uma suscetibilidade reduzida aos carbapenêmicos, porém, quando combinadas com outros mecanismos de resistência, como alterações na permeabilidade da membrana, aumento das bombas de efluxo, e principalmente quando associadas a outras beta-lactamases, a resistência aos carbapenemicos pode ser acentuada.

A OMS tem listado a *P. aeruginosa* resistente a carbapenêmicos como um patógeno de alta prioridade para a pesquisa e desenvolvimento de novos antibióticos. Entre os principais mecanismos de resistência aos carbapenêmicos nesse patógeno, destacam-se a deleção ou modificação da proteína OprD, que leva à diminuição da permeabilidade da membrana externa; a superexpressão de bombas de efluxo codificadas no cromossomo, e, ou a aquisição de carbapenemases, em particular as metalo-β-lactamases (SMITH *et al.*, 2017; NEWMAN *et al.*, 2017; BUENO *et al.*, 2017, NASCIMENTO *et al.*, 2016).

A patogênese de *P. aeruginosa* resulta da interação de diversos fatores de virulência, incluindo proteínas estruturais, tais como flagelo polar, pili e lipopolissacarídeo, além de produtos metabólicos como exoenzimas, exotoxinas e fosfolipases. Esses componentes são responsáveis por facilitar a colonização e estabelecimento de infecções agudas e crônicas em diferentes hospedeiros, podendo causar uma variedade de manifestações clínicas, como infecções do trato urinário, pneumonia, infecções oculares, otites, infecções ósseas, bacteremias e infecções em sítios cirúrgicos (FERNANDES *et al*, 2018; NASCIMENTO *et al*, 2016; KHALIFA *et al*, 2011; GASPAR *et al*, 2011).

Além dos mecanismos estruturais e da produção de toxinas, esta espécie também emprega um sistema de sinalização intercelular conhecido como quorumsensing, que desempenha um papel essencial no controle da síntese de vários outros fatores de virulência, incluindo toxinas e formação de biofilme.

P. aeruginosa exibe uma estrutura populacional epidêmica não clonal, embora algumas sequências tipo (ST), incluindo ST111, ST175, ST235, ST244, ST395, ST357, ST308, ST277, ST654 e ST298 são clones de alto risco e foram relacionados a surtos em diferentes regiões do mundo. Dentre esses clones de alto risco, o ST235 é o mais prevalente e está associado a desfechos clínicos desfavoráveis, em parte devido ao seu elevado nível de resistência a antibióticos, e/ou a produção de citotoxina ExoU(TREEPONG et al, 2018), uma citotoxina transportada pelo sistema de secreção tipo III, e produzida por linhagens reconhecidas como altamente virulentas (SCHULERTet al., 2003; FOULKESet al., 2019,DEL BARRIO-TOFIÑO; LÓPEZ-CAUSAPÉ; OLIVER, 2020b).

O clone mais comum de *P. aeruginosa* encontrado no Brasil é o ST244, que produz beta-lactamases do tipo OXA e metalo-beta-lactamase (MBL) SPM-1. Embora haja evidências de que clones resistentes aos carbapenêmicos circulem entre os hospitais do país, a vigilância epidemiológica e genômica ainda é insuficiente, havendo poucos relatos a respeito. Portanto, é necessário realizar uma investigação mais aprofundada sobre o assunto (KOCSIS; GULYÁS; SZABÓ, 2021).

1.4. Acinetobacter baumannii

Infecções causadas por *Acinetobacter* spp. têm se tornado uma ameaça significativa em todo o mundo. *Acinetobacter* spp. é um gênero de bactérias Gramnegativas que pertence à família *Moraxellaceae* e compreende uma diversidade de 59 espécies distintas. Entre essas espécies, destaca-se *Acinetobacter baumannii*, reconhecida como um patógeno oportunista de importância clínica (PELEG *et al*, 2018).

A. baumannii é frequentemente isolado de amostras clínicas e está envolvido em uma ampla gama de infecções hospitalares, tais como pneumonia associada à ventilação mecânica, infecções sanguíneas, infecções do trato urinário, bacteremia relacionada ao uso prolongado de dispositivos médicos, meningite, infecções oculares, infecções intra-abdominais, infecções em locais cirúrgicos, infecções do trato respiratório e infecções gastrointestinais. Sua capacidade de formar biofilmes contribui para sua persistência em ambientes de unidades de terapia intensiva (UTIs) e aumenta o risco de contaminação de pacientes (VICENT et al, 2009).

Um dos principais desafios associados a esta bactéria é sua capacidade de adquirir resistência a múltiplos antimicrobianos, tornando-se uma cepa multirresistente (MDR). Essa resistência é impulsionada principalmente por mutações genéticas que conferem vantagens de sobrevivência ao microrganismo (NASR, 2020).

Além das implicações clínicas, as infecções por *A. baumannii* multirresistente também acarretam um ônus financeiro considerável. Estima-se que cada caso de infecção possa resultar em custos milionários. Além disso, pacientes com bacteremia causada por cepas MDR apresentam taxas de mortalidade significativamente mais altas em comparação com cepas não multirresistentes. Segundo Zhou *et al*, 2019 a taxa de mortalidade estimada em pacientes afetados por infecções causadas por cepas MDR é de 10,6%.

A resistência aos carbapenêmicos em *A. baumannii* é mediada principalmente pela expressão de carbapenemases do tipo OXA, embora outras enzimas como as metalo-β-lactamases de classe B (MBLs) ou a carbapenemase do tipo KPC também possam estar presentes. As enzimas OXA são agrupadas em diferentes famílias, incluindo OXA-51, OXA-23, OXA-24, OXA-58, OXA-143 e OXA-235. Além disso, certos clones de *A. baumannii*, como os clones internacionais I-III, estão associados à produção dessas enzimas (CAMARGO et al, 2016; VASCONCELOS et al, 2015).

Na América Latina, foram observadas cepas multirresistentes de *A. baumannii*, principalmente os clones ST79, ST25, ST15 e em menor grau, ST1. Esses clones estão associados à produção de enzimas semelhantes a OXA-23, embora alguns isolados produtores de OXA-72 também tenham sido descritos (LEVY-BLITCHTEIN *et al.*, 2018).

Em 2016 um estudo realizado no Brasil, descreveu clones ST730 de *A. baumannii* produtores de OXA-72 isolados de pacientes em Unidades de Terapia Intensiva (UTIs). O monitoramento contínuo de clones de alto risco de *A. baumannii* resistentes aos carbapenêmicos é essencial para evitar surtos hospitalares (PAGANO et al., 2016a, PAGANO *et al.*, 2016b)

1.5. Klebsiella pneumoniae

Klebsiella pneumoniae é uma bactéria oportunista que pode causar diversas doenças infecciosas em humanos, afetando o trato urinário, trato respiratório e sistema sanguíneo. Baseado do perfil de virulência, esta espécie tem sido classificada como *K. pneumoniae* clássica e *K. pneumoniae* hipervirulenta (PODSCHUN; ULLMANN, 1998). Outra característica tem sido a aquisição da resistência aos antimicrobianos influenciada pela presença de genes transferidos por plasmídeos como FIB(K), FII(K), IncHI, IncR, IncQ e Col estes tem sido reservatório de genes de resistência adquiridos, os quais codificam uma variedade de mecanismos de resistência, incluindo β-lactamases de espectro estendido (ESBLs), β-lactamases pAmpC, e carbapenemases (TZOUVELEKIS et al, 2012; BONOMO et al, 2018; VENEZIA et al, 2017; KAZI et al, 2015, ENANY et al, 2022).

Estudos conduzidos por Dixit *et al.* (2019) e Gandra *et al.* (2016) relataram um aumento na taxa de resistência aos carbapenêmicos, de 29% em 2008 para 57% em 2016. Essa crescente resistência tem implicações clínicas importantes, pois restringe as opções de tratamento disponíveis para infecções potencialmente fatais. Além disso, tem-se observado um possível surgimento de resistência à colistina em ambientes onde predominam cepas de *K. pneumoniae* produtoras de carbapenemase (MONACO *et al*, 2014).

K. pneumoniae resistentes a cefalosporinas de amplo espectro e/ou carbapenemases foram listadas pela OMS como um dos patógenos para os quais novas terapias são urgentemente necessárias, sendo classificadas como patógenos de prioridade crítica. A escassez de opções de tratamento adequadas é especialmente preocupante em países de baixa e média renda, onde esses medicamentos são inacessíveis para a maioria da população (DADGOSTAR, 2019, WHO, 2018).

Diversos STs de *K. pneumoniae* tem sido identificado, incluindo ST11, ST14, ST15, ST26, ST37, ST45, ST101, ST147, ST149, ST231, ST258, ST627 e ST977, com alguns desses STs apresentando distribuição geográfica restrita, enquanto outros são pandêmicos (ENANY *et al*, 2022).

Estudos realizados no Brasil mostram que *K. pnuemoniae* é um dos principais patógenos causadores de infeções nosocomiais, a primeira detecção foi em 2006 em pacientes internados nos estados de Pernambuco, Rio de Janeiro e São Paulo com cepas produtoras de KPC-2 (SEKI *et al.*, 2011, GONÇALVES *et al.*, 2017).O complexo clonal 258 (CC258) e suas variantes ST258, ST11 e ST437 apresentam ampla distribuição geográfica no Brasil e estão associados a beta-lactamases de espectro estendido como CTX-M-15 e CTX-M-14 (ANDRADE *et al.*, 2011).

Além da resistência antimicrobiana, os genes de virulência desempenham um papel fundamental na patogenicidade de *K. pneumoniae*. Esses genes estão envolvidos na capacidade da bactéria de aderir a superfícies hospedeiras, formar biofilmes, invadir células hospedeiras e causar danos teciduais (BÁLLEN *et al*, 2021). A interação complexa entre a resistência aos antimicrobianos e os fatores de virulência contribui para a capacidade de *K. pneumoniae* de causar infecções graves e persistentes em ambientes hospitalares e na comunidade. Portanto, uma compreensão abrangente dos mecanismos de resistência e virulência é essencial para o desenvolvimento de estratégias eficazes de controle e tratamento das infecções causadas por essa bactéria.

1.6. Escherichia coli

A bactéria *Escherichia coli* é considerada uma bactéria comensal presente na microbiota intestinal de vertebrados, incluindo seres humanos. No entanto, ela também pode se comportar como um patógeno oportunista em mamíferos e aves, causando uma ampla gama de doenças. Essas doenças podem afetar tanto órgãos e tecidos externos ao intestino, como o trato urinário, abdômen, pulmões e pele, além de causar meningite neonatal e bacteremia, quanto o próprio intestino, manifestando-se como diferentes formas de diarréia, incluindo diarréia hemolítica e síndrome urêmica (BAKER *et al*, 2018).

A partir dos anos 2000, observou-se um aumento significativo na resistência a múltiplos fármacos, especialmente às fluoroquinolonas e às cefalosporinas de terceira geração, como cefotaxima, ceftriaxona e ceftazidima (PITOUT; 2012). Esses medicamentos são frequentemente utilizados no tratamento de infecções graves.

Esse aumento global da resistência aos antibióticos tem levado a um uso excessivo de certos antibióticos, como os carbapenêmicos, resultando em um aumento na resistência a esses medicamentos. A perda da eficácia dos carbapenêmicos seria extremamente prejudicial para a prática médica, uma vez que esses fármacos representam algumas das opções mais eficazes de tratamento de última linha para infecções graves causadas por bactérias Gram-negativas multirresistentes (PITOUT; 2016).

A prevalência de clones multirresistentes varia de acordo com a localização geográfica, os critérios de inclusão, e as fontes e os períodos de estudo. Alguns clones multirresistentes incluem o ST131, ST405, ST38, ST648, ST410, ST167 e ST1193. Esses clones estão associados à resistência às fluoroquinolonas, sendo que a maioria também está relacionada à produção de enzimas CTX-M. Alguns desses clones também produzem carbapenemases (MANGES *et al*, 2019; CUMMINS *et* al, 2021).

No Brasil, o clone de maior prevalência é o ST131, associado a infecções nosocomiais por cepas produtoras de beta-lactamases de espectro estendido. Embora o clone ST1193, que é o segundo clone de maior disseminação, também tenha sido relatado associado a infecções extra-intestinais em pacientes hospitalizados na cidade de São Paulo (SANTOS-NETO *et al.*, 2022).

Portanto, é de extrema importância manter uma vigilância constante a fim de controlar a disseminação de cepas multirresistentes de *E. coli*. Isso envolve a implementação de medidas de prevenção e controle de infecções.

1.7 O Uso de Antibióticos em Tempos de Pandemia: O Impacto da COVID-19

A pandemia de COVID-19 teve um impacto avassalador nos sistemas de saúde e na sociedade em todo o mundo, com milhares de casos relatados. As preocupações sobre as consequências a longo prazo da COVID-19 em relação à resistência bacteriana têm sido discutidas desde o início da pandemia, devido à preocupação com o uso excessivo de antibióticos em pacientes infectados pelo vírus SARS-CoV-2 (NIEUWLAAT *et al*, 2020; VAN DUIN *et al*, 2020).

Embora a COVID-19 seja uma síndrome viral, estudos indicam que antibióticos têm sido frequentemente prescritos para pacientes diagnosticados com a doença devido à suspeita de coinfecção bacteriana (RAWSON *et al*, 2020; LANSBURY *et al*, 2020; LANGFORD *et al*, 2020).

Existe uma discrepância entre a prevalência de infecções bacterianas e a frequência com que os antibióticos são prescritos, o que destaca o potencial do uso excessivo desses medicamentos em pacientes com COVID-19. Essa prescrição excessiva pode resultar em pressão seletiva para a resistência antimicrobiana. Além disso, o uso indevido de antibióticos juntamente com a sobrecarga dos sistemas de saúde e a capacidade reduzida de vigilância dos organismos resistentes aos antibióticos durante a pandemia agrava ainda mais essa situação, o que pode tornar à resistência antimicrobiana uma consequência duradoura da pandemia (RAWSON *et al*, 2020; HUTTNER *et al*, 2020).

Os antimicrobianos têm vários papéis no tratamento da COVID-19, incluindo o tratamento de coinfecções respiratórias bacterianas ou fúngicas. No entanto, é importante selecionar cuidadosamente as terapias empíricas para evitar consequências não intencionais, como toxicidade e resistência aos antimicrobianos (ZHU *et al*, 2020; ZHOU *et al*, 2020; WANG *et al*, 2020).

Durante a pandemia, foi necessário iniciar rapidamente a terapia antimicrobiana empírica em um maior número de pacientes. De fato, algumas diretrizes recomendam o uso de antibióticos de amplo espectro para combater possíveis infecções bacterianas atípicas, porém é importante evitar o uso excessivo de antimicrobianos nos sistemas de saúde (GAUTRET et al, 2020).

O rápido aumento da capacidade de cuidados intensivos para gerenciar o SARS-CoV-2 pode levar a um aumento da taxa de infecção nosocomial no ambiente hospitalar (RAWSON *et al*, 2020). Estudos realizados por Zhu et al. (2020), Qin et al. (2020), e Zhou et al. (2020) mostram que muitas coinfecções bacterianas estão associadas aos

cuidados de saúde, incluindo infecções da corrente sanguínea e pneumonia associada a ventilação mecânica (WANG *et al*, 2020).

De acordo com uma pesquisa realizada por Lansbury et al (2020) sobre a ocorrência de coinfecções em pacientes com COVID-19, as taxas de coinfecção bacteriana foram menores do que as taxas de uso empírico de antibióticos. A meta-análise realizada no estudo indicou que cerca de 7% dos pacientes hospitalizados com COVID-19 apresentaram coinfecção bacteriana, um número que aumentou para 14% em estudos que abrangeram apenas pacientes em UTI. Esses achados sugerem que as coinfecções bacterianas são menos frequentes em pacientes com COVID-19 em comparação com outros vírus respiratórios, como a influenza (H1N1) (MACLNTYRE et al, 2018). Porém, são necessários mais estudos que monitorem a associação da coinfecção bacteriana e a COVID-19.

Em relação ao surto de influenza de 2009, um em cada quatro casos graves ou fatais de influenza (H1N1) apresentou coinfecção bacteriana, com as bactérias mais comumente associadas à colonização de orofaringe e nasofaringe (KLEIN et al, 2016). Em contraste, no caso de COVID-19, os patógenos bacterianos mais comumente detectados foram *Mycoplasma pneumoniae*, seguido por *Pseudomonas aeruginosa* produtora de betalactamase de espectro estendido (ESBL), *Haemophilus influenzae*, *Klebsiella pneumoniae* (ESBL), e *A. baumannii* resistentes aos carbapenêmicos com menos casos de MRSA e nenhum caso de coinfecção com *S. pneumoniae* ou *S. pyogenes* sendo relatado. Esses resultados são semelhantes aos estudos que relatam as bactérias envolvidas em infecções secundárias bacterianas associadas à pneumonia em pacientes com MERS-CoV e SARS-CoV (ASSIRI et al, 2013).

O uso excessivo de antibióticos de amplo espectro entre pacientes hospitalizados com COVID-19 é uma preocupação crescente, já que as taxas de uso excedem as taxas de infecções secundárias relatadas. Esse problema é especialmente comum entre pacientes de instalações de convivência e populações de risco, que frequentemente apresentam microbiota alterada e colonização por organismos resistentes. A terapia empírica na admissão hospitalar é frequentemente direcionada contra patógenos associados à assistência à saúde, o que pode levar à prescrição desnecessária de antibióticos (TEMET et al, 2020).

A pandemia de COVID-19 sobrecarregou os sistemas de saúde no mundo todo, levando a um aumento no uso de antibióticos em pacientes hospitalizados, mesmo em instalações que normalmente não usam antibióticos com frequência. Isso pode levar a um

aumento da resistência antimicrobiana nos hospitais, ou alas hospitalares que foram o epicentro da pandemia. Hospitais e regiões com alta prevalência de patógenos resistentes devem estar preparados para lidar com possíveis aumentos de infecções nosocomiais por patógenos resistentes (CLANCY *et al*, 2020).

A preocupação com a resistência antimicrobiana aumentou devido à associação entre a primeira onda de COVID-19 e o surgimento de patógenos Gram-negativos multirresistentes em países como Estados Unidos, Brasil, Rússia, Reino Unido, Espanha e Itália. Além disso, áreas como Nova York e Lombardia na Itália, sofreram grande impacto da COVID-19 e são considerados pontos críticos para a resistência antimicrobiana. Países como China, Índia e México, que apresentaram rápido crescimento no número de casos de COVID-19, também são identificados como pontos críticos (SATLIN *et al*, 2017; CLANCY; NGEYUN, 2020).

Durante a pandemia da COVID-19, a pressão seletiva para o desenvolvimento de resistência antimicrobiana local foi agravada pelas tendências de longo prazo em escala regional. Por exemplo, na Ásia, houve um aumento notável de *A. baumannii* resistente a polimixina classificado como pam-resistente (PDR) e *Enterobacterales* produtores de metalo-beta-lactamases (MBL). Nos EUA, houve um aumento significativo de *Enterobacterales* produtores de beta-lactamases de espectro expandido (ESBL).

Isso significa que a pressão seletiva local pode agravar ainda mais as tendências regionais já existentes em relação à resistência aos antibióticos (JERNIGAN et al, 2017; LI-YANG et al, 2016).

Além disso, a COVID-19 pode aumentar o risco de resistência a antimicrobianos se SARS-CoV-2 e influenza co-circularem, enquanto a COVID-19 pode aumentar o grupo de hospedeiros potencialmente vulneráveis (COLLIGNON *et al*, 2018; SCOTT *et al*, 2018; HSU, 2020).

1.8. COVID-19 e Infecções Bacterianas: Uma Dupla Ameaça à Saúde Pública

A presença de outros microrganismos, como fungos, bactérias e vírus, durante a infecção pelo vírus SARS-CoV-2, pode ser um fator importante na COVID-19. Isso pode dificultar o diagnóstico, tratamento e prognóstico da doença e até aumentar os sintomas e a mortalidade. A investigação da presença de possíveis patógenos concomitantes durante a infecção pelo SARS-CoV-2 é crucial para o tratamento da doença (CHEN *et al*, 2020).

Os mecanismos envolvidos na interação entre vírus e bactérias podem causar complicações graves mediadas pela falta de uma resposta imunológica eficiente, além da sinergia patogênica. Embora diversos agentes microbianos possam causar infecções do trato respiratório inferior, geralmente as doenças ocorrem por vírus e bactérias em simultâneo (PAGET; TROTTEIN, 2019; MACINTYRE; BUI, 2017).

O motivo da ocorrência de infecções bacterianas em indivíduos hospitalizados com o sistema imunológico enfraquecido é a presença de muitas bactérias adaptadas a desenvolver infecções no ambiente hospitalar. Além disso, a infecção causada pelo vírus SARS-CoV-2 pode danificar as células e a estrutura pulmonar, permitindo que as bactérias aumentem a aderência e invasão às células hospedeiras (TAY *et al*, 2020).

As infecções bacterianas secundárias durante as pandemias e epidemias virais têm consequências irreversíveis, principalmente em grupos de alto risco, incluindo os pacientes imunossuprimidos (PAGET; TROTTEIN, 2019; MACINTYRE; BUI, 2017).

Embora as infecções bacterianas ou fúngicas em pacientes com COVID-19 sejam menos comuns do que em outras infecções virais, a presença de uma infecção secundária pode aumentar significativamente a taxa de mortalidade. Isso ocorre em parte devido ao uso excessivo de antibióticos no diagnóstico precoce da COVID-19 (GARAZZINO et al, 2020; BENGOECHEA; BAMFORD, 2020). Os microrganismos responsáveis por infecções pulmonares secundárias em pacientes hospitalizados com COVID-19 são semelhantes aos microrganismos isolados durante o surto de SARS em 2003 (ROUZÉ et al, 2021; KLEIN et al, 2016; VAILLANCOURT; JORTH, 2020), incluindo espécies de patógenos Gram-negativos comumente associados a pneumonia hospitalar como Pseudomonas aeruginosa, Klebsiella spp, Stenotrophomonas maltophilia e Acinetobacter baumannii (JONES, 2010; BEREKET et al, 2012; CABRERA et al, 2011; CHONG et al, 2021).

Durante os estágios iniciais do surto de COVID-19, as informações sobre infecções bacterianas em pacientes com COVID-19 eram limitadas. Um estudo conduzido por Guan *et al.* (2020) avaliou registros médicos de 1.099 pacientes adultos em toda a China com COVID-19 confirmado em laboratório, e identificou sintomas comuns da doença.

Entretanto, o estudo observou que muitos pacientes não foram submetidos a avaliação bacteriológica ou fúngica devido à sobrecarga de recursos médicos. Além disso, há inviabilidade do manuseio de amostras biológicas devido ao risco de contaminação pelo vírus (O`TOOLE, 2021).

Outro estudo realizado por Zhou *et al.* (2020) descobriu que a sepse foi a complicação mais comum em pacientes com COVID-19 hospitalizados, mas ainda são necessários mais dados específicos para confirmar o envolvimento bacteriano na doença. É importante destacar que durante a pandemia, a falta de recursos médicos devido à sobrecarga de trabalho tem sido uma limitação significativa na avaliação de materiais biológicos de pacientes com COVID-19 (O`TOOLE, 2021).

As diretrizes clínicas para o diagnóstico da COVID-19 foram estabelecidas, mas a padronização de testes eficientes para infecções bacterianas e fúngicas ainda não está disponível. O exame microbiológico é a forma mais prática de diagnosticar, mas a coleta de amostras de pacientes infectados pelo vírus SARS-CoV-2 pode apresentar um risco significativo aos profissionais de saúde, exigindo medidas de detecção padronizada e proteção adequada (PENG *et al*, 2020; XU *et al*, 2020).

A incidência de infecções bacterianas em pacientes com COVID-19 durante a hospitalização está aumentando, e há indícios de que as bactérias multirresistentes são responsáveis por muitas dessas infecções (BENGOECHEA; BAMFORD, 2020; HENDAUS; JOMHA, 2021, RAWSON et al, 2020). Os pacientes que já são vulneráveis a infecções pulmonares virais, como gripe, síndrome respiratória aguda e COVID-19, têm um risco maior de contrair infecções bacterianas secundárias, como foi visto durante a pandemia de influenza H1N1 em 2009, que resultou em cerca de 284.000 mortes em todo o mundo, com 30-55% dessas mortes atribuídas a pneumonia bacteriana (MORRIS et al, 2017, CHERTOW; MEMOLI, 2013). Portanto, infecções bacterianas secundárias têm um impacto significativo na taxa de mortalidade durante pandemias virais.

Pacientes graves acometidos pela COVID-19 têm uma maior probabilidade de desenvolver infecções bacterianas secundárias em comparação com pacientes com doença não grave (KIM et al., 2020).

Embora a coinfecção bacteriana seja menos comum durante a hospitalização precoce, outros estudos identificaram patógenos bacterianos específicos que podem causar infecções secundaria em pacientes com COVID-19. Estes patógenos incluem Streptococcus pneumoniae, Staphylococcus aureus, P. aeruginosa, E. coli, K. pneumoniae, Enterococcus faecium e Haemophilus influenzae. No entanto, é importante ressaltar que o teste sistemático para infecções bacterianas secundárias nem sempre é realizado, o que pode resultar em infecções sub-notificadas em alguns pacientes (GARCIA-VIDAL et al, 2021).

Dada a ampla gama de casos positivos para infecção bacteriana secundária relatada em diferentes estudos, fica claro a necessidade de investigar especificamente os níveis de infecção bacteriana em pacientes com COVID-19, e que os dados obtidos devem ser estratificados no que diz respeito a variáveis, incluindo local de infecção e espécies bacterianas (SINGH *et al*, 2021).

O conhecimento sobre os fatores de risco para infecções secundárias em pacientes com COVID-19 está em constante evolução, mais pesquisas são necessárias para entender melhor essa associação. Estudos sugerem que condições pré-existentes, como doenças pulmonares crônicas, diabetes e obesidade, podem aumentar o risco de infecções secundárias, bem como fatores relacionados ao tratamento, como o uso prolongado de ventiladores e terapias imunossupressoras. Cada paciente é único e pode ter diferentes fatores de risco para infecções secundárias, por isso a avaliação individualizada é crucial para prevenir e tratar essas infecções (CHONG *et al*, 2021; QIN *et al*, 2020).

2. OBJETIVO

2.1. Geral

Investigar a presença e características genômicas de patógenos bacterianos Gramnegativos de prioridade crítica em pacientes infectados pelo vírus SARS-CoV-2.

2.2. Específicos

- Determinar o perfil de sensibilidade e o resistoma dos bacilos Gram-negativos identificados;
- Investigar o viruloma das cepas sequenciadas;
- Realizar análise filogenômica dos bacilos Gram-negativos identificados, a fim de investigar a relação clonal com linhagens endêmica no Brasil;
- Disponibilizar todos os dados obtidos por meio do sequenciamento genômico na plataforma OneBR (One Health Brazilian Resistance).

3. MATERIAIS E MÉTODOS

3.1 Amostragem e Identificação bacteriana

Foram utilizadas amostras de cepas bacterianas isoladas de 49 pacientes diagnosticados com COVID-19, obtidas a partir do trato respiratório inferior, incluindo aspirado traqueal, escarro e lavado brônquio alveolar no período de junho a outubro de 2020. Os pacientes tinham idade entre 30 e 85 anos. Essas amostras foram fornecidas pelo Laboratório de Microbiologia do Hospital das Clínicas da Universidade de Campinas (UNICAMP) e já haviam sido previamente identificadas por meio da técnica de espectrometria de massa (Matrix Associated Laser Desorption-Ionization-Time of Flight — MALDI-TOF).

As amostras foram processadas no Laboratório de Microbiologia do HC (Unicamp) e, após a identificação dos isolados, foram enviadas por swabs estéreis com meio de transporte Stuart para o Laboratório de Resistoma e Alternativas Terapêuticas no Instituto de Ciências Biomédicas (USP), aonde foram subcultivadas em ágar MacConkey para o reisolamento de colônias puras. As colônias obtidas foram armazenadas em criotubos contendo 600 μL de caldo Brain Heart Infusion (BHI) acrescido de 400 μL de glicerol a 20%, e mantidas em temperatura de -80 °C para posteriores análises microbiológicas e genômicas.

3.2. Teste de Susceptibilidade Antimicrobiana

O teste de sensibilidade aos antibióticos foi realizado por meio de disco difusão para avaliar a susceptibilidade a 28 compostos antimicrobianos, incluindo Amicacina (30 μg), Gentamicina (10 μg), Trimetoprim-Sulfametoxazol (25 μg), Amoxicilina-Clavulanato (20/10 μg), Cefepime (30 μg), Ceftazidima (30 μg), Ceftriaxona (30 μg), Ertapenem (10 μg), Imipenem (10 μg), Meropenem (10 μg), Piperacilina-Tazobactam (10 μg), Piperacilina (100 μg), Ciprofloxacina (5 μg), Tobramicina (10 μg), Doxiciclina (30 μg), Minociclina (30 μg), Levofloxacina (5 μg), Cefiderocol (30 μg), Ampicilina-sulbactam (10 μg), Ticarcilina Clavulanato (75/10 μg), Ceftazidima-Avibactam (30/20 μg), Ceftolozone-Tazobactam, (30/10 μg), Aztreonam (30 μg), Cefoxitina (30 μg), Cloranfenicol (30 μg), Tetraciclina (30 μg), e Fosfomicina (200 μg). Conforme as diretrizes do CLSI - 2023.

A susceptibilidade à colistina foi avaliada pelo método automatizado VITEK® 2 para determinar a concentração inibitória mínima (CIM).

O fenótipo para ESBL foi confirmado pelo teste de difusão em ágar Mueller Hinton, usando a combinação de discos de Ceftazidima, Ceftriaxona, Cefotaxima e Cefepime (cefalosporinas de terceira e quarta geração), posicionados a uma distância de 2 cm do disco de antibiótico Amoxicilina-Clavulanato, para verificar a formação da "zona fantasma" entre os halos de inibição das cefalosporinas e Amoxicilina-Clavulanato.

3.3. Sequenciamento do genoma completo

Para analisar o genoma completo das cepas que apresentaram fenótipos de resistência aos β -lactâmicos de amplo espectro, as amostras foram semeadas em placas de petri contendo ágar MacConkey com ceftriaxona 2 μg /ml, para selecionar colônias resistentes ao antibiótico e evitar o crescimento de possíveis contaminantes.

Posteriormente as cepas foram incubadas a 37 °C por 18 horas e cultivadas em caldo BHI por mais 18 horas a 37 °C para a extração do DNA genômico, utilizando o kit de extração PureLink TM Genomic DNA Mini Kit (Invitrogen). O DNA foi quantificado usando o sistema Qubit dsDNA HS (Life Technologies, CA). Em seguida, as bibliotecas genômicas foram construídas com o kit de preparação de biblioteca Nextera XT DNA Library Preparation (Illumina) e sequenciadas na plataforma Illumina MiSeq no Centro de Facilidades de Apoio a Pesquisa (CEFAP-USP), gerando 2 x 250 bases emparelhadas.

3.4. Montagem e análises das sequências completas

A leitura dos arquivos no formato FASTAq foi tratada utilizando os programas Unicycler v. 0.4.8 – beta e pelo software Genomics WorkBench CLC v. 12.

A identificação das espécies foram confirmadas utilizando o recurso online gratuito Pathogenwatch (https://pathogen.watch/) e ferramentas disponíveis na base de dados Center for Genomic Epidemiology (CGE) (http://www.genomicepidemiology.org/), que utilizam o banco de dados PasmidFinder para avaliar os tipos de plasmídeos e grupos de incompatibilidade (InC), o Resfinder para

buscar determinantes de resistência antimicrobiana e o VirulenceFinder para buscar genes de virulência, o viruloma espeficicamente de *A. baumannii* foi previsto usando o banco de dados de tipagem de *Acinetobacter baumannii* (https://pubmlst.org/bigsdb?db=pubmlst_abaumannii_seqdef). O banco de dados abrangente de resistência a antibióticos CARD (https://card.mcmaster.ca/) foi usado para previsão de bombas de efluxo.

O MLST 2.0 foi utilizado para determinar o ST (multi-locus sequence type) de cada espécie, enquanto o banco de dados Public databases of molecular typing and microbial genome diversity (PubMLST) (https://pubmlst.org/) foi utilizado para determinar o ST de *A. baumannii*.

O ABRicate v0.9.8 (Seemann, 2020) também foi utilizado para análise do resistoma e viruloma. Além disso, todas as análises foram feitas com limites de identidade e cobertura definidos acima de 90%.

3.5. Análise Filogenômica

Para comparar os genomas sequenciados com outros isolados geneticamente próximos, todos os genomas de A. baumannii, E. coli, K. pneumoniae e P. aeruginosa disponíveis no banco de dados genômicos **NCBI** RefSeq (https://www.ncbi.nlm.nih.gov/refseq) foram baixados, bem como seus metadados, utilizando ferramenta **NCBI** Genome Download Scripts v0.3.1(https://github.com/kblin/ncbi-genome-download). O ST dos genomas baixados foi identificado utilizando MLST v2.16.1 (https://github.com/tseemann/mlst). Os metadados correspondentes depositados no banco de dados NCBI BioSamples foram tabulados utilizando o Get Metadata for BioSamples script (https://github.com/stajichlab/biosample metadata). Em seguida, foram selecionados genomas de mesmo ST dos isolados sequenciados.

FastANI v1.32 (https://github.com/ParBLiSS/FastANI) (JAIN *et al*, 2018) foi utilizado para verificar a identidade média de nucleotídeos (ANI) entre cada genoma e os genomas baixados, possibilitando selecionar genomas com maior ANI para a análise filogenômica.

ABRicate v1.0.1 (https://github.com/tseemann/abricate) foi utilizado para identificar resistoma e plasmidoma dos isolados presentes na análise filogenômica. Para

identificar mutações em regiões determinantes para resistência a quinolonas nos genomas de *E. coli* e de *K. pneumoniae*, foram utilizados, respectivamente, RGI v5.2.0 (https://card.mcmaster.ca) (ALCOCK *et al.*, 2020) e Kleborate v2.0.4 (https://github.com/katholt/Kleborate) (LAM *et al.*, 2021). Kleborate também foi utilizado para genotipagem.

Foram então construídas árvores filogenéticas pelo método de verossimilhança máxima, comparando os isolados sequenciados com os genomas presentes nos bancos de dados, bem como matrizes de distância baseada em polimorfismos de nucleotídeo único utilizando ferramenta **CSI** Phylogeny (SNPs), (https://cge.cbs.dtu.dk/services/CSIPhylogeny) (KAAS et al, 2014), com configurações padrão, utilizando como referência as sequências de cromossomo dos seguintes genomas: MRSN15313 (NZ CP033869.1); E. coli ST1193 (NZ CP092533.1); K. pneumoniae ST11 LSH-KPN25 (NZ CP040391.1), ST16 U-0608239 (NZ CP066143.1), ST17 YML0508 (NZ CP045193.1) e ST437 INF044-sc-2279940 (NZ LR890395.1); P. aeruginosa ST244 E03 (NZ CP069334.1), ST252 FDAARGOS 610 (NZ CP041013.1), ST446 H05 (NZ CP093028.1) e ST671 PA0523 (NZ_CP089849.1).

As árvores geradas foram enraizadas no ponto médio utilizando iTOL v6 (https://itol.embl.de) (LETUNIC; BORK, 2021), que também foi utilizado para anotar as árvores com dados obtidos dos bancos de dados do NCBI, bem como dados gerados por ABRicate, RGI e Kleborate.

4. RESULTADOS E DISCUSSÃO

4.1. Caracterização genômica de resistência

Dos 65 isolados clínicos de pacientes hospitalizados com COVID-19, foram identificadas 11 cepas (7,15%) de *Pseudomonas aeruginosa*, 7 (4,55%) de *Stenotrophomonas maltophilia*, 2 (1,30%) de *Burkholderia cenocepacia*, 3 (1,95%) de *Klebsiella aerogenes*, 8 (5,20%) de *Klebsiella pneumoniae*, 8 (5,20%) de *Acinetobacter baumannii*, 1 (0,65%) de *Enterobacter bugandensis*, 13 (8,45%) de *Burkholderia cepacia*, 1 (0,65%) de *Proteus mirabilis*, 2 (1,30%) de *Klebsiella variicola*, 1 (0,65%) de *Escherichia coli*, 5 (3,25%) de *Serratia marcescens*, 2 (1,30%) de *Morganella morganii* e 1 (0,65%) de *Elizabethkingia miricola*.

Dentre o 65 isolados, 17 cepas foram sequenciadas. O critério utilizado para selecionar as cepas para o sequenciamento do genoma completo foi baseado na resistência aos carbapenêmicos e isolados caracterizados como MDR (resistentes a múltiplas drogas). Esses patógenos são classificados como bactérias Gram-negativas de prioridade crítica pela Organização Mundial da Saúde (OMS). O perfil de suscetibilidade a diferentes classes de antimicrobianos de cada um dos 17 isolados está descrito na **Figura** 1.

Figura 1. Perfil de susceptibilidade antimicrobiana dos bacilos Gram-negativos

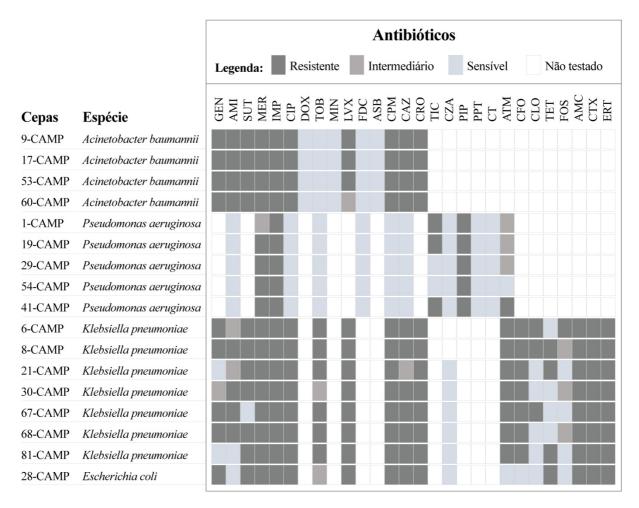


Figura 1. Perfil de susceptibilidade aos antimicrobianos de acordo com CLSI, 2023. GEN (gentamicina), AMI (amicacina), SUT (trimetoprim-sulfametoxazol), MER (meropenem), IMP (imipenem), CIP (ciprofloxacina), DOX (doxiciclina) TOB (tobramicina), MIN (minociclina), LVX (levofloxacina), FDC (cefiderocol), ASB (ampicilina-sulbactam), CPM (cefepime), CAZ (ceftazidima), CRO (ceftriaxona), TIC (ticarcilina-clavulanato), CZA (ceftazidima-avibactam), PIP (piperacilina), PPT (piperacilina-tazobactam) CT (Ceftolozone-Tazobactam) ATM (aztrenam) CFO (cefoxitina) CLO (cloranfenicol) TET (tetraciclina), FOS (fosfomicina), CTX (cefotaxima) ETP (ertapenem), AMC (amoxicilina-clavulanato).

Foi observado que todas as cepas bacterianas apresentaram resistência aos antimicrobianos da classe dos carbapenêmicos Meropenem, Imipenem e Ertapenem, o que ressalta a importância do monitoramento da resistência a essa classe de antibióticos, que é frequentemente a principal opção terapêutica para tratar casos graves de pacientes internados em UTI. Com relação a colistina todas as cepas apresentaram sensibilidade ao antibiótico testado.

Utilizando a técnica de sequenciamento de nova geração, foi possível determinar o perfil de genes responsáveis pela resistência a agentes antimicrobianos. Na **Tabela 1** é apresentado o resistoma dos isolados de *A. baumannii* sequenciados.

Tabela 1. Genes de resistência, elementos genéticos móveis e sequência tipo de cada isolado de Acinetobacter baumannii.

						Resistoma		
Cepas	ST	Complexo Internacional	MGEs	ß-Lactâmicos	Aminoglicosídeos	Macrolídeos	Fluoroquinolonas	Outros
A. baumannii 9 - CAMP	79	IC5/CC79	Tn801 ISVsa3 cn_5129_	$bla_{ m ADC ext{-}25} \ bla_{ m OXA ext{-}65} \ bla_{ m OXA ext{-}72} \ bla_{ m TEM ext{-}1A}$	aadA1 aph(3")-Ib aph(3")-VIa aph(6)- Id	msr(E) mph(E)	-	floR dfrA1 sul2
A. baumannii 17 - CAMP	79	IC5/CC79	Tn801 ISVsa3 cn_5129_	$bla_{ m ADC-25}$ $bla_{ m OXA-65}$ $bla_{ m OXA-72}$ $bla_{ m TEM-1A}$	aadA1 aph(3'')-Ib aph(3')-VIa aph(6)- Id	msr(E) mph(E)	-	floR dfrA1 sul2
A. baumannii 53 - CAMP	79	IC5/CC79	Tn801 ISVsa3 cn_5129_	bla _{ADC-25} bla _{OXA-65} bla _{OXA-72} bla _{TEM-1A}	aadA1 aph(3")-Ib aph(3')-VIa aph(6)- Id	msr(E) mph(E)	-	floR dfrA1 sul2
A. baumannii 60 - CAMP	730	IC5/CC79	ISVsa3 Tn801 Tn6018 cn_5129_	bla _{ADC-25} bla _{OXA-65} bla _{OXA-72} bla _{TEM-1A}	aadA1 aph(3')-VIa aph(3'')-Ib aph(6)-Id aac(3)-Ia aph(3')-Ia	msr(E) mph(E)	-	floR dfrA1 sul1 sul2

Tabela 1: Perfil genômico de resistência dos isolados de *A. baumannii* aos beta-lactâmicos, aminogicosídeos, macrolídeos, fluoroquinolonas, sulfonamidas, fenicol e trimetoprim. Identificação dos elementos genéticos móveis e sequência tipo seguindo a classificação de Pasteur, os resultados foram obtidos através da base de dados CGE (Center for Genomic Epemiology) através das ferramentas Resfinder, MGEs, MLST e PubMLST do banco de dados Public databases for molecular typing and microbial genome diversity.

A detecção de genes de resistência a antibióticos é crucial na luta contra o desenvolvimento de bactérias multirresistentes. Neste estudo, foram identificados 62 genes de resistência entre todos os isolados analisados, sendo 16 (9,9%) encontrados nas cepas de *A. baumannii*. Desses 16 genes, 4 (0,64%) conferem resistência à classe dos beta-lactâmicos, que são amplamente utilizados na terapia antibiótica. Além disso, foram encontrados 6 (0,96%) genes que codificam fosfotransferases, conferindo resistência aos aminoglicosídeos incluindo os genes *aph(3')-VIa*, *aph(3'')-Ib*, *aph(6)-Id*, *aph(3')-Ia* e aadA, e somente a cepa 60-CAMP apresentou o gene aac(3)-Ia, que codifica uma N-acetiltransferase. Os quatro isolados possuem genes de resistência aos macrolídeos, msr(E) e mph(E), destacando a importância de monitorar o uso desses antibióticos. Todos os isolados apresentaram genes que conferem resistência aos antibióticos da classe dos fenicóis (floR), trimetoprim (dfrA1) e sulfonamidas (sul1 e sul2). É importante ressaltar que nenhuma das cepas apresentou genes de resistência à classe das fluoroquinolonas. A detecção desses genes de resistência é crucial para orientar o tratamento antibiótico e evitar o surgimento de bactérias multirresistentes.

A alta plasticidade genética de *A. baumannii* permite a transferência de determinantes de resistência, causados em uma alta incidência de cepas multirresistentes a antibióticos. Para entender melhor como esses determinantes são transferidos, é importante investigar os elementos genéticos móveis presentes, como transposons, sequências de inserção e integrons. Um exemplo é o Tn801, que contém o gene *bla*_{TEM-15}, está relacionado a família Tn3 (NICOLAS *et al.*, 2015). Esse tipo de elemento genético móvel está associado aos genes que conferem resistência aos beta-lactâmicos, como o gene *bla*_{TEM-1A}, encontrado nos isolados deste estudo que apresenta resistência a vários antibióticos. Esses genes estão presentes na mesma sequência dentro do genoma, o que pode ser um facilitador na disseminação da resistência a antibióticos entre as cepas de *A. baumannii*.

Além da transferência de genes de resistência a antibióticos, a coexistência de genes que codificam resistência a antibióticos e metais pesados em um único elemento genético móvel, como o Tn6018, pode favorecer a disseminação da resistência entre diferentes espécies bacterianas. Esse elemento genético móvel é capaz de conferir resistência a compostos como o cádmio e zinco (NICOLAS *et al.*, 2015), e na cepa 60 CAMP está associado ao gene que confere resistência a sulfonamidas; e ao gene *qacE*,

que codifica resistência a antissépticos de amplo espectro com atividade antimicrobiana, como os compostos de amônio de quaternário (SHAFAATI *et al.*, 2016).

A presença do Tn6018 no genoma bacteriano pode estar relacionada à resistência não apenas a antibióticos.

Outros elementos genéticos móveis, como a sequência de inserção *ISVsa3* e o transposon cn_5129, ambos pertencentes à família IS91, também podem mobilizar qualquer parte da sequência de DNA, facilitando a transferência de genes de resistência entre diferentes espécies de bactérias (DENG *et al*, 2009, GARCILLÃN-BARCIA; CRUZ, 2002). Esses elementos estão presentes na mesma sequência que contém genes que conferem resistência a aminoglicosídeos, sulfonamidas e cloranfenicol. A transferência de genes de resistência a antibióticos é um problema crescente contra as infecções bacterianas e a presença de múltiplos elementos genéticos móveis pode aumentar ainda mais a disseminação desses genes entre as bactérias.

Os clones de *A. baumannii* ST79 e ST730 pertencem ao complexo clonal CC79 pela classificação de Pasteur (DIANCOURT *et al.*, 2010) possuem alta disseminação na América Latina e representam um risco significativo devido à sua capacidade de carregar múltiplos genes de resistência a diversas classes de antibióticos (GAIARSA *et al.*, 2019). Entre eles, o clone ST79 é particularmente preocupante, pois está associado à presença do gene OXA-72, que confere resistência aos carbapenêmicos e é amplamente difundido em hospitais no Brasil (SILVEIRA *et al.*, 2021).

Portanto, a identificação e o monitoramento desses clones de bactérias multirresistentes e seus elementos genéticos móveis são de extrema importância.

De acordo com a análise genômica realizada em cepas de P. aeruginosa, foram encontrados genes de resistência a antibióticos em 10 (6,2%) das cepas analisadas. Esses genes estão presentes em classes de antibióticos, como os beta-lactâmicos ($bla_{OXA-486}$, $bla_{OXA-488}$, $bla_{OXA-904}$, $bla_{OXA-395}$) e o gene percurso de AmpC (bla_{PAO}), encontrado em todas as cepas.

Além disso, foram identificados genes de resistência a aminoglicosídeos e quinolonas (*aph*(3')-IIb, *crpP*), bem como o gene *catB7*, que confere resistência a fenicóis, e o gene *fosA*, relacionado à resistência intrínseca a fosfomicina.

Todas as cepas de *P. aeruginosa* analisadas não apresentaram genes que conferem resistência aos macrolídeos.

Essas informações estão detalhadas na **Tabela 2** da análise genômica do resistoma das cepas identificadas como *P. aeruginosa*.

Tabela 2: Genes de resistência, elementos genéticos móveis e sequência tipo de cada isolado de *Pseudomonas aeruginosa*.

					Resistoma		
Cepas	ST	MGEs	ß- Lactâmicos	Aminoglicosídeos	Macrolídeos	Fluoroquinolonas	Outros
P. aeruginosa 1 - CAMP	252	ISPa6 ISPa <i>l</i> ISPa83	bla _{OXA-486} bla _{PAO}	aph(3')-IIb	-	crpP	catB7 fosA
P. aeruginosa 19 - CAMP	244	-	bla _{OXA-847} bla _{PAO}	aph(3')-IIb	-	-	catB7 fosA
P. aeruginosa 29 - CAMP	671	ISPa6	bla _{OXA-488} bla _{PAO}	aph(3')-IIb	-	-	catB7 fosA
P. aeruginosa 41 - CAMP	1693	ISPa2	bla _{OXA-904} bla _{PAO}	aph(3')-IIb	-	-	catB7 fosA
P. aeruginosa 54 - CAMP	446	-	bla _{OXA-395} bla _{PAO}	aph(3')-IIb	-	crpP	catB7 fosA

Tabela 2: Perfil genômico de resistência dos isolados de *P. aeruginosa* aos beta-lactâmicos, aminogicosídeos, macrolídeos, fluoroquinolonas, sulfonamidas, fenicol e trimetoprim. Identificação dos elementos genéticos móveis e sequência tipo, os resultados foram obtidos através da base de dados CGE (Center for Genomic Epemiology) através das ferramentas Resfinder, MGEs, MLST e PubMLST do banco de dados Public databases for molecular typing and microbial genome diversity.

Os genes do grupo OXA encontrados nas cepas de *P. aeruginosa* são variantes da OXA-50, relacionada a infecções causadas por cepas produtoras de carbapenemases e beta-lactamases, associadas a clones de alto risco (PETROVA *et al.*, 2019).

As enzimas do tipo OXA carbapenemases ocorrem naturalmente em *P. aeruginosa* e a resistência a antibióticos dessa classe, especialmente meropenem e imipenem, depende da combinação da capacidade da enzima em reagir com os carbapenêmicos e a quantidade de enzima produzida. Por outro lado, a expressão do gene OXA pode ser suprimida pela expressão de outros genes e por outros mecanismos de resistência, como a perda de purinas e bombas de efluxo. Isso reforça os resultados encontrados nas cepas de *P. aeruginosa* que apresentaram perfil fenotípico de resistência ao meropenem e imipenem, mas não apresentaram expressão genotípica (GIRLICH; NAAS; NORDMANN, 2004, WALTHER-RASMUSSEN; HØIBY, 2006).

A sequência de inserção *ISPa6* está associada à resistência a antibióticos, enquanto ISPa1 está relacionada à regulação da produção de piocianina, um metabólito secundário que age como uma substância tóxica importante em processos patogênicos em *P. aeruginosa*. Estudos realizados OLIVEIRA *et al.* (2020); CHOI *et al* (2017) e FOTHERGILL *et al.* (2017) associam as sequências de inserção *ISPa2* e *ISPa83* ao aumento do risco de mortalidade em pacientes com doenças respiratórias associadas à ventilação mecânica, além da capacidade de formação de biofilme e resistência a antibióticos. A sequência de inserção ISPa83 foi encontrada na cepa 1-CAMP na mesma região do genoma que está o gene *bla*_{OXA-486}, que confere resistência aos beta-lactâmicos, o que sugere que este elemento transponível pode estar associado a disseminação de fatores importantes de resistência e virulência.

Os clones internacionais de *P. aeruginosa*, como ST244 e ST671, apresentam caráter pandêmico e resistência a diversas classes de antimicrobianos, sendo muitos desses isolados multirresistentes e com relatos de cepas produtoras de carbapenemases e ESBL. Esses clones ainda são pouco estudados, o que pode indicar que estejam circulando no ambiente nosocomial, tornando a vigilância epidemiológica importante (DEL BARRIO-TOFIÑO; LÓPEZ-CAUSAPÉ; OLIVER, 2020). O cenário atual evidencia a necessidade da vigilância genômica, já que a infecção hospitalar tem sido um problema e pode ter se agravado com a COVID-19.

A análise das cepas de *K. pneumoniae* evidenciou a presença de 26 genes de resistência a antibióticos, correspondendo a um percentual de 16%. Todos os isolados

apresentaram genes que conferem resistência aos beta-lactâmicos, com os genes $bla_{\text{KPC-}}$ 2, $bla_{\text{TEM-1B}}$, $bla_{\text{CTX-M-2}}$ e $bla_{\text{CTX-M-15}}$ encontrados em todas as cepas. Em relação aos aminoglicosídeos, as cepas 6 CAMP, 8 CAMP e 67 CAMP apresentaram os mesmos genes (aac(3)-Ila, aac(6')-Ib3), enquanto as cepas 21 CAMP e 30 CAMP apresentaram genes (aph(3')-Ia, aph(3')-VIa) e a cepa 81 CAMP os genes (aadA2, aph(3')-Ia). Somente a cepa 68 CAMP não apresentou genes de resistência aos aminoglicosídeos. No que diz respeito aos macrolídeos, as cepas 21 CAMP, 68 CAMP e 81 CAMP apresentaram os genes (mph(A), mph(G), mef(C)) de resistência a esse antibiótico.

Todos os isolados apresentaram genes que levam a resistência às quinolonas, com os genes oqxA e oqxB presentes em todas as cepas. As cepas 8 CAMP, 21 CAMP e 81 CAMP apresentaram genes que conferem resistência à tetraciclina, além de outros genes que conferem resistência a sulfonamidas, fenicóis, trimetropim e fosfomicina. A **tabela** 3 apresenta informações detalhadas sobre os genes de resistência a diferentes classes de antibióticos, bem como os elementos transponíveis de resistência, os plasmídeos associados e a sequência tipo de cada isolado.

Os resultados indicam que essas cepas de *K. pneumoniae* possuem múltiplos genes de resistência a antibióticos, o que pode dificultar o tratamento de infecções causadas por essas bactérias. A presença desses genes de resistência pode ser resultado do uso inadequado de antibióticos, destacando a necessidade de medidas para promover o uso racional de antibióticos e a busca por novas alternativas terapêuticas.

Tabela 3. Genes de resistência, elementos genéticos móveis e sequência tipo de cada isolado de Klebsiella pneumoniae.

Cepas	ST	Plasmídeos	MGEs	ß-Lactâmicos	Aminoglicosídeos	Macrolídeos	Fluoroquinolonas	Outros
K. pneumoniae 6 - CAMP	11	ColRNAI IncFIB(K) IncFIB(pQil) IncFII(K) IncN	ISEc9 Tn4401 ISKpn11 ISKpn12	bla _{KPC-2} bla _{SHV-182} bla _{TEM-1B} bla _{CTX-M-2}	aac(3)-IIa aac(6')-Ib3	-	oqxA oqxB gyrA-83I parC-80I aac(6')-Ib-cr	dfrA30 catA1 sul1
K. pneumoniae 8 - CAMP	11	ColRNAI IncFIB(K) IncFIB(pQil) IncFII(K)	Tn4401 Tn6196 ISKpn11 ISKpn12 ISKpn18	bla _{KPC-2} bla _{SHV-182} bla _{TEM-1B}	aac(3)-IIa aac(6')-Ib3	-	oqxA oqxB gyrA-83I parC-80I aac(6')-Ib-cr	dfrA30 catA1 fosA tet(A) sul1
K. pneumoniae 21 - CAMP	437	IncC-like IncFIB(K) IncFIB(pQil) IncFII(K) IncN	Tn4401 IS6100 ISVaa3 ISKpn18	bla _{KPC-2} bla _{OXA-1} bla _{TEM-1A} bla _{SHV-182}	aph(3')-Ia	mph(A) mph(G) mef(C)	oqxB oqxA qnrE1 gyrA-83I parC-80I aac(6')-Ib-cr	dfrA30 fosA tet(D) sul1 sul2
K. pneumoniae 30 - CAMP	11	ColRNAI IncQ1 IncR	ICEEcoED1a- <i>l</i> ISKpn2 <i>l</i>	bla _{KPC-2} bla _{CTX-M-15} bla _{SHV-182} bla _{TEM-1B}	aph(3')-VIa	-	oqxB oqxA gyrA-83I parC-80I	dfrA26 fosA sul2
K. pneumoniae 67 - CAMP	11	ColRNAI IncFIB(K) IncFIB(pQil) IncFII(K)	Tn4401 ISKpn11 ISKpn12 ISKpn18	bla _{KPC-2} bla _{SHV-182} bla _{TEM-1B}	aac(3)-IIa aac(6')-Ib3	-	oqxA oqxB gyrA-83I parC-80I aac(6')-Ib-cr	catA1 fosA sul1

						Resistoma		
Cepas	ST	Plasmídeos	MGEs	ß-Lactâmicos	Aminoglicosídeos	Macrolídeos	Fluoroquinolonas	Outros
K. pneumoniae 68 - CAMP	17	ColRNAI IncC IncFIB(K)-like IncFIB(pQil)	IS903 ISEc11 Tn4401 Tn5403 ISEc110 ISKpn21	bla _{KPC-2} bla _{SHV}	-	mph(A)	oqxA oqxB	fosA sul2
K. pneumoniae 81 - CAMP	16	Col(IRGK)-like Col440II IncC IncFIB(K)-like IncFIB(pQil)	IS6100 Tn4401 ISVsa3 ISVsa3 cn_4149_ ISVsa3	bla _{KPC-2} bla _{SHV} bla _{OXA-1} bla _{CTX-M-15}	aadA2 aph(3')-Ia	mph(A)	oqxA oqxB gyrA-83F gyrA-87N parC-84K aac(6')-Ib-cr	dfrA12 tet(A) sul2

Tabela 3: Perfil genômico de resistência dos isolados de *K. pneumoniae* aos beta-lactâmicos, aminogicosídeos, fluoroquinolonas, sulfonamidas, fenicol e trimetoprim. Identificação dos elementos genéticos móveis e sequência tipo, os resultados foram obtidos através da base de dados CGE (Center for Genomic Epemiology) através das ferramentas Resfinder, MGEs, MLST e PubMLST do banco de dados Public databases for molecular typing and microbial genome diversity.

A previsibilidade da resistência múltipla entre os isolados ocorre devido ao fato de estarem localizados em plasmídeos auto-transferíveis, transposons e integrons, que podem transportar outros determinantes de resistência a antimicrobianos.

Neste estudo analisamos os principais elementos transponíveis encontrados nas cepas de *K. pneumoniae*. O transposon Tn4401, que pertence à família Tn3 e está associado à disseminação do gene *bla*_{KPC-2}, foi encontrado em todas as cepas, exceto na cepa 30 CAMP. Esta cepa, por sua vez, possui a sequência de inserção ISKpn21, que está associada à resistência aos carbapenêmicos. Além disso, a sequência de inserção IS903 foi identificada na cepa 68 CAMP, associada ao gene *aphA1*, que confere resistência à antibióticos da classe dos aminoglicosídeos.

Outros elementos genéticos móveis foram encontrados em diferentes cepas, incluindo o elemento conjugativo integrativo ICEEcoED1a-1, que está associado aos plasmídeos do tipo IncQ1, os quais são pequenos e carregam diversos elementos conjugativos que conferem resistência às carbapenemases. O plasmídeo IncR, por outro lado, não é conjugativo, mas pode possuir mais de um replicon e transporta genes de resistência, como bla_{KPC-2} e bla_{CTX-M-15}. O plasmídeo ColRNAI, é comum em isolados de K. pneumoniae e pode estar associado a transposons e ao gene bla_{KPC}, codifica imunidade à colicina que são substâncias associadas a patogenicidade de bactérias do grupo das Enterobacterales (PARTRIDGE et al, 2018).

O plasmídeo IncFII(K), que foi encontrado nas cepas 6-CAMP, 8-CAMP, 21-CAMP e 67-CAMP de *K. pneumoniae* e carrega o gene *bla*_{KPC-2} e genes que conferem resistência a quinolonas, e o plasmídeo IncQ1, que foi encontrado na cepa 30-CAMP é um plasmídeo pequeno que carrega o gene *bla*_{KPC-2} comumente encontrado em amostras de origem clínica no Brasil (ARAÚJO *et al*, 2019). Além disso, os plasmídeos IncFIB(K) e IncFIB(pQil) presentes nas cepas estão ligados ao complexo clonal 258 (CG 258) de *K. pneumoniae* produtoras de KPC, indicando que os plasmídeos são um importante mecanismo de transferência de genes de resistência entre as cepas.

Os clones identificados têm importância epidemiológica devido à sua ampla distribuição geográfica e presença em ambientes hospitalares. Entre eles, estão os clones internacionais de *K. pneumoniae* ST 11 e ST 437, que são endêmicos no Brasil e fazem parte do complexo clonal 258. Esses clones apresentam alta taxa de transmissibilidade e são responsáveis por carregar o gene KPC-2. Além disso, o clone ST16 de *K. pneumoniae*, carreador de KPC-2, trata-se de um clone com ampla disseminação e no Brasil, foi relatado na cidade do Rio de Janeiro em 2008 e 2009 associado a infecção

nosocomial, produtor de OXA-370 e KPC-2. Esses clones podem disseminar genes de resistência e causar surtos em ambientes hospitalares (ANDREY *et al*, 2020).

As cepas de *K. penumoniae* apresentaram características importantes em relação aos seus genes de resistência e elementos transponíveis, bem como clones importantes associados a infecções hospitalares relatadas na literatura. Esses resultados confirmam o cenário crítico que se instalou nos sistemas de saúde devido à pandemia. As infecções causadas por essas bactérias podem agravar o estado de saúde de pacientes suscetíveis a infecções causadas por bactérias resistentes.

A análise das cepas de *E. coli* revelou a presença de 10 genes de resistência, representando 6,2% do total de genes identificados nos isolados sequenciados. Esses genes conferem resistência a uma ampla gama de antibióticos, incluindo beta-lactâmicos, aminoglicosídeos, macrolídeos, fluoroquinolonas, sulfonamidas, tetraciclinas e trimetoprim. Adicionalmente, foram detectados elementos genéticos móveis e plasmídeos associados à transferência potencial desses genes de resistência entre as bactérias, além da sequência tipo da cepa 28-CAMP. Esses dados estão descritos na **tabela 4.**

Tabela 4. Genes de resistência, elementos genéticos móveis e sequência tipo do isolado de Escherichia coli.

						Resistoma		
Сера	ST	Plasmídeos	MGEs	ß-Lactâmicos	Aminoglicosídeos	Macrolídeos	Fluoroquinolonas	Outros
E. coli 28 - CAMP	1193	IncFIA IncFIB Col156-like Col(BS512)	Tn4401 IS100 ISc18 IS629 ISEc31 ISEc110 ISKpn25 MITEEc1	bla _{KPC-2} bla _{TEM-1B}	aph(3")-Ib aph(6)-Id	mph(A)	parC-80I parE-416F	dfrA17 tet(B) sul2

Tabela 4: Perfil genômico de resistência da *E. coli* aos beta-lactâmicos, aminogicosídeos, macrolídeos, fluoroquinolonas, sulfonamidas, fenicol e trimetoprim. Identificação dos elementos genéticos móveis e sequência tipo, os resultados foram obtidos através da base de dados CGE (Center for Genomic Epemiology) através das ferramentas Resfinder, MGEs, MLST e PubMLST do banco de dados Public databases for molecular typing and microbial genome diversity.

Foi possível identificar os genes responsáveis pela resistência a diversas classes de antibióticos na cepa analisada. Para os beta-lactâmicos, foram encontrados os genes bla_{KPC-2} e bla_{TEM-1B} , enquanto para os aminoglicosídeos foram detectados os genes aph(3")-Ib e aph(6)-Id. O gene mph(A) foi o único identificado como responsável pela resistência aos macrolídeos, enquanto dois genes, parC-80I e parE-416F, foram encontrados para a resistência às quinolonas. Além disso, o gene dfrA17 conferiu resistência ao trimetoprim, enquanto os genes tet(B) e sul2 foram responsáveis pela resistência às tetraciclinas e sulfonamidas, respectivamente.

O elemento transponível Tn4401 em E coli pode estar associado à disseminação do gene de resistência bla_{KPC-2} . Essa associação ocorre devido o gene de resistência bla_{KPC-2} ser tipicamente encontrado no interior do transposon Tn4401.

Os elementos genéticos móveis ISc18, ISEc31, ISEc110 e ISKpn25 podem ser encontrados incorporados a elementos transponíveis que não são o Tn4401 em bactérias da ordem *Enterobacterales*, estando associados aos genes de resistência *bla*_{KPC-2} e *bla*_{TEM-1B}. Um estudo recente conduzido por Wozniak *et al*. (2021) sugere a existência de vários grupos de incompatibilidade e diversas sequências de inserção envolvidas nessa associação.

O clone ST1193 tem sua origem no complexo clonal ST14 (STc14), caracterizando-se por não possuir a capacidade de fermentar lactose. Além disso, pertence ao grupo filogenético B2 e apresenta o tipo O75 (JOHNSON *et al.*, 2019), características que também foram encontradas na cepa 28 CAMP.

Desde 2012, observa-se um aumento na prevalência global do ST1193, chegando até mesmo a substituir o ST131 em determinadas regiões como na América do Norte, Coréia do Sul, Oriente Médio, Europa e Brasil. Os genes *bla*_{CTX-M} apresentam ampla disseminação entre o clone ST1193, de forma semelhante ao que foi observado com o clone ST131 durante os anos 2000, ambos desempenharam papéis fundamentais na disseminação global de *E. coli* multirresistente (PITOUT *et al.*, 2022, DA SILVA *et al.*, 2021). É fundamental monitorar a disseminação desse clone de *E. coli* no contexto de saúde pública, a fim de prevenir possíveis surtos.

Os resultados da análise indicam uma possível ligação entre esses elementos transponíveis e a disseminação potencial de genes de resistência aos beta-lactâmicos entre as enterobactérias. No entanto, são necessários estudos mais aprofundados para compreender a dinâmica do mobiloma dessas cepas bacterianas e de outras que também apresentam essa característica. Fica evidente que existe uma interação dinâmica entre os

elementos genéticos móveis, os plasmídeos e os genes de resistência, os quais se recombinam, tornando desafiador o desenvolvimento de medidas efetivas para controlar a disseminação da resistência antimicrobiana.

4.2. Caracterização do Viruloma

Apesar de a resistência aos antimicrobianos desempenhar um papel significativo na falha terapêutica e na mortalidade, a capacidade dos patógenos Gram-negativos de causar infecções também está associada a uma combinação bem-sucedida de fatores de virulência e mecanismos de resistência. Os bacilos Gram-negativos exibem uma ampla gama de fatores de virulência. Neste estudo, foram investigados os principais mecanismos de virulência identificados, juntamente com seus respectivos genes, presentes na **tabela** 5.

Tabela 5: Perfil genômico de virulência.

Klebsiella pneumoniae

Genes	Fator de Virulência
wzi	Síntese da cápsula polissacarídica
OmpA	Sistema de secreção tipo VI
out A out D	Enterobactinas, sistema de aquisição de
entA, entB	ferro

Escherichia coli

Genes	Fator de Virulência
ant A ant P ant C ant E ant E ant C	Enterobactinas, sistema de aquisição de
entA, entB, entC, entE, entF, entS	ferro
papB, papI, papX	Adesina fimbrial
inal inaP inaC inaD	Aerobactina, sistema de aquisição de
iucA, iucB, iucC, iucD	ferro
fimA, $fimB$, $fimC$, $fimD$, $fimE$, $fimF$,	Fimbria do tipo 1
fimG, fimH, fimI	
OmpA	Sistema de secreção tipo VI

Pseudomonas aeruginosa

Genes	Fator de Virulência
alg44, alg8, algA, algB, algC, algD, algE, algF, algG, algI, algJ, algK, algL, algP/algR3, algQ, algR, algU, algW, algX, algZ	Produção de alginato
exoS, $exoT$, $exoU$, $exoY$	Citotoxinas
pilA, pilB, pilC, pilE, pilF, pilG, pilH, pilI, pilJ, pilK, pilM, pilN, pilO, pilP, pilQ, pilR, pilS, pilT, pilU, pilV, pilW, pilX, pilY1, pilY2	Formação de pili
flgA, flgB, flgC, flgD, flgE, flg, flgG, flgH, flgI, flgJ, flgK, flgL, flgM, flgN	Síntese de flagelo
fliA, fliC, fliD, fliE, fliF, fliG, fliH, fliI fliJ, fliK, fliL, fliM, fliN, fliO, fliP, fliQ, fliR, fliS	Síntese de flagelo
lasA, lasB, lasI	Formação de biofilme
toxA	Produção de exotoxina
ptxR	Formação de biofilme

Acinetobacter baumannii

Genes	Fator de Virulência
csuA/B, csuB, csuC, csuD	Formação de biofilme, fimbria tipo 1
pgaA, pgaB, pgaD	Formação de biofilme

Tabela 5: Perfil genômico de virulência de *K. pneumoniae*, *E. coli*, *P. aeruginosa* e *A. baumannii*. Os dados foram obtidos através da base de dados VirulenceFinder (Abricate).

Os resultados deste estudo demostram que *P. aeruginosa* utiliza uma combinação de fatores de virulência e mecanismos de resistência para causar infecções. Dentre esses mecanismos, identificamos a presença de diferentes genes associados aos principais mecanismos de virulência.

Das seis cepas analisadas foi identificado 85 genes de virulência. Observamos que o cluster de genes (*pil*) envolvido na formação de pili, estruturas semelhantes à pelos que desempenham um papel crucial na adesão às células hospedeiras, facilitando a colonização de superfícies celulares e inanimadas, corresponde a (20,40% n=24) e está presente em todos os isolados exceto o gene *pilA* presente somente na cepa 41-CAMP, e o gene *pilC* ausente somente na cepa 29-CAMP.

Os clusters de genes (*fli*) que corresponde a (15,3% n=18) e (*flg*) que corresponde a (11,9% n=14) estão associados à síntese de flagelos, os quais são responsáveis pela mobilidade bacteriana e desempenham um papel essencial na locomoção e fixação da bactéria. Dos genes detectados para esses clurters somente as cepas 1-CAMP e 54-CAMP não apresentaram os genes *flgL*, *fliC*, *fliD* e *fliS*. Vale ressaltar que os flagelos também desencadeiam uma resposta inflamatória no hospedeiro, estimulando a produção de citocinas (SILVA, 2015).

Outro mecanismo de virulência identificado foi a produção de sideróforo pioverdina, um metabolito secundário pertencente à família de compostos fenazinas. É uma substância que pode ser produzida durante a fase estacionária de crescimento da bactéria biologicamente ativa, desempenhando um papel importante na competição microbiana e na virulência em hospedeiros humanos e animais (BUTAITÈ *et al.*, 2018).

A expressão dos genes pertencentes ao cluster (alg) que corresponde a (17% n=20) resulta na produção de alginato, um mucopolissacarídeo essencial para a formação do biofilme. O gene algP/algR3 está presente somente na cepa 1-CAMP, os demais estão presentes em todos os isolados. O alginato contribui para a manutenção da arquitetura do biofilme, conferindo-lhe resistência a agentes físicos e químicos (SILVA, 2015).

Foi observado também o quorum sensing, um processo mediado por diversos genes, como *las* (2,55% n=3), *ptxR* (0,85% n=1) e *toxA* (0,85% n=1), em todas as cepas de *P. aeruginosa* estudadas. Esse mecanismo está intimamente relacionado à formação do biofilme e desempenha um papel crucial no metabolismo bacteriano, além de influenciar a resposta da bactéria aos antibióticos.

Por fim, identificamos a presença de genes *exoYSTU*, que correspondem a (3,4% n= 4) os quais estão relacionados ao sistema de secreção do tipo III. Somente a cepa 54-CAMP apresentou o gene *exoU*, o gene *exoS* está presente nas cepas 19-CAMP e 41-CAMP, os demais genes foram encontrados em todas as cepas. Esse sistema desempenha um papel fundamental no processo de invasão da célula hospedeira por *P. aeruginosa* (YAN; WU, 2019).

Em suma, esses resultados demonstram a diversidade e importância dos mecanismos de virulência em *P. aeruginosa*, os quais envolvem a expressão de genes específicos responsáveis por estruturas como pili, flagelos e biofilmes, bem como a produção de metabólitos ativos. Esses achados contribuem para uma melhor compreensão da patogenicidade desse patógeno e podem ser relevantes para o desenvolvimento de estratégias mais eficazes no combate às infecções causadas por *P. aeruginosa*.

Em *K. pneumoniae* foram identificados 10 genes de virulência, entre eles o gene (*wzi*) representa (0,7% n=7) responsável pela síntese da capsula polissacarídica um dos principais mecanismos de virulência. As cepas 6-CAMP, 8-CAMP e 67-CAMP apresentaram cápsula do tipo wzi64 e locus capsular KL64, trata-se de clones ST11, de acordo com JIN *et al.* (2021) e CHEN *et al.* (2023) essas características combinadas com os fatores de resistência podem levar a infecções severas causadas por *K. pneumoniae* que apresentem essas características.

A cepa 21-CAMP apresentou capsula wzi109 e locus capsular KL36, a cepa 30-CAMP apresentou capsula wzi75 e locus capsular KL105, a cepa 68-CAMP apresentou capsula wzi141 e locus capsular KL25, e a cepa 81-CAMP apresentou capsula wzi50 e locus capsular KL51 A presença desses tipos de capsulas conferem às bactérias a capacidade de causar infecções graves em humanos e animais.

Os genes *entA* e *entB* que correspondem a (0,2% n=2) estão relacionados ao sistema de captação de ferro e foram encontrados em todas as cepas.

O gene *ompA* está relacionado ao sistema de secreção do tipo VI (T6SS), foi encontrado em todas as cepas. Esse sistema de secreção funciona como um sistema de injeção contrátil, utilizando efetores para evadir a célula alvo (CASCALES; CAMBILLAU, 2012, COULTHURST, 2013, CHERRAK *et al.*, 2019).

Compreender os mecanismos de virulência em *K. pneumoniae* é fundamental para entender a patogenicidade dessa bactéria. Tais mecanismos envolvem a síntese da cápsula polissacarídica pela expressão do gene *wzi*, genes associados à captação de ferro e a presença do sistema de secreção do tipo VI. Essas descobertas podem contribuir

significativamente para o desenvolvimento de estratégias terapêuticas eficazes no combate a infecções graves.

A. baumannii apresentou 7 genes de virulência entre eles o cluster (csu) que corresponde a (0,28% n=4). Esses genes desempenham um papel crucial na codificação da pili tipo 1, fundamental no processo de adesão a superfícies inanimadas e vivas, além de estar diretamente envolvida na formação do biofilme. Por outro lado, o cluster pgaABCD corresponde a (0,21% n=3) e faz parte do operon que está associado à produção de poli-β-1-6-N-acetilglucosamina, e desempenha um papel significativo no processo de formação do biofilme (FRANÇA, 2015, WANG; PRESTON; ROMEO, 2004). A formação de biofilme é um fator importante, pois é um mecanismo utilizado pela bactéria para se estabelecer em superfícies. Como A. baumannii está diretamente associado a infecções hospitalares, principalmente em UTIs, essa é uma característica importante que está associada à sua permanência efetiva nesse ambiente.

Em *E. coli*, foram encontrados 23 genes de virulência entre eles o gene *ecpA* é responsável pela codificação do pilus que desempenha um papel na adesão às células epiteliais do hospedeiro. Essa adesão é facilitada pela presença dos genes *papBIX* que correspondem a (0,69% n=3). Por sua vez, os genes *iucABCD* que correspondem a (0,92 % n=4) estão envolvidos na produção de aerobactinas, que são responsáveis pela captação de ferro. Além disso, o cluster de genes *entABCEFS* correspondem a (2,9 % n=6) codificam as enterobactinas, que também estão relacionadas ao sistema de aquisição de ferro.

Esses mecanismos de aquisição de ferro são cruciais para o metabolismo bacteriano e desempenham um papel essencial durante o processo de infecção por *E. coli* (FUGA, 2019; ROCHA, 2013).

As fimbrias do tipo 1, cuja expressão é regulada pelo gene (*fim*) representam (2,07% n=9) dos genes de virulência, desempenham um papel relevante na virulência de *E. coli*. Essas fimbrias possuem propriedades adesivas e são capazes de se ligar aos receptores de manose presentes em diversos tecidos humanos. Isso facilita sua aderência ao muco, permitindo a colonização da traqueia, trato intestinal e células pulmonares (BACHMAN, 2018).

O gene *ompA* também está presente em *E. coli* trata-se de um gene importante, pois está associado ao sistema de secreção tipo VI.

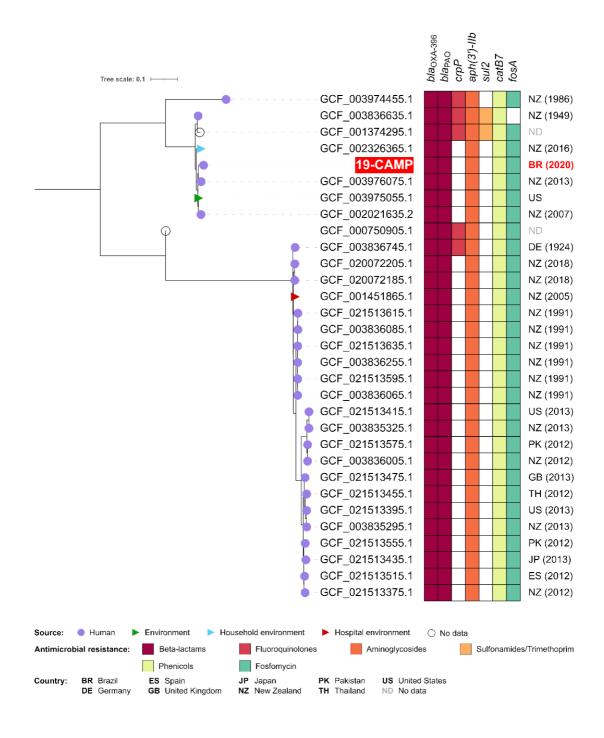
O conjunto de fatores de virulência é crucial para o sucesso do patógeno, permitindo não só sua sobrevivência no ambiente, mas também sua habilidade de romper

as barreiras do sistema imunológico do hospedeiro. A associação desses fatores com mecanismos de resistência é fundamental para a disseminação de clones bacterianos de alto risco, o que pode resultar em infecções graves.

O monitoramento é essencial para evitar surtos em ambientes hospitalares, especialmente em regiões com sistemas de saúde menos desenvolvidos, onde a supressão da atenção médica não se limita apenas à pandemia de COVID-19. O conjunto de fatores mencionados pode ter agravado a infecção por populações bacterianas já estabelecidas em ambientes hospitalares.

4.3. Caracterização Filogenômica.

4.4. Pseudomonas aeruginosa.


4.4.1 ST244

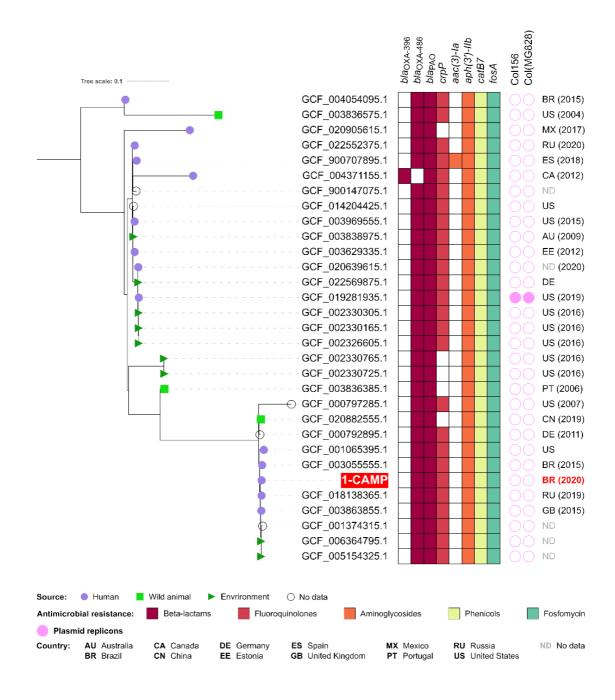
Para comparação com o isolado 19-CAMP, foram selecionados 30 genomas do ST244. A porcentagem do genoma de referência coberta por todos os genomas analisados foi de 86,31%, correspondendo a 5451375 posições. No alinhamento, SNPs foram identificados em 6836 posições.

Os genomas analisados são de origem humana, ambiental, de ambiente doméstico e de ambiente hospitalar, além de 2 genomas cuja fonte de isolamento não pôde ser determinada pelos dados disponíveis. Os países de origem dos isolados são: Brasil, Alemanha, Espanha, Reino Unido, Japão, Nova Zelândia, Paquistão, Tailândia e Estados Unidos (figura 2).

O isolado 19-CAMP se agrupou em um clado contendo isolados humanos, ambientais e de ambiente doméstico, coletados na Nova Zelândia entre 1949 e 2016, além de um isolado dos Estados Unidos sem dado para ano de coleta, e um isolado de origem desconhecida (figura 2). Neste clado, a contagem de SNPs (anexo A) em relação a 19-CAMP variou entre 149 a 298. Os isolados mais próximos foram isolados da Nova Zelândia em 2007 e 2013, e dos Estados Unidos (sem data).

Figura 2: Árvore filogenética de P. aeruginosa ST244.

Figura 2: árvore filogenética com 31 isolados de *Pseudomonas aeruginosa* ST244, bem como resistoma, fonte de isolamento, país de origem e ano de coleta. Escala: 0,1 SNP por sítio.


4.4.2 ST252

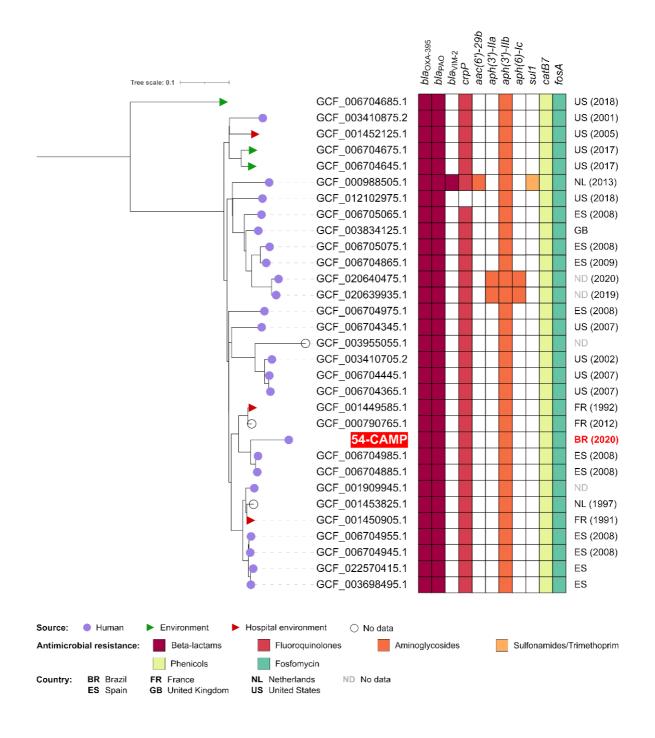
Para comparação com o isolado 1-CAMP, foram selecionados 30 genomas do ST252. A porcentagem do genoma de referência coberta por todos os genomas analisados foi de 82,74%, correspondendo a 5619802 posições. No alinhamento, SNPs foram identificados em 13064 posições.

Os genomas analisados são de origem humana, ambiental e de animal silvestre, além de 5 genomas cuja fonte de isolamento não pôde ser determinada pelos dados disponíveis. Os países de origem dos isolados são: Brasil, Austrália, Canadá, China, Alemanha, Estônia, Espanha, Reino Unido, México, Portugal, Rússia e Estados Unidos (figura 3).

O isolado 1-CAMP se agrupou em um clado contendo isolados humanos, ambientais e de animal silvestre, coletados entre 2007 e 2019 nos Estados Unidos, China, Alemanha, Brasil, Rússia e Reino Unido, sugerindo disseminação global (figura 3). Neste clado, a contagem de SNPs (anexo B) em relação a 1-CAMP variou entre 65 a 1056.

Figura 3. Árvore filogenética de *P. aeruginosa* ST252.

Figura 3. árvore filogenética com 31 isolados de *Pseudomonas aeruginosa* ST252, bem como resistoma, plasmidoma, fonte de isolamento, país de origem e ano de coleta. Escala: 0,1 SNP por sítio.


4.4.3 ST446

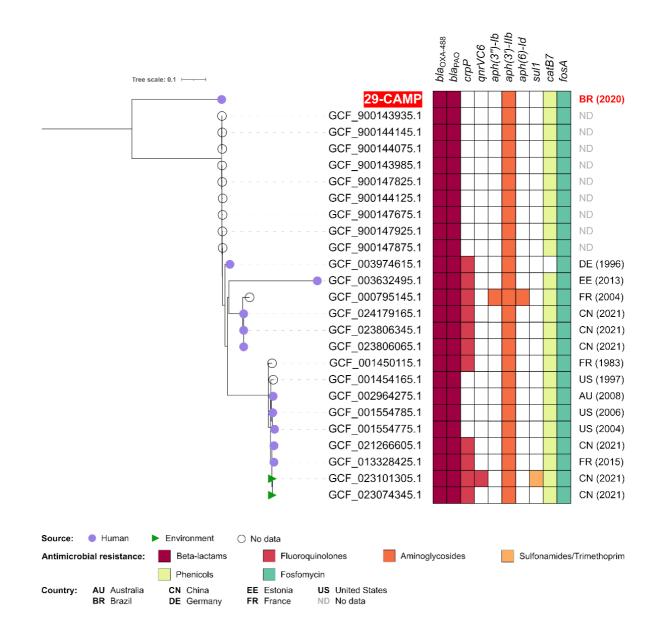
Para comparação com o isolado 54-CAMP, foram selecionados 30 genomas do ST446. A porcentagem do genoma de referência coberta por todos os genomas analisados foi de 79,26%, correspondendo a 5615151 posições. No alinhamento, SNPs foram identificados em 1849 posições.

Os genomas analisados são de origem humana, ambiental e de ambiente hospitalar, além de 3 genomas cuja fonte de isolamento não pôde ser determinada pelos dados disponíveis. Os países de origem dos isolados são: Brasil, Espanha, França, Reino Unido, Holanda e Estados Unidos (figura 4). A alta similaridade entre os isolados deste ST sugere disseminação global.

O isolado 54-CAMP se agrupou em um clado contendo dois isolados humanos, coletados em 2008 na Espanha (figura 4). Neste clado, a contagem de SNPs (anexo C) em relação a 54-CAMP foi de 117 a119 SNPs.

Figura 4. Árvore filogenética de P. aeruginosa ST446.

Figura 4. árvore filogenética com 31 isolados de *Pseudomonas aeruginosa* ST446, bem como resistoma, fonte de isolamento, país de origem e ano de coleta. Escala: 0,1 SNP por sítio.


4.4.4. ST671

Para comparação com o isolado 29-CAMP, todos os 24 genomas do ST671 disponíveis no NCBI RefSeq foram utilizados. A porcentagem do genoma de referência coberta por todos os genomas analisados foi de 84,41%, correspondendo a 5562248 posições. No alinhamento, SNPs foram identificados em 3624 posições. A contagem de SNPs entre os isolados variou entre 0 a 2482 (anexo D).

Os genomas analisados são de origem humana e ambiental, além de 12 genomas cuja fonte de isolamento não pôde ser determinada pelos dados disponíveis. Os países de origem dos isolados são: Brasil, Austrália, China, Alemanha, Estônia, França e Estados Unidos (figura 5).

O isolado 29-CAMP se mostrou relativamente distante de todos os demais isolados do ST671, não agrupando com nenhum outro isolado, e 29-CAMP ficou na base da árvore com o enraizamento no ponto médio (**figura 5**).

Figura 5. Árvore filogenética de P. aeruginosa ST671.

Figura 5. árvore filogenética com 25 isolados de *Pseudomonas aeruginosa* ST671, bem como resistoma, fonte de isolamento, país de origem e ano de coleta. Escala: 0,1 SNP por sítio.

4.5. Acinetobacter baumannii

Para comparação com os isolados 9-CAMP, 17-CAMP, 53-CAMP e 60-CAMP, foram selecionados 35 genomas do ST79 e 5 genomas do ST730. A porcentagem do genoma de referência coberta por todos os genomas analisados foi de 76,04%, correspondendo a 3188880 posições. No alinhamento, SNPs foram identificados em 5793 posições.

Com exceção de um único isolado de animal silvestre, todos os demais genomas de *A. baumannii* mais próximos dos isolados sequenciados, que foram inclusos na análise filogenômica, são de origem humana. Somente 5 genomas do ST730 foram identificados no banco de dados, sendo todos do Brasil. Com relação ao ST79, os 35 genomas selecionados do Brasil (n=33) e da Bolívia (n=2), sugerindo disseminação deste ST pelo continente sul-americano (figura 6A).

O isolado 60-CAMP apresentou alta proximidade (21 SNPs) com outro isolado do estado de São Paulo de 2017, enquanto os demais genomas no clado apresentaram uma distância maior, com diferença de SNPs em relação a 60-CAMP variando entre 131 a 139 (figura 6B).

Já os isolados 9-CAMP e 17-CAMP não apresentaram diferenças de SNPs entre si, enquanto o isolado 53-CAMP possui somente 2 SNPs de diferença em relação a 9-CAMP e 17-CAMP, indicando possível disseminação intra-hospitalar. O clado contendo estes isolados possui outros isolados de diferentes localidades dos estados de São Paulo e Minas Gerais coletados entre 2016 e 2017, e demonstra alta similaridade, com contagem de SNPs (anexo E) entre os três isolados sequenciados e os demais genomas variando entre 19 a 54, sugerindo que o ancestral comum destes isolados se disseminou para diferentes locais. (figura 6C).

Os resultados indicam que os clones ST79 e ST739 de *A. baumannii* estão bem estabelecidos no Brasil e circulando entre hospitais no país. O agravamento dos sistemas de saúde pela pandemia pode ter intensificado essa distribuição.

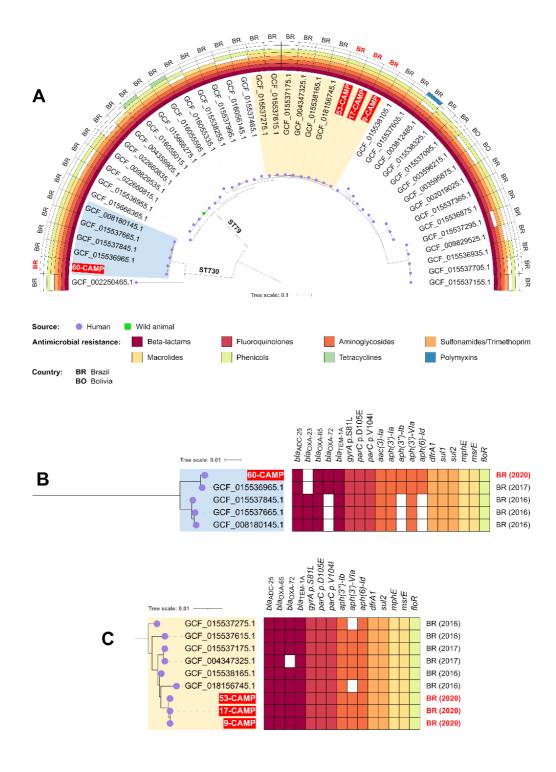


Figura 6: A, B e C. Árvore filogenética de A. baumannii ST79 e ST730.

Figura 6. A: árvore filogenética com 44 isolados de *Acinetobacter baumannii*, sendo 38 do ST79 e 6 isolados do ST730, plotada em um arco de 180°, bem como um *heatmap* com presença/ausência de genes de resistência para diferentes classes de antibióticos, fonte de isolamento e país de origem. Escala: 0,1 SNP por sítio. B: isolados do ST730 destacados em A, com resistoma, país de origem e ano de coleta. Escala: 0,01 SNP por sítio. C: isolados do ST79 destacados em A, com resistoma, país

4.6. Klebsiella pneumoniae

4.6.1. ST11

Para comparação com os isolados 6-CAMP, 8-CAMP, 30-CAMP e 67-CAMP, foram selecionados 34 genomas. A porcentagem do genoma de referência coberta por todos os genomas analisados foi de 91,68%, correspondendo a 4988627 posições. No alinhamento, SNPs (anexo F) foram identificados em 2988 posições.

Na árvore filogenética observou-se a formação de dois clados bem distintos, marcados por dois diferentes tipos do gene capsular conservado *wzi*: *wzi*64 e *wzi*75. A contagem de SNPs entre isolados *wzi*64 variou entre 3 e 208, e *wzi*75 variou entre 1 e 163. Ao comparar genomas *wzi*64 com os *wzi*75, a contagem de SNPs variou entre 1983 e 2167.

Os genomas wzi64 são todos do Brasil, enquanto, no clado wzi75, os isolados brasileiros agruparam-se em um único clado, separado de outros isolados de diversas fontes de isolamento, do Brasil, Suíça, China, Alemanha, Hong Kong, Polônia e Romênia (figura 7A). O agrupamento em clados "brasileiros" sugere a disseminação dos ancestrais desses isolados pelo Brasil.

No clado "brasileiro" do wzi75, o isolado 30-CAMP mostrou-se próximo a isolados de origem humana e um isolado de origem ambiental (figura 7B), coletados entre 2015 e 2020 nos estados de Amazonas, São Paulo, Maranhão e Minas Gerais; sugerindo disseminação pelo território nacional. A diferença de SNPs entre 30-CAMP os demais isolados no mesmo clado variou entre 33 a 52.

Já no clado do *wzi*64, os isolados 6-CAMP, 8-CAMP e 67-CAMP agruparam com outros isolados de origem humana (**figura 7C**), coletados entre 2015 e 2020 nos estados de São Paulo, Espírito Santo e Bahia. Os isolados 8-CAMP e 67-CAMP mostraram ser próximos, com somente 18 SNPs de diferença entre si, sugerindo disseminação intrahospitalar. Já o isolado 6-CAMP apresentou uma distância maior, de 116 SNPs com 8-CAMP e 120 SNPs com 67-CAMP. O clado contendo 8-CAMP, 67-CAMP e 6-CAMP agrupou isolados de origem humana dos estados de São Paulo, Espírito Santo e Bahia. A diferença de SNPs entre 8-CAMP e 67-CAMP com os demais isolados neste clado variou de 71 a 126. Com relação ao isolado 6-CAMP, a diferença de SNPs com os demais isolados do clado variou entre 72 a 120.

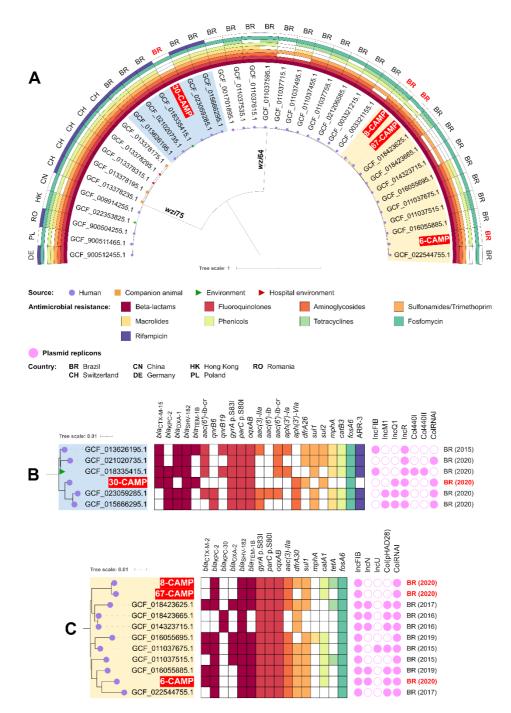
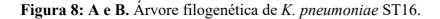
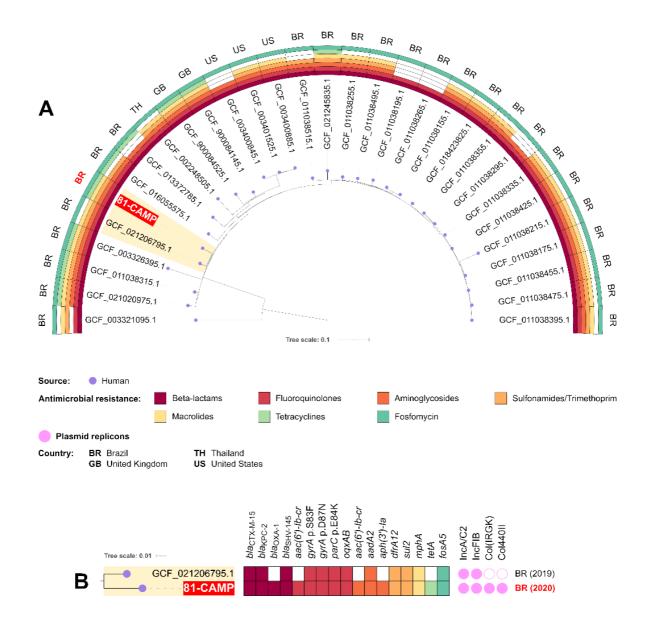


Figura 7: A, B, e C. Árvore filogenética de K. pneumoniae ST11.

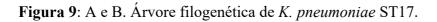

Figura 7. A: árvore filogenética com 38 isolados de *Klebsiella pneumoniae* ST11, plotada em um arco de 180°, bem como um *heatmap* com presença/ausência de genes de resistência para diferentes classes de antibióticos, fonte de isolamento e país de origem. Escala: 1 SNP por sítio. B: isolados do ST11:*wzi*75 destacados em A, com resistoma, plasmidoma, país de origem e ano de coleta. Escala: 0,01 SNP por sítio. C: isolados do ST11:*wzi*64 destacados em A, com resistoma, plasmidoma, país de origem e ano de coleta.

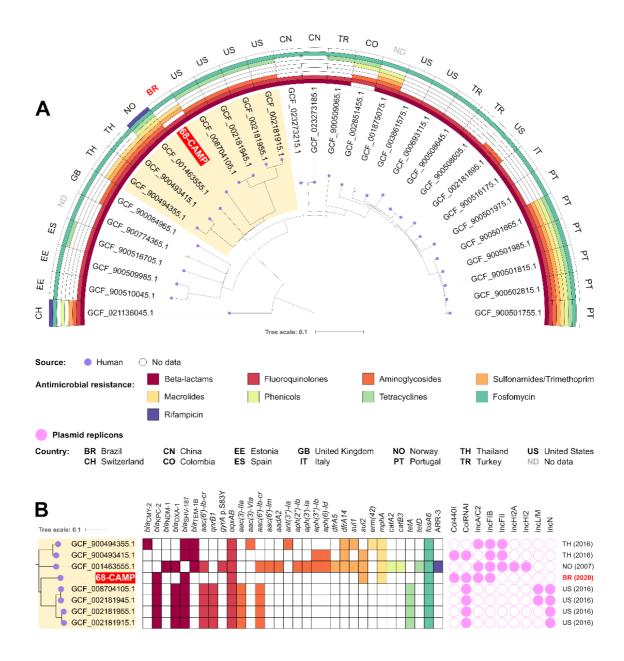

4.6.2. ST16

Para comparação com o isolado 81-CAMP, foram selecionados 30 genomas do ST16. A porcentagem do genoma de referência coberta por todos os genomas analisados foi de 93,79%, correspondendo a 4929702 posições. No alinhamento, SNPs (anexo G) foram identificados em 1314 posições.

Todos os genomas analisados são de origem humana, sendo a maioria do Brasil (n=25) e o restante do Reino Unido, Estados Unidos e Tailândia.

O isolado 81-CAMP se mostrou relativamente próximo a um isolado coletado na cidade de São Paulo, com diferença de 75 SNPs (figura 8 A e B).


Figura 8. A: árvore filogenética com 31 isolados de *Klebsiella pneumoniae* ST16, plotada em um arco de 180°, bem como um *heatmap* com presença/ausência de genes de resistência para diferentes classes de antibióticos, fonte de isolamento e país de origem. Escala: 1 SNP por sítio. B: isolados destacados em A, com resistoma, plasmidoma, país de origem e ano de coleta. Escala: 0,01 SNP por sítio.

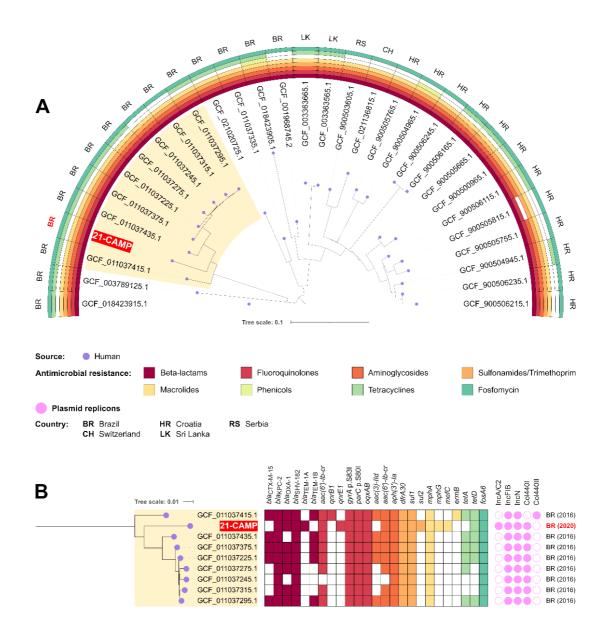

4.6.3. ST17

Para comparação com o isolado 81-CAMP, foram selecionados 30 genomas do ST17. A porcentagem do genoma de referência coberta por todos os genomas analisados foi de 91,00%, correspondendo a 4871214 posições. No alinhamento, SNPs (anexo H) foram identificados em 1986 posições.

Com exceção de 2 isolados sem dados para fonte de isolamento, todos os demais genomas são de origem humana, coletados nos seguintes países: Brasil, Suíça, China, Colômbia, Estônia, Espanha, Reino Unido, Itália, Noruega, Portugal, Tailândia, Turquia e Estados Unidos (figura 9A).

O isolado 68-CAMP se mostrou relativamente distante de todos os demais genomas analisados, sendo que a diferença de SNPs entre os isolados do clado formado com este isolado variou entre 243 a 265. Este clado contém isolados da Tailândia, Noruega e Estados Unidos coletados entre 2016 e 2017 (figura 9B).

Figura 9. A: árvore filogenética com 31 isolados de *Klebsiella pneumoniae* ST17, plotada em um arco de 180°, bem como um *heatmap* com presença/ausência de genes de resistência para diferentes classes de antibióticos, fonte de isolamento e país de origem. Escala: 0,1 SNP por sítio. B: isolados destacados em A, com resistoma, plasmidoma, país de origem e ano de coleta. Escala: 0,1 SNP por sítio.

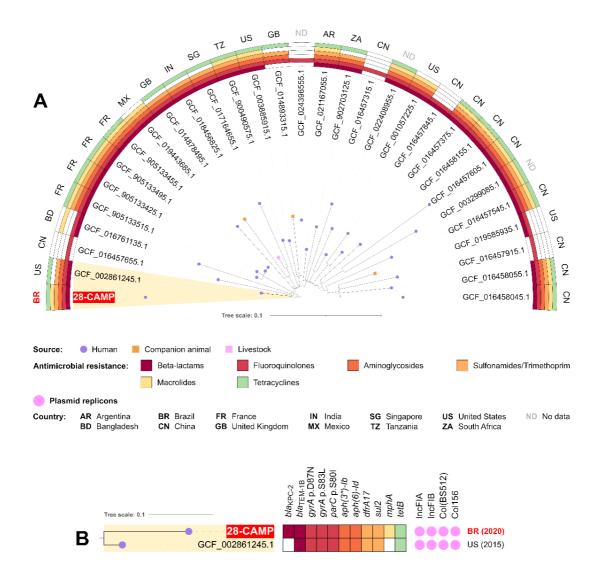

4.6.4. ST437

Para comparação com o isolado 21-CAMP, foram selecionados 30 genomas do ST437. A porcentagem do genoma de referência coberta por todos os genomas analisados foi de 94,00%, correspondendo a 4975992 posições. No alinhamento, SNPs foram identificados em 693 posições.

Todos os genomas analisados são de origem humana, isolados de Brasil, Suíça, Croácia, Sri Lanka e Sérvia (figura 10A).

O isolado 21-CAMP se agrupou em clado contendo somente isolados do Brasil, não sendo possível pelos dados determinar em que estado ou região, em 2016 (figura 10B). Em comparação com 21-CAMP, os demais genomas neste clado possuem diferenças de SNPs (anexo I) variando entre 45 a 52, sugerindo disseminação pelo território brasileiro.

Figura 10: A e B. Árvore filogenética de K. pneumoniae ST437.


Figura 10. A: árvore filogenética com 31 isolados de *Klebsiella pneumoniae* ST437, plotada em um arco de 180°, bem como um *heatmap* com presença/ausência de genes de resistência para diferentes classes de antibióticos, fonte de isolamento e país de origem. Escala: 0,1 SNP por sítio. B: isolados destacados em A, com resistoma, plasmidoma, país de origem e ano de coleta. Escala: 0,1 SNP por sítio.

4.7. Escherichia coli.

Para comparação com o isolado 28-CAMP, foram selecionados 30 genomas do ST1193. A porcentagem do genoma de referência coberta por todos os genomas analisados foi de 93,56%, correspondendo a 4621012 posições. No alinhamento, SNPs foram identificados em 937 posições.

Os isolados analisados são de origem humana (n=26), de animal de companhia (n=3) e de animal de produção (n=1), dos seguintes países: Brasil, Argentina, Bangladesh, China, França, Reino Unido, Índia, México, Singapura, Tanzânia, Estados Unidos e África do Sul, sendo que 3 isolados não possuíam dados de país de origem. O isolado 28-CAMP se mostrou relativamente distante dos demais genomas, sendo que o genoma mais próximo é de um isolado dos Estados Unidos, com diferença de 93 SNPs (figura 11 – anexo J).

Figura 11. Árvore filogenética de E. coli ST1193.

Figura 11. A: árvore filogenética com 31 isolados de *Escherichia coli* ST1193, plotada em um arco de 180°, bem como um *heatmap* com presença/ausência de genes de resistência para diferentes classes de antibióticos, fonte de isolamento e país de origem. Escala: 0,1 SNP por sítio. B: isolados destacados em A, com resistoma, plasmidoma, país de origem e ano de coleta. Escala: 0,1 SNP por sítio.

5. CONSIDERAÇÕES FINAIS

- Uma limitação deste estudo foi a falta de dados clínicos dos pacientes, o que impediu a associação das infecções bacterianas com casos de coinfecção e/ou infecções secundárias.
- Os pacientes foram suscetíveis aos clones endêmicos de *K. pneumoniae* ST11 e ST437 (CC258), e *A. baumannii* ST79 (CC79).
- Os resultados sugerem que pacientes com COVID-19 são propensos a serem colonizados e/ou adquirir infecções secundárias por clones internacionais de alto risco, que são endêmicos em hospitais no Brasil. Essa condição pode contribuir para um prognóstico desfavorável da infecção por COVID-19.
- Os clones bacterianos identificados, juntamente com seus mecanismos de resistência e virulência, já faziam parte de um cenário alarmante antes mesmo da pandemia em relação à resistência bacteriana no contexto da saúde global (One Health).
- Embora haja limitações na pesquisa sobre alguns clones de *P. aeruginosa*, é extremamente importante realizar vigilância epidemiológica para monitorar sua circulação no ambiente hospitalar.
- Com base no que foi apresentado, a disseminação da resistência bacteriana e dos fatores de virulência é facilitada pela presença de elementos genéticos móveis, como os plasmídeos e os transposons.
- O monitoramento filogenômico é essencial para entender a disseminação e a evolução da resistência bacteriana, bem como a circulação de clones internacionais de alto risco em hospitais no Brasil.
- A presença possivelmente estabelecida da população bacteriana no ambiente hospitalar, do qual foram isolados os patógenos que fizeram parte deste estudo, reforça a necessidade de medidas eficazes de controle e prevenção para interromper a disseminação de clones resistentes.

6.CONCLUSÃO

- As cepas sequenciadas mostraram-se resistentes as principais classes de antimicrobianos, incluindo os beta-lactâmicos e carbapenêmicos.
- Os fatores de virulência identificados estão relacionados à capacidade patogênica das bactérias isoladas. No entanto, esses fatores de virulência podem não desempenhar um papel direto no agravamento do estado de saúde dos pacientes com COVID-19.
- Por meio da análise filogenômica, foi evidenciada uma conexão clonal entre as cepas sequenciadas e as linhagens endêmicas no Brasil. Esses clones estão associados a infecções hospitalares e já estavam em circulação antes da pandemia, sugerindo a possibilidade de surtos de infecção nosocomial em algumas regiões do Brasil.
- Todos os dados obtidos foram disponibilizados na plataforma OneBr para contribuir com o monitoramento e vigilância de clones bacterianos de alto risco.
- Em conclusão, os resultados apontam que não há uma correlação direta entre as infecções por bactérias multirresistentes (MDR) em pacientes com COVID-19, pois esse cenário já existia antes da pandemia. No entanto, a infecção pelo vírus SARS-CoV-2 pode ter aumentado a incidência dessas infecções bacterianas devido à suscetibilidade dos pacientes.

REFERÊNCIAS

A GLOBAL PLATFORM FOR GENOMIC SURVEILLANCE. Disponível em: https://pathogen.watch/>.

ALCOCK, B. P.; RAPHENYA, A. R.; LAU, T. T. Y.; TSANG, K. K.; BOUCHARD, M.; EDALATMAND, A.; HUYNH, W.; NGUYEN, A.-L. V.; CHENG, A. A.; LIU, S.; MIN, S. Y.; MIROSHNICHENKO, A.; TRAN, H.-K.; WERFALLI, R. E.; NASIR, J. A.; OLONI, M.; SPEICHER, D. J.; FLORESCU, A.; SINGH, B.; FALTYN, M. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. **Nucleic acids research**, v. 48, n. D1, p. D517–D525, 2020. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/31665441.

ANDRADE, L. N.; CURIAO, T.; FERREIRA, J. C.; LONGO, J. M.; CLÍMACO, E. C.; MARTINEZ, R.; BELLISSIMO-RODRIGUES, F.; BASILE-FILHO, A.; EVARISTO, M. A.; DEL PELOSO, P. F.; RIBEIRO, V. B.; BARTH, A. L.; PAULA, M. C.; BAQUERO, F.; CANTÓN, R.; DARINI, A. L. da C.; COQUE, T. M. Dissemination of *bla* KPC-2 by the Spread of Klebsiella pneumoniae Clonal Complex 258 Clones (ST258, ST11, ST437) and Plasmids (IncFII, IncN, IncL/M) among Enterobacteriaceae Species in Brazil. **Antimicrobial Agents and Chemotherapy**, v. 55, n. 7, p. 3579–3583, jul. 2011.

ANDREI, S.; DROC, G.; STEFAN, G. FDA approved antibacterial drugs: 2018-2019. **Discoveries**, v. 7, n. 4, 31 dez. 2019. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7086080/.

ANDREI, S.; VALEANU, L.; CHIRVASUTA, R.; STEFAN, M.-G. New FDA approved antibacterial drugs: 2015-2017. **Discoveries**, v. 6, n. 1, p. e81, 4 abr. 2018. Acesso em: 13 jun. 2020.

ANDREY, D. O.; PRISCILA PEREIRA DANTAS; B S MARTINS, W.; MARQUES DE CARVALHO, F.; GONZAGA PAULA ALMEIDA, L.; SANDS, K.; PORTAL, E.; SAUSER, J.; CAYÔ, R.; MARISA FABIANA NICOLÁS; TEREZA, A.; A. MEDEIROS, E.; WALSH, T. R.; ANA CRISTINA GALES. An Emerging Clone, Klebsiellapneumoniae Carbapenemase 2–Producing K. pneumoniae Sequence Type 16, Associated With High Mortality Rates in a CC258-Endemic Setting. Clinical Infectious Diseas, v. 71, n. 7, p. e141–e150, 12 nov. 2019.

ARAÚJO, B. F.; FERREIRA, M. L.; CAMPOS, P. A. de; ROYER, S.; GONÇALVES, I. R.; DA FONSECA BATISTÃO, D. W.; FERNANDES, M. R.; CERDEIRA, L. T.; BRITO, C. S. de; LINCOPAN, N.; GONTIJO-FILHO, P. P.; RIBAS, R. M. Hypervirulence and biofilm production in KPC-2-producing Klebsiella pneumoniae CG258 isolated in Brazil. **Journal of Medical Microbiology**, v. 67, n. 4, p. 523–528, 1 abr. 2018. Acesso em: 9 dez. 2022.

ASIF, M.; ALVI, I. A.; REHMAN, S. U. Insight into Acinetobacter baumannii: pathogenesis, global resistance, mechanisms of resistance, treatment options, and alternative modalities. **Infection and Drug Resistance**, v. Volume 11, p. 1249–1260, ago. 2018.

- ASLAM, B.; WANG, W.; ARSHAD, M. I.; KHURSHID, M.; MUZAMMIL, S.; RASOOL, M. H.; NISAR, M. A.; ALVI, R. F.; ASLAM, M. A.; QAMAR, M. U.; SALAMAT, M. K. F.; BALOCH, Z. Antibiotic resistance: a Rundown of a Global Crisis. **Infection and Drug Resistance**, v. Volume 11, n. 11, p. 1645–1658, out. 2018. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6188119/.
- BACHMAN, M. A.; OYLER, J. E.; BURNS, S. H.; CAZA, M.; LÉPINE, F.; DOZOIS, C. M.; WEISER, J. N. Klebsiella pneumoniae Yersiniabactin Promotes Respiratory Tract Infection through Evasion of Lipocalin 2. **Infection and Immunity**, v. 79, n. 8, p. 3309–3316, 1 ago. 2011. Disponível em: https://iai.asm.org/content/79/8/3309. Acesso em: 27 abr. 2020.
- BARON, S. A.; DEVAUX, C.; COLSON, P.; RAOULT, D.; ROLAIN, J.-M. Teicoplanin: an alternative drug for the treatment of coronavirus COVID-19? **International Journal of Antimicrobial Agents**, v. 55(4), n. 105944., p. 105944, mar. 2020.
- BASSETTI, M.; GIACOBBE, D. R.; ALIBERTI, S.; BARISIONE, E.; CENTANNI, S.; DE ROSA, F. G.; DI MARCO, F.; GORI, A.; GRANATA, G.; MIKULSKA, M.; PETROSILLO, N.; RICHELDI, L.; SANTUS, P.; TASCINI, C.; VENA, A.; VIALE, P.; BLASI, F. Balancing evidence and frontline experience in the early phases of the COVID-19 pandemic: current position of the Italian Society of Anti-infective Therapy (SITA) and the Italian Society of Pulmonology (SIP). Clinical Microbiology and Infection, v. 26,7, p. 880–894, abr. 2020. Acesso em: 6 jun. 2020.
- BENGOECHEA, J. A.; BAMFORD, C. G. G. SARS-CoV-2, bacterial co-infections, and AMR: the deadly trio in COVID-19? **EMBO Molecular Medicine**, v. 12(7), n. e12560., 26 maio 2020. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7283846/>. Acesso em: 14 dez. 2020.
- BORTOLAIA, V.; KAAS, R. S.; RUPPE, E.; ROBERTS, M. C.; SCHWARZ, S.; CATTOIR, V.; PHILIPPON, A.; ALLESOE, R. L.; REBELO, A. R.; FLORENSA, A. F.; FAGELHAUER, L.; CHAKRABORTY, T.; NEUMANN, B.; WERNER, G.; BENDER, J. K.; STINGL, K.; NGUYEN, M.; COPPENS, J.; XAVIER, B. B.; MALHOTRA-KUMAR, S. ResFinder 4.0 for predictions of phenotypes from genotypes. **Journal of Antimicrobial Chemotherapy**, v. 75, n. 12, p. 3491–3500, 11 ago. 2020.
- BREIJYEH, Z.; JUBEH, B.; KARAMAN, R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. **Molecules**, v. 25, n. 6, p. 1340, 16 mar. 2020. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7144564/>.
- BRUNA FUGA ARAÚJO *Klebsiella pneumoniae* produtora de kpc-2 no brasil: epidemiologia genômica de clones de alto risco. Universidade Federal de Uberlândia. Uberlândia-MG 2019.
- BUTAITĖ, E.; KRAMER, J.; WYDER, S.; KÜMMERLI, R. Environmental determinants of pyoverdine production, exploitation, and competition in natural Pseudomonas communities. **Environmental Microbiology**, v. 20, n. 10, p. 3629–3642, 16 ago. 2018. Acesso em: 7 abr. 2020.

- CASCALES, E.; CAMBILLAU, C. Structural biology of type VI secretion systems. **Philosophical Transactions of the Royal Society B: Biological Sciences**, v. 367, n. 1592, p. 1102–1111, 19 abr. 2012. Acesso em: 15 abr. 2020.
- CARATTOLI A, ZANKARI E, GARCIA-FERNANDEZ A, VOLDBY LARSEN M, LUND O, VILLA L, AARESTRUP FM, HASMAN H (2014) PlasmidFinder e pMLST: detecção in silico e tipagem de plasmídeos. *Antimicrobiano. Agentes Chemother* 58(7) 3895-903. https://www.genomicepidemiology.org/
- CASTAGNOLI, R.; VOTTO, M.; LICARI, A.; BRAMBILLA, I.; BRUNO, R.; PERLINI, S.; ROVIDA, F.; BALDANTI, F.; MARSEGLIA, G. L. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection in Children and Adolescents. **JAMA Pediatrics**, v. 9, 22 abr. 2020.
- CARATTOLI A, ZANKARI E, GARCIA-FERNANDEZ A, VOLDBY LARSEN M, LUND O, VILLA L, AARESTRUP FM, HASMAN H (2014) PlasmidFinder e pMLST: detecção in silico e tipagem de plasmídeos. *Antimicrobiano. Agentes Chemother* 58(7) 3895-903. https://www.genomicepidemiology.org/
- CHAKRABORTY, S. Metagenome of SARS-Cov2 patients in Shenzhen with travel to Wuhan shows a wide range of species *Lautropia*, *Cutibacterium*, *Haemophilus* being most abundant and *Campylobacter* explaining diarrhea., p. 6–7, 2020.
- CHAKRABORTY, S. The role of oral bacteria in COVID-19. 2021. Disponível em: https://www.thelancet.com/pdfs/journals/lanmic/PIIS2666-5247(20)30057-4.pdf. Acesso em: 10 mar. 2021.
- CHEN, T.; WANG, Y.; ZHOU, Y.; ZHOU, W.; CHI, X.; SHEN, P.; ZHENG, B.; XIAO, Y. Recombination Drives Evolution of Carbapenem-Resistant Klebsiella pneumoniae Sequence Type 11 KL47 to KL64 in China. **Microbiol Spectr.**, v. 11, n. 1, 14 fev. 2023. Acesso em: 9 jul. 2023.
- CHEN, X.; LIAO, B.; CHENG, L.; PENG, X.; XU, X.; LI, Y.; HU, T.; LI, J.; ZHOU, X.; REN, B. The microbial coinfection in COVID-19. **Applied Microbiology and Biotechnology**, v. 104, n. 18, p. 7777–7785, 11 ago. 2020.
- CHERRAK, Y.; FLAUGNATTI, N.; DURAND, E.; JOURNET, L.; CASCALES, E. Structure and Activity of the Type VI Secretion System. **Microbiology Spectrum**, v. 7, n. 4, 5 jul. 2019.
- CHERTOW, D. S.; MEMOLI, M. J. Bacterial Coinfection in Influenza. **JAMA**, v. 309, n. 3, p. 275, 16 jan. 2013.
- CHONG, W. H.; SAHA, B. K.; ANANTHAKRISHNAN RAMANI; CHOPRA, A. State-of-the-art review of secondary pulmonary infections in patients with COVID-19 pneumonia. **Infection**, 11 mar. 2021.
- CLSI (2020). Performance Standards for Antimicrobial Susceptibility Testing.30sted (USA CLSI supplement M100).

- COLLIGNON, P.; BEGGS, J. J.; WALSH, T. R.; GANDRA, S.; LAXMINARAYAN, R. Anthropological and socioeconomic factors contributing to global antimicrobial resistance: a univariate and multivariable analysis. **The Lancet Planetary Health**, v. 2, n. 9, p. e398–e405, 1 set. 2018.
- COULTHURST, S. J. The Type VI secretion system a widespread and versatile cell targeting system. **Research in Microbiology**, v. 164, n. 6, p. 640–654, jul. 2013. Disponível em: https://pubmed.ncbi.nlm.nih.gov/23542428-the-type-vi-secretion-system-a-widespread-and-versatile-cell-targeting-system/>. Acesso em: 19 jan. 2020.
- CRISTINA YANES CABRERA; GÓMEZ, R. F.; HUALPA, M.; CORRAL, R.; ALICIA, B.; MÓNICA CHÁVEZ. Epidemiology of nosocomial bacteria resistant to antimicrobials. p. 117–125, 1 abr. 2011. Acesso em: 22 jun. 2023.
- DA SILVA, P.; LUSTRI, B. C.; CASTILHO, I. G.; FERREIRA, A. M.; HERNANDES, R. T.; SCHEMBRI, M. A.; MOREIRA, C. G. Genome profiling of fluoroquinolone-resistant uropathogenic Escherichia coli isolates from Brazil. **Brazilian Journal of Microbiology**, v. 52, n. 3, p. 1067–1075, 8 jun. 2021. Acesso em: 13 set. 2022.
- DEL BARRIO-TOFIÑO, E.; LÓPEZ-CAUSAPÉ, C.; OLIVER, A. Pseudomonas aeruginosa epidemic high-risk clones and their association with horizontally-acquired β-lactamases: 2020 update. **International Journal of Antimicrobial Agents**, v. 56, n. 6, p. 106196, dez. 2020. Acesso em: 15 dez. 2021.
- DENG, Y.; ZENG, Z.; LIU, J.; CHEN, Z. [Insertion sequence common region element: a novel gene-capturing system in bacteria--a review]. **Wei Sheng Wu Xue Bao**, v. 49, n. 8, p. 987–993, 1 ago. 2009. Acesso em: 9 jul. 2023.
- DIANCOURT, L.; PASSET, V.; NEMEC, A.; DIJKSHOORN, L.; BRISSE, S. The Population Structure of Acinetobacter baumannii: Expanding Multiresistant Clones from an Ancestral Susceptible Genetic Pool. **PLoS ONE**, v. 5, n. 4, p. e10034, 7 abr. 2010. Acesso em: 31 dez. 2021.
- DU, Y.; TU, L.; ZHU, P.; MU, M.; WANG, R.; YANG, P.; WANG, X.; HU, C.; PING, R.; HU, P.; LI, T.; CAO, F.; CHANG, C.; HU, Q.; JIN, Y.; XU, G. Clinical Features of 85 Fatal Cases of COVID-19 from Wuhan: A Retrospective Observational Study. American Journal of Respiratory and Critical Care Medicine, v. 11, n. 201, 3 abr. 2020.
- EL-GAMAL, M. I.; BRAHIM, I.; HISHAM, N.; ALADDIN, R.; MOHAMMED, H.; BAHAAELDIN, A. Recent updates of carbapenem antibiotics. **European Journal of Medicinal Chemistry**, v. 131, p. 185–195, maio 2017. Acesso em: 13 maio. 2020.
- FARID EL GARCH; BOGAERTS, P.; CARINE BEBRONE; MORENO GALLENI; YOURI GLUPCZYNSKI. OXA-198, an Acquired Carbapenem-Hydrolyzing Class D β -Lactamase from Pseudomonas aeruginosa. **Antimicrob Agents Chemother**, v. 55, n. 10, p. 4828–4833, 1 out. 2011.
- FERESHTEH EFTEKHAR; ZEESHAN NASEH. Extended-spectrum β-lactamase and carbapenemase production among burn and non-burn clinical isolates of Klebsiella pneumoniae. **Iranian Journal of Microbiology**, v. 7, n. 3, p. 144–9, 1 jun. 2015. Acesso em: 10 jul. 2023.

- GAIARSA, S.; BATISTI BIFFIGNANDI, G.; ESPOSITO, E. P.; CASTELLI, M.; JOLLEY, K. A.; BRISSE, S.; SASSERA, D.; ZARRILLI, R. Comparative Analysis of the Two Acinetobacter baumannii Multilocus Sequence Typing (MLST) Schemes. **Frontiers in Microbiology**, v. 10, 3 maio 2019.
- GARAZZINO, S.; MONTAGNANI, C.; DONÀ, D.; MEINI, A.; FELICI, E.; VERGINE, G.; BERNARDI, S.; GIACCHERO, R.; LO VECCHIO, A.; MARCHISIO, P.; NICOLINI, G.; PIERANTONI, L.; RABBONE, I.; BANDERALI, G.; DENINA, M.; VENTURINI, E.; KRZYSZTOFIAK, A.; BADOLATO, R.; BIANCHINI, S.; GALLI, L. Multicentre Italian study of SARS-CoV-2 infection in children and adolescents, preliminary data as at 10 April 2020. **Eurosurveillance**, v. 25, n. 18, 7 maio 2020. Acesso em: 13 nov. 2020.
- GARCIA-VIDAL, C.; SANJUAN, G.; MORENO-GARCÍA, E.; PUERTA-ALCALDE, P.; GARCIA-POUTON, N.; CHUMBITA, M.; FERNANDEZ-PITTOL, M.; PITART, C.; INCIARTE, A.; BODRO, M.; MORATA, L.; AMBROSIONI, J.; GRAFIA, I.; MEIRA, F.; MACAYA, I.; CARDOZO, C.; CASALS, C.; TELLEZ, A.; CASTRO, P.; MARCO, F. Incidence of co-infections and superinfections in hospitalized patients with COVID-19: a retrospective cohort study. Clinical Microbiology and Infection, jul. 2020.
- GARCILLÃ; N-BARCIA, M. P.; CRUZ, F. Distribution of IS91 family insertion sequences in bacterial genomes: evolutionary implications. **FEMS Microbiology Ecology**, v. 42, n. 2, p. 303–313, nov. 2002. Acesso em: 23 abr. 2022.
- GIRLICH, D.; NAAS, T.; NORDMANN, P. Biochemical Characterization of the Naturally Occurring Oxacillinase OXA-50 of Pseudomonas aeruginosa. **Antimicrobial Agents and Chemotherapy**, v. 48, n. 6, p. 2043–2048, jun. 2004.
- GONÇALVES, G. B.; FURLAN, J. P. R.; VESPERO, E. C.; PELISSON, M.; STEHLING, E. G.; PITONDO-SILVA, A. Spread of multidrug-resistant high-risk Klebsiella pneumoniae clones in a tertiary hospital from southern Brazil. **Infection, Genetics and Evolution**, v. 56, p. 1–7, dez. 2017.
- GUAN, W.; NI, Z.; HU, Y.; LIANG, W.; OU, C.; HE, J.; LIU, L.; SHAN, H.; LEI, C.; HUI, D. S. C.; DU, B.; LI, L.; ZENG, G.; YUEN, K.-Y.; CHEN, R.; TANG, C.; WANG, T.; CHEN, P.; XIANG, J.; LI, S. Clinical Characteristics of Coronavirus Disease 2019 in China. **New England Journal of Medicine**, v. 382, n. 18, 28 fev. 2020.
- HENDAUS, M. A.; JOMHA, F. A. Covid-19 induced superimposed bacterial infection. **Journal of Biomolecular Structure and Dynamics**, v. 11, n. 39, p. 1–7, 9 jun. 2020. Acesso em: 20 jun. 2020.
- JAIN, C.; RODRIGUEZ-R, L. M.; PHILLIPPY, A. M.; KONSTANTINIDIS, K. T.; ALURU, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. **Nature Communications**, v. 9, n. 1, 30 nov. 2018. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6269478/>. Acesso em: 14 jan. 2020.
- JIN, X.; CHEN, Q.; SHEN, F.; JIANG, Y.; WU, X.; HUA, X.; FU, Y.; YU, Y. Resistance evolution of hypervirulent carbapenem-resistant Klebsiella pneumoniae ST11 during

- treatment with tigecycline and polymyxin. **Emerging Microbes & Infections**, v. 10, n. 1, p. 1129–1136, 1 jan. 2021.
- JOENSEN, K. G.; SCHEUTZ, F.; LUND, O.; HASMAN, H.; KAAS, R. S.; NIELSEN, E. M.; AARESTRUP, F. M. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. **Journal of clinical microbiology**, v. 52, n. 5, p. 1501–10, 2014. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/24574290.
- JOHNSON, T. J.; ELNEKAVE, E.; MILLER, E. A.; MUNOZ-AGUAYO, J.; FLORES FIGUEROA, C.; JOHNSTON, B.; NIELSON, D. W.; LOGUE, C. M.; JOHNSON, J. R. Phylogenomic Analysis of Extraintestinal Pathogenic Escherichia coliste Escherichia coliste Sequence Type 1193, an Emerging Multidrug-Resistant Clonal Group. Antimicrobial Agents and Chemotherapy, v. 63, n. 1, jan. 2019. Acesso em: 6 maio. 2022.
- JONES, Ronald N. Microbial Etiologies of Hospital-Acquired Bacterial Pneumonia and Ventilator-Associated Bacterial Pneumonia. **Clinical Infectious Diseases**, v. 51, n. S1, p. S81–S87, ago. 2010.
- JUNIO OLIVEIRA; REYGAERT, W. C. **Gram Negative Bacteria**. Disponível em: https://www.ncbi.nlm.nih.gov/books/NBK538213/>.
- KAAS, R. S.; LEEKITCHAROENPHON, P.; AARESTRUP, F. M.; LUND, O. Solving the Problem of Comparing Whole Bacterial Genomes across Different Sequencing Platforms. **PLoS ONE**, v. 9, n. 8, p. e104984, 11 ago. 2014. Acesso em: 18 nov. 2019.
- KIM, D.; QUINN, J.; PINSKY, B.; SHAH, N. H.; BROWN, I. Rates of Co-infection Between SARS-CoV-2 and Other Respiratory Pathogens. **JAMA**, 15 abr. 2020.
- KLEIN, E. Y.; MONTEFORTE, B.; GUPTA, A.; JIANG, W.; MAY, L.; HSIEH, Y.-H.; DUGAS, A. The frequency of influenza and bacterial coinfection: a systematic review and meta-analysis. **Influenza and Other Respiratory Viruses**, v. 10, n. 5, p. 394–403, 24 jun. 2016.
- KOCSIS, B.; GULYÁS, D.; SZABÓ, D. Diversity and Distribution of Resistance Markers in Pseudomonas aeruginosa International High-Risk Clones. **Microorganisms**, v. 9, n. 2, p. 359, 12 fev. 2021.
- LAI, C.-C.; SHIH, T.-P.; KO, W.-C.; TANG, H.-J.; HSUEH, P.-R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. **International Journal of Antimicrobial Agents**, v. 55, n. 3, p. 105924, fev. 2020.
- LAM, M. M. C.; WICK, R. R.; WATTS, S. C.; CERDEIRA, L. T.; WYRES, K. L.; HOLT, K. E. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. **Nature Communications**, v. 12, n. 1, 7 jul. 2021.
- LARSEN, M., COSENTINO, S., RASMUSSEN, S., RUNDSTEN, C., HASMAN, H., MARVIG, R., JELSBAK, L., SICHERITZ-PONTÉN, T., USSERY, D., AARESTRUP, F., &

LUND, O. (2012). Tipagem de Sequência Multilocus de Bactérias Sequenciadas pelo Genoma

Total. *Journal of Clinical Microbiology*, 50(4), 1355-1361.

https://www.genomicepidemiology.org/

LEE, C.-R.; LEE, J. H.; PARK, M.; PARK, K. S.; BAE, I. K.; KIM, Y. B.; CHA, C.-J.; JEONG, B. C.; LEE, S. H. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options. **Frontiers in Cellular and Infection Microbiology**, v. 7, n. 55, 13 mar. 2017.

LETUNIC, I.; BORK, P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. **Bioinformatics**, v. 23, n. 1, p. 127–128, 18 out. 2006. Acesso em: 17 out. 2019.

LU, R.; ZHAO, X.; LI, J.; NIU, P.; YANG, B.; WU, H.; WANG, W.; SONG, H.; HUANG, B.; ZHU, N.; BI, Y.; MA, X.; ZHAN, F.; WANG, L.; HU, T.; ZHOU, H.; HU, Z.; ZHOU, W.; ZHAO, L.; CHEN, J. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. **The Lancet**, v. 395, n. 10224, jan. 2020.

LUTGRING, J. Carbapenem-resistant Enterobacteriaceae: An emerging bacterial threat. **Seminars in Diagnostic Pathology**, v. 36, n. 3, p. 182–186, 1 maio 2019. Disponível em: https://www.sciencedirect.com/science/article/pii/S0740257019300437?via%3Dihub. Acesso em: 27 mar. 2021.

MACINTYRE, C. R.; BUI, C. M. Pandemics, public health emergencies and antimicrobial resistance - putting the threat in an epidemiologic and risk analysis context. **Archives of Public Health**, v. 75, n. 1, 14 set. 2017.

MACINTYRE, C. R.; CHUGHTAI, A. A.; BARNES, M.; RIDDA, I.; SEALE, H.; TOMS, R.; HEYWOOD, A. The role of pneumonia and secondary bacterial infection in fatal and serious outcomes of pandemic influenza a(H1N1)pdm09. **BMC Infectious Diseases**, v. 18, n. 1, dez. 2018. Acesso em: 15 fev. 2020.

MALBERG TETZSCHNER, A. M.; JOHNSON, J. R.; JOHNSTON, B. D.; LUND, O.; SCHEUTZ, F. In Silico Genotyping of Escherichia coli Isolates for Extraintestinal Virulence Genes by Use of Whole-Genome Sequencing Data. **Journal of Clinical Microbiology**, v. 58, n. 10, 22 set. 2020.

MIRZAEI, R.; GOODARZI, P.; ASADI, M.; SOLTANI, A.; ALJANABI, H. A. A.; JEDA, A. S.; DASHTBIN, S.; JALALIFAR, S.; MOHAMMADZADEH, R.; TEIMOORI, A.; TARI, K.; SALARI, M.; GHIASVAND, S.; KAZEMI, S.; YOUSEFIMASHOUF, R.; KEYVANI, H.; KARAMPOOR, S. Bacterial co-infections with SARS-CoV-2. **IUBMB life**, v. 72, n. 10, p. 2097–2111, 1 out. 2020.

MONTALVO-QUIRÓS, S.; GÓMEZ-GRAÑA, S.; MARÍA VALLET-REGÍ; PRADOS-ROSALES, R.; GONZÁLEZ, B.; LUQUE-GARCIA, J. L. Mesoporous silica nanoparticles containing silver as novel antimycobacterial agents against Mycobacterium tuberculosis. **Colloids Surfaces B Biointerfaces**, v. 197, p. 111405–111405, 1 jan. 2021. Acesso em: 10 jul. 2023.

- MORRIS, D. E.; CLEARY, D. W.; CLARKE, S. C. Secondary Bacterial Infections Associated with Influenza Pandemics. **Frontiers in Microbiology**, v. 8, 23 jun. 2017.
- NI, L.; YE, F.; CHENG, M.-L.; FENG, Y.; DENG, Y.-Q.; ZHAO, H.; WEI, P.; GE, J.; GOU, M.; LI, X.; SUN, L.; CAO, T.; WANG, P.; ZHOU, C.; ZHANG, R.; LIANG, P.; GUO, H.; WANG, X.; QIN, C.-F.; CHEN, F. Detection of SARS-CoV-2-Specific Humoral and Cellular Immunity in COVID-19 Convalescent Individuals. **Immunity**, v. 3, n. 52, maio 2020.
- NICOLAS, E.; LAMBIN, M.; DANDOY, D.; GALLOY, C.; NGUYEN, N.; OGER, C. A.; HALLET, B. The Tn3-family of Replicative Transposons. **Microbiology Spectrum**, v. 3, n. 4, 6 ago. 2015.
- O'TOOLE, R. F. The interface between COVID-19 and bacterial healthcare-associated infections. **Clinical Microbiology and Infection**, jun. 2021. Acesso em: 3 ago. 2021.
- OLESEN, S. W.; BARNETT, M. L.; MACFADDEN, D. R.; BROWNSTEIN, J. S.; HERNÁNDEZ-DÍAZ, S.; LIPSITCH, M.; GRAD, Y. H. The distribution of antibiotic use and its association with antibiotic resistance. **eLife**, v. 7, 18 dez. 2018.
- PACHORI, P.; GOTHALWAL, R.; GANDHI, P. Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. **Genes & Diseases**, v. 6, n. 2, p. 109–119, jun. 2019.
- PAGANO, M.; FRANCIÉLI PEDROTTI ROZALES; BERTOLINI, D.; LISIANE DÖRR ROCHA; LUIZ, J.; AFONSO LUIS BARTH; ANDREZA FRANCISCO MARTINS. Emergence of Acinetobacter baumannii ST730 carrying the blaOXA-72 gene in Brazil. v. 111, n. 9, p. 597–598, 1 set. 2016a.
- PAGANO, M.; ROCHA, L.; SAMPAIO, J. L. M.; MARTINS, A. F.; BARTH, A. L. Emergence of OXA-72-producing Acinetobacter baumannii Belonging to High-Risk Clones (CC15 and CC79) in Different Brazilian States. **Infection Control & Hospital Epidemiology**, v. 38, n. 2, p. 252–254, 6 dez. 2016b.
- PAGET, C.; TROTTEIN, F. Mechanisms of Bacterial Superinfection Post-influenza: A Role for Unconventional T Cells. **Frontiers in Immunology**, v. 10, 1 mar. 2019.
- PENG, X.; XU, X.; LI, Y.; CHENG, L.; ZHOU, X.; REN, B. Transmission routes of 2019-nCoV and controls in dental practice. **International Journal of Oral Science**, v. 12, n. 1, p. 1–6, 3 mar. 2020.
- PEREZ, F.; BONOMO, R. A. Evidence to improve the treatment of infections caused by carbapenem-resistant Gram-negative bacteria. **The Lancet Infectious Diseases**, v. 18, n. 4, p. 358–360, abr. 2018.
- PETROVA, A.; FEODOROVA, Y.; MITEVA-KATRANDZHIEVA, T.; PETROV, M.; MURDJEVA, M. First detected OXA-50 carbapenem-resistant clinical isolates Pseudomonas aeruginosa from Bulgaria and interplay between the expression of main efflux pumps, OprD and intrinsic AmpC. **Journal of Medical Microbiology**, v. 68, n. 12, p. 1723–1731, 1 dez. 2019.

- PHUA, J.; WENG, L.; LING, L.; EGI, M.; LIM, C.-M.; DIVATIA, J. V.; SHRESTHA, B. R.; ARABI, Y. M.; NG, J.; GOMERSALL, C. D.; NISHIMURA, M.; KOH, Y.; DU, B. Intensive care management of coronavirus disease 2019 (COVID-19): challenges and recommendations. **The Lancet Respiratory Medicine**, v. 8, n. 5, p. 506–517, abr. 2020. Disponível em: https://www.thelancet.com/journals/lanres/article/PIIS2213-2600(20)30161-2/fulltext.
- PICOT, S.; MARTY, A.; BIENVENU, A.-L.; BLUMBERG, L. H.; DUPOUY-CAMET, J.; CARNEVALE, P.; KANO, S.; JONES, M. K.; DANIEL-RIBEIRO, C. T.; MAS-COMA, S. Coalition: Advocacy for prospective clinical trials to test the post-exposure potential of hydroxychloroquine against COVID-19. **One Health**, p. 100131, abr. 2020. Acesso em: 16 abr. 2020.
- PITOUT, J. D. D.; PEIRANO, G.; CHEN, L.; DEVINNEY, R.; MATSUMURA, Y. Escherichia coli ST1193: Following in the Footsteps of E. coli ST131. **Antimicrobial Agents and Chemotherapy**, v. 66, n. 7, 19 jul. 2022. Acesso em: 11 fev. 2023.
- POLLY, M.; DE ALMEIDA, B. L.; LENNON, R. P.; CORTÊS, M. F.; COSTA, S. F.; GUIMARÃES, T. Impact of the COVID-19 pandemic on the incidence of multidrugresistant bacterial infections in an acute care hospital in Brazil. **American Journal of Infection Control**, v. 50, n. 1, p. 32–38, 1 jan. 2022.
- PUBMLST PUBLIC DATABASES FOR MOLECULAR TYPING AND MICROBIAL GENOME DIVERSITY. Disponível em: https://pubmlst.org/>.
- QIN, C.; ZHOU, L.; HU, Z.; ZHANG, S.; YANG, S.; TAO, Y.; XIE, C.; MA, K.; SHANG, K.; WANG, W.; TIAN, D.-S. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. **Clinical Infectious Diseases**, v. 71, n. 15, p. 762–768, 12 mar. 2020.
- RAFAELA OLIVEIRA FRANÇA. Fatores de virulência e resistência de amostras clínicas de *Acinetobacter baumnnii*: caracterização fenotípica e genotípica e análise da interferência destesfatores na evolução e resolução dos processos. Universidade Federal de Minas Gerais Belo Horizonte 2015.
- RAWSON, T. M.; MOORE, L. S. P.; ZHU, N.; RANGANATHAN, N.; SKOLIMOWSKA, K.; GILCHRIST, M.; SATTA, G.; COOKE, G.; HOLMES, A. Bacterial and Fungal Coinfection in Individuals With Coronavirus: A Rapid Review To Support COVID-19 Antimicrobial Prescribing. **Clinical Infectious Diseases**, v. 71, n. 9, 2 maio 2020.
- RIDUAN, S. N.; ARMUGAM, A.; ZHANG, Y. Antibiotic resistance mitigation: the development of alternative general strategies. **Journal of Materials Chemistry B**, v. 8, n. 30, p. 6317–6321, 5 ago. 2020.
- ROQUE-BORDA, C. A.; DA SILVA, P. B.; RODRIGUES, M. C.; AZEVEDO, R. B.; DI FILIPPO, L.; DUARTE, J. L.; CHORILLI, M.; FESTOZO VICENTE, E.; PAVAN, F. R. Challenge in the Discovery of New Drugs: Antimicrobial Peptides against WHO-List of Critical and High-Priority Bacteria. **Pharmaceutics**, v. 13, n. 6, p. 773, 21 maio 2021.

- ROUZÉ, A.; MARTIN-LOECHES, I.; POVOA, P.; MAKRIS, D.; ARTIGAS, A.; BOUCHEREAU, M.; LAMBIOTTE, F.; METZELARD, M.; CUCHET, P.; BOULLE GERONIMI, C.; LABRUYERE, M.; TAMION, F.; NYUNGA, M.; LUYT, C.-E.; LABREUCHE, J.; POULY, O.; BARDIN, J.; SAADE, A.; ASFAR, P.; BAUDEL, J.-L. Relationship between SARS-CoV-2 infection and the incidence of ventilator-associated lower respiratory tract infections: a European multicenter cohort study. **Intensive Care Medicine**, v. 47, n. 2, p. 188–198, 3 jan. 2021. Acesso em: 20 jun. 2021.
- ROYER, S.; FARIA, A. L. S.; SEKI, L. M.; CHAGAS, T. P. G.; CAMPOS, P. A. de; BATISTÃO, D. W. da F.; ASENSI, M. D.; GONTIJO FILHO, P. P.; RIBAS, R. M.; ROYER, S.; FARIA, A. L. S.; SEKI, L. M.; CHAGAS, T. P. G.; CAMPOS, P. A. de; BATISTÃO, D. W. da F.; ASENSI, M. D.; GONTIJO FILHO, P. P.; RIBAS, R. M. Spread of multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa clones in patients with ventilator-associated pneumonia in an adult intensive care unit at a university hospital. **Brazilian Journal of Infectious Diseases**, v. 19, n. 4, p. 350–357, 1 ago. 2015.
- SANTOS-NETO, J. F.; SANTOS, A. C. M.; NASCIMENTO, J. A. S.; TROVÃO, L. O.; SANTOS, F. F.; VALIATTI, T. B.; GALES, A. C.; MARQUES, A. L. V. R.; PINAFFI, I. C.; VIEIRA, M. A. M.; SILVA, R. M.; FALSETTI, I. N.; GOMES, T. A. T. Virulence Profile, Antibiotic Resistance, and Phylogenetic Relationships among Escherichia coli Strains Isolated from the Feces and Urine of Hospitalized Patients. **Pathogens**, v. 11, n. 12, p. 1528, 1 dez. 2022.
- SEEMANN, T. Disponível em: https://github.com/tseemann/abricate.
- SEKI, L. M.; PEREIRA, P. S.; DE SOUZA, M. da P. A. H.; CONCEIÇÃO, M. de S.; MARQUES, E. A.; PORTO, C. O.; COLNAGO, E. M. L.; ALVES, C. de F. M.; GOMES, D.; ASSEF, A. P. D. A. C.; SAMUELSEN, Ø.; ASENSI, M. D. Molecular epidemiology of KPC-2- producing Klebsiella pneumoniae isolates in Brazil: the predominance of sequence type 437. **Diagnostic Microbiology and Infectious Disease**, v. 70, n. 2, p. 274–277, jun. 2011. Acesso em: 4 jun. 2020.
- SHAFAATI, M.; BOROUMAND, M.; NOWROOZI, J.; AMIRI, P.; KAZEMIAN, H. Correlation Between qacE and qacEΔ1 Efflux Pump Genes, Antibiotic and Disinfectant Resistant Among Clinical Isolates of *E.coli*. **Recent Patents on Anti-Infective Drug Discovery**, v. 11, n. 2, p. 189–195, 2016.
- SILHAVY, T. J.; KAHNE, D.; WALKER, S. The Bacterial Cell Envelope. **Cold Spring Harbor Perspectives in Biology**, v. 2, n. 5, p. a000414–a000414, 14 abr. 2010.
- SILVEIRA, M. C.; ROCHA-DE-SOUZA, C. M.; DE OLIVEIRA SANTOS, I. C.; PONTES, L. da S.; OLIVEIRA, T. R. T. e; TAVARES-TEIXEIRA, C. B.; COSSATIS, N. de A.; PEREIRA, N. F.; DA CONCEIÇÃO-NETO, O. C.; DA COSTA, B. S.; RODRIGUES, D. C. S.; ALBANO, R. M.; DA SILVA, F. A. B.; MARQUES, E. A.; LEÃO, R. S.; CARVALHO-ASSEF, A. P. D. Genetic Basis of Antimicrobial Resistant Gram-Negative Bacteria Isolated From Bloodstream in Brazil. **Frontiers in Medicine**, v. 8, 15 mar. 2021.
- SINGH, A. K.; SINGH, A.; SHAIKH, A.; SINGH, R.; MISRA, A. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A

systematic search and a narrative review with a special reference to India and other developing countries. **Diabetes & Metabolic Syndrome: Clinical Research & Reviews**, v. 14, n. 3, p. 241–246, maio 2020.

SINGH, V.; UPADHYAY, P.; REDDY, J.; GRANGER, J. SARS-CoV-2 respiratory coinfections: Incidence of viral and bacterial co-pathogens. **International Journal of Infectious Diseases**, v. 105, p. 617–620, abr. 2021.

SUAY-GARCÍA, B.; PÉREZ-GRACIA, M. Present and Future of Carbapenem-resistant Enterobacteriaceae (CRE) Infections. **Antibiotics**, v. 8, n. 3, p. 122, 19 ago. 2019.

TATIANE MARTINS ROCHA. Genes de virulência em Escherichia coli isolada de frangos de corte de criações industriais e alternativas. Universidade federal de goiás escola de veterinária e zootecnia programa de pós-graduação em ciência animal. 2013.

TACCONELLI, E.; CARRARA, E.; SAVOLDI, A.; HARBARTH, S.; MENDELSON, M.; MONNET, D. L.; PULCINI, C.; KAHLMETER, G.; KLUYTMANS, J.; CARMELI, Y.; OUELLETTE, M.; OUTTERSON, K.; PATEL, J.; CAVALERI, M.; COX, E. M.; HOUCHENS, C. R.; GRAYSON, M. L.; HANSEN, P.; SINGH, N.; THEURETZBACHER, U. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. **The Lancet Infectious Diseases**, v. 18, n. 3, p. 318–327, mar. 2018.

TAY, M. Z.; POH, C. M.; RÉNIA, L.; MACARY, P. A.; NG, L. F. P. The trinity of COVID-19: immunity, inflammation and intervention. **Nature Reviews Immunology**, v. 20, n. 6, p. 1–12, 28 abr. 2020. Disponível em: https://www.nature.com/articles/s41577-020-0311-8.

VAILLANCOURT, M.; JORTH, P. The Unrecognized Threat of Secondary Bacterial Infections with COVID-19. **mBio**, v. 11, n. 4, 25 ago. 2020.

VAN DUIN, D. Carbapenem-resistant Enterobacteriaceae: What we know and what we need to know. **Virulence**, v. 8, n. 4, p. 379–382, 12 abr. 2017.

VEERARAGHAVAN, B.; RAGUPATHI, N. D.; BAKTHAVATCHALAM, Y.; MATHUR, P.; PRAGASAM, A.; WALIA, K.; OHRI, V. Plasmid profiles among some ESKAPE pathogens in a tertiary care centre in south India. **Indian Journal of Medical Research**, v. 149, n. 2, p. 222, 2019.

WANG, X.; PRESTON, J. F.; ROMEO, T. The pgaABCD Locus of Escherichia coli Promotes the Synthesis of a Polysaccharide Adhesin Required for Biofilm Formation. **Journal of Bacteriology**, v. 186, n. 9, p. 2724–2734, 16 abr. 2004.

Weekly epidemiological update on COVID-19 - 8 June 2023. Disponível em: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---8-june-2023.

WILLYARD, C. Drug-resistant bacteria ranked World Health Organization hopes list will drive development of much-needed antibiotics. **Nature**, 2017.

- WALTHER-RASMUSSEN, J.; HØIBY, N. OXA-type carbapenemases. **The Journal of antimicrobial chemotherapy**, v. 57, n. 3, p. 373–83, 2006.
- WORLD HEALTH ORGANIZATION. **WHO publishes list of bacteria for which new antibiotics are urgently needed**. Disponível em: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed.
- WOZNIAK, A.; FIGUEROA, C.; MOYA-FLORES, F.; GUGGIANA, P.; CASTILLO, C.; RIVAS, L.; MUNITA, J. M.; GARCÍA, P. C. A multispecies outbreak of carbapenem-resistant bacteria harboring the blaKPC gene in a non-classical transposon element. **BMC Microbiology**, v. 21, n. 1, 9 abr. 2021.
- WU, J.; LAN, F.; LU, Y.; HE, Q.; LI, B. Molecular Characteristics of ST1193 Clone among Phylogenetic Group B2 Non-ST131 Fluoroquinolone-Resistant Escherichia coli. **Frontiers in Microbiology**, v. 8, 21 nov. 2017. Acesso em: 11 mar. 2021.
- XU, R.; CUI, B.; DUAN, X.; ZHANG, P.; ZHOU, X.; YUAN, Q. Saliva: potential diagnostic value and transmission of 2019-nCoV. **International Journal of Oral Science**, v. 12, n. 1, 17 abr. 2020.
- YAN, S.; WU, G. Can Biofilm Be Reversed Through Quorum Sensing in Pseudomonas aeruginosa? **Frontiers in Microbiology**, v. 10, 23 jul. 2019.
- ZHANG, G.; HU, C.; LUO, L.; FANG, F.; CHEN, Y.; LI, J.; PENG, Z.; PAN, H. Clinical features and short-term outcomes of 221 patients with COVID-19 in Wuhan, China. **Journal of Clinical Virology**, p. 104364, abr. 2020.
- ZHOU, F.; YU, T.; DU, R.; FAN, G.; LIU, Y.; LIU, Z.; XIANG, J.; WANG, Y.; SONG, B.; GU, X.; GUAN, L.; WEI, Y.; LI, H.; WU, X.; XU, J.; TU, S.; ZHANG, Y.; CHEN, H.; CAO, B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. **The Lancet**, v. 395, n. 10229, p. 1054–1062, mar. 2020.
- ZHU, N.; ZHANG, D.; WANG, W.; LI, X.; YANG, B.; SONG, J.; ZHAO, X.; HUANG, B.; SHI, W.; LU, R.; NIU, P.; ZHAN, F.; MA, X.; WANG, D.; XU, W.; WU, G.; GAO, G. F.; TAN, W. A Novel Coronavirus from Patients with Pneumonia in China, 2019. **New England Journal of Medicine**, v. 382, n. 8, 24 jan. 2020.

ANEXOS ANEXO A

Matriz de SNPs ST244 de P. aeruginosa

	19-CAMP	GCF_003975055.1	GCF_003976075.1	GCF_002021635.2	GCF_003836635.1	GCF_002326365.1	GCF_001374295.1	GCF_003974455.1	GCF_000750905.1	GCF_020072205.1	GCF_020072185.1	GCF_003836745.1	GCF_001451865.1	GCF_021513595.1	GCF_003836065.1	GCF_021513635.1	GCF_003836255.1	GCF_003836085.1	GCF_021513615.1	GCF_021513515.1	GCF_021513375.1	GCF_021513475.1	GCF_021513555.1	GCF_021513435.1	GCF_003835295.1	GCF_021513395.1	GCF_021513455.1	GCF_003836005.1	GCF_021513575.1	GCF_021513415.1	GCF_003835325.1
19-CAMP	0	149	196	200	260	283	298	1896	2759	4279	4279	4281	4291	4338	4338	4338	4338	4344	4345	4505	4516	4517	4518	4535	4551	4552	4555	4570	4571	4603	4604
GCF_003975055.1	149	0	91	75	149	175	187	1787	2684	4204	4204	4206	4216	4263	4263	4263	4263	4269	4270	4430	4441	4442	4443	4460	4476	4477	4480	4495	4496	4528	4529
GCF_003976075.1	196	91	0	138	202	226	236	1840	2725	4241	4241	4243	4253	4300	4300	4300	4300	4306	4307	4467	4478	4479	4480	4497	4513	4514	4517	4532	4533	4565	4566
GCF_002021635.2	200	75	138	0	202	226	240	1840	2737	4257	4257	4259	4269	4316	4316	4316	4316	4322	4323	4483	4494	4495	4496	4513	4529	4530	4533	4548	4549	4581	4582
GCF_003836635.1	260	149	202	202	0	206	76	1766	2659	4177	4177	4179	4189	4234	4234	4234	4234	4240	4241	4403	4414	4415	4416	4433	4447	4448	4453	4468	4469	4501	4502
GCF_002326365.1	283	175	226	226	206	0	244	1844	2741	4257	4257	4259	4269	4312	4312	4312	4312	4318	4319	4481	4492	4493	4494	4511	4525	4526	4531	4546	4547	4579	4580
GCF_001374295.1	298	187	236	240	76	244	0	1804	2695	4215	4215	4217	4227	4272	4272	4272	4272	4278	4279	4441	4452	4453	4454	4471	4485	4486	4491	4506	4507	4539	4540
GCF_003974455.1	1896	1787	1840	1840	1766	1844	1804	0	2858	4532	4532	4534	4544	4585	4585	4585	4585	4591	4592	4756	4767	4768	4769	4786	4800	4801	4806	4821	4822	4854	4855
GCF_000750905.1	2759	2684	2725	2737	2659	2741	2695	2858	0	2236	2236	2238	2248	2295	2295	2295	2295	2301	2302	2464	2475	2476	2477	2494	2510	2511	2514	2529	2530	2562	2563
GCF_020072205.1	4279	4204	4241	4257	4177	4257	4215	4532	2236	0	8	94	92	141	141	141	141	147	148	308	319	320	321	338	354	355	358	373	374	406	407
GCF_020072185.1	4279	4204	4241	4257	4177	4257	4215	4532	2236	8	0	94	92	141	141	141	141	147	148	308	319	320	321	338	354	355	358	373	374	406	407
GCF_003836745.1	4281	4206	4243	4259	4179	4259	4217	4534	2238	94	94	0	106	155	155	155	155	161	162	322	333	334	335	352	368	369	372	387	388	420	421
GCF_001451865.1	4291	4216	4253	4269	4189	4269	4227	4544	2248	92	92	106	0	153	153	153	153	159	160	320	331	332	333	350	366	367	370	385	386	418	419
GCF_021513595.1	4338	4263	4300	4316	4234	4312	4272	4585	2295	141	141	155	153	0	0	2	2	10	11	240	251	252	253	270	284	285	290	305	306	338	339
GCF_003836065.1	4338	4263	4300	4316	4234	4312	4272	4585	2295	141	141	155	153	0	0	2	2	10	11	240	251	252	253	270	284	285	290	305	306	338	339
GCF_021513635.1	4338	4263	4300	4316	4234	4312	4272	4585	2295	141	141	155	153	2	2	0	0	10	11	240	251	252	253	270	284	285	290	305	306	338	339
GCF_003836255.1	4338	4263	4300	4316	4234	4312	4272	4585	2295	141	141	155	153	2	2	0	0	10	11	240	251	252	253	270	284	285	290	305	306	338	339
GCF_003836085.1	4344	4269	4306	4322	4240	4318	4278	4591	2301	147	147	161	159	10	10	10	10	0	1	246	257	258	259	276	290	291	296	311	312	344	345
GCF_021513615.1	4345	4270	4307	4323	4241	4319	4279	4592	2302	148	148	162	160	11	11	11	11	1	0	247	258	259	260	277	291	292	297	312	313	345	346
GCF_021513515.1	4505	4430	4467	4483	4403	4481	4441	4756	2464	308	308	322	320	240	240	240	240	246	247	0	41	80	61	68	114	115	118	223	224	256	255
GCF_021513375.1	4516	4441	4478	4494	4414	4492	4452	4767	2475	319	319	333	331	251	251	251	251	257	258	41	0	91	70	79	125	126	129	234	235	267	268
GCF_021513475.1	4517	4442	4479	4495	4415	4493	4453	4768	2476	320	320	334	332	252	252	252	252	258	259	80	91	0	95	110	84	85	88	233	234	266	267
GCF_021513555.1	4518	4443	4480	4496	4416	4494	4454	4769	2477	321	321	335	333	253	253	253	253	259	260	61	70	95	0	91	129	130	133	236	237	269	270
GCF_021513435.1	4535	4460	4497	4513	4433	4511	4471	4786	2494	338	338	352	350	270	270	270	270	276	277	68	79	110	91	0	144	145	148	253	254	286	287
GCF_003835295.1	4551	4476	4513	4529	4447	4525	4485	4800	2510	354	354	368	366	284	284	284	284	290	291	114	125	84	129	144	0	1	56	267	268	300	301
GCF_021513395.1	4552	4477	4514	4530	4448	4526	4486	4801	2511	355	355	369	367	285	285	285	285	291	292	115	126	85	130	145	1	0	57	268	269	301	302
GCF_021513455.1	4555	4480	4517	4533	4453	4531	4491	4806	2514	358	358	372	370	290	290	290	290	296	297	118	129	88	133	148	56	57	0	271	272	304	305
GCF_003836005.1	4570	4495	4532	4548	4468	4546	4506	4821	2529	373	373	387	385	305	305	305	305	311	312	223	234	233	236	253	267	268	271	0	1	57	58
GCF_021513575.1	4571	4496	4533	4549	4469	4547	4507	4822	2530	374	374	388	386	306	306	306	306	312	313	224	235	234	237	254	268	269	272	1	0	58	59
GCF_021513415.1	4603	4528	4565	4581	4501	4579	4539	4854	2562	406	406	420	418	338	338	338	338	344	345	256	267	266	269	286	300	301	304	57	58	0	1
GCF_003835325.1	4604	4529	4566	4582	4502	4580	4540	4855	2563	407	407	421	419	339	339	339	339	345	346	257	268	267	270	287	301	302	305	58	59	1	0
min: 0 max: 4855																															

ANEXO B Matriz de SNPs ST252 de *P. aeruginosa*

	1-CAMP	GCF_006364795.1	GCF_005154325.1	GCF_003863855.1	GCF_018138365.1	GCF_001374315.1	GCF_003055555.1	GCF_000792895.1	GCF_020882555.1	GCF_001065395.1	GCF_000797285.1	GCF_003836385.1	GCF_003969555.1	GCF_003838975.1	GCF_014204425.1	GCF_020639615.1	GCF_022569875.1	GCF_003629335.1	GCF_019281935.1	GCF_002326605.1	GCF_002330165.1	GCF_002330305.1	GCF_022552375.1	GCF_900147075.1	GCF_900707895.1	GCF_002330765.1	GCF_002330725.1	GCF_004371155.1	GCF_020905615.1	GCF_004054095.1	GCF_003836575.1
1-CAMP		65	65	72	84	110	140	147	178	202	1056	2698	3431	3473	3484	3502	3505	3506	3507	3507	3511	3514	3516	3542	3556	4169	4180	4681	4905	5002	6494
GCF_006364795.1	65	0	0	35	49	47	119	126	157	181	1035	2677	3410	3452	3463	3481	3484	3485	3486	3486	3490	3493	3495	3521	3535	4148	4159	4660	4884	4979	6471
GCF_005154325.1	65	0	0	35	49	47	119	126	157	181	1035	2677	3410	3452	3463	3481	3484	3485	3486	3486	3490	3493	3495	3521	3535	4148	4159	4660	4884	4979	6471
GCF_003863855.1	72	35	35	0	54	80	126	133	164	188	1042	2684	3417	3459	3470	3488	3491	3492	3493	3493	3497	3500	3502	3528	3542	4155	4166	4667	4891	4986	6478
GCF_018138365.1	84	49	49	54	0	94	138	145	176	200	1054	2696	3429	3471	3482	3500	3503	3504	3505	3505	3509	3512	3514	3540	3554	4167	4178	4679	4903	5000	6492
GCF_001374315.1		47	47	80	94	0	164	171	202	226	1080	2722	3455	3497	3508	3526	3529	3530	3531	3531	3535	3538	3540	3566	3580	4193	4204	4705	4929	5024	6516
GCF_003055555.1	140	119	119	126	138	164	0	163	194	218	1072	2714	3447	3489	3500	3518	3521	3522	3525	3523	3527	3530	3532	3558	3572	4185	4196	4697	4921	5018	6510
GCF_000792895.1	147	126	126	133	145	171	163	0	75	217	991	2655	3390	3430	3441	3459	3462	3463	3466	3464	3468	3471	3473	3499	3513	4128	4139	4638	4864	4959	6451
GCF_020882555.1	178	157	157	164	176	202	194	75	0	246	1022	2682	3419	3459	3470	3488	3491	3492	3495	3493	3497	3500	3502	3524	3542	4157	4168	4663	4893	4986	6480
GCF_001065395.1	202	181	181	188	200	226	218	217	246	0	1126	2766	3499	3541	3552	3570	3573	3574	3577	3575	3579	3582	3584	3610	3624	4237	4248	4749	4973	5070	6562
GCF_000797285.1	1056	1035	1035	1042	1054	1080	1072	991	1022	1126	0	3481	4210	4250	4261	4279	4282	4283	4286	4284	4288	4291	4293	4319	4333	4946	4957	5458	5644	5675	7173
GCF_003836385.1	2698	2677	2677	2684	2696	2722	2714	2655	2682	2766	3481	0	1273	1232	1243	1261	1262	1267	1270	1264	1270	1271	1275	1297	1325	1942	1955	2556	2869	3374	5173
GCF_003969555.1	3431	3410	3410	3417	3429	3455	3447	3390	3419	3499	4210	1273	0	77	76	228	229	112	237	231	237	238	142	176	194	1285	1298	1727	2065	2542	4342
GCF_003838975.1	3473	3452	3452	3459	3471	3497	3489	3430	3459	3541	4250	1232	77	0	43	183	184	65	192	186	192	193	97	131	149	1242	1255	1682	2021	2498	4298
GCF_014204425.1	3484	3463	3463	3470	3482	3508	3500	3441	3470	3552	4261	1243	76	43	0	194	195	78	203	197	203	204	106	138	158	1253	1266	1693	2032	2509	4309
GCF_020639615.1	3502	3481	3481	3488	3500	3526	3518	3459	3488	3570	4279	1261	228	183	194	0	43	218	51	45	51	52	248	282	300	1389	1402	1829	2170	2647	4447
GCF_022569875.1	3505	3484	3484	3491	3503	3529	3521	3462	3491	3573	4282	1262	229	184	195	43	0	219	50	44	50	51	249	283	301	1390	1403	1830	2171	2648	4448
GCF_003629335.1	3506	3485	3485	3492	3504	3530	3522	3463	3492	3574	4283	1267	112	65	78	218	219	0	227	221	227	228	132	166	184	1277	1290	1717	2056	2533	4331
GCF_019281935.1	3507	3486	3486	3493	3505	3531	3525	3466	3495	3577	4286	1270	237	192	203	51	50	227	0	36	42	43	257	291	309	1398	1411	1838	2179	2652	4452
GCF_002326605.1	3507	3486	3486	3493	3505	3531	3523	3464	3493	3575	4284	1264	231	186	197	45	44	221	36	0	10	19	251	285	303	1392	1405	1832	2173	2650	4450
GCF_002330165.1	3511	3490	3490	3497	3509	3535	3527	3468	3497	3579	4288	1270	237	192	203	51	50	227	42	10	0	25	257	291	309	1398	1411	1838	2179	2656	4456
GCF_002330305.1	3514	3493	3493	3500	3512	3538	3530	3471	3500	3582	4291	1271	238	193	204	52	51	228	43	19	25	0	258	292	310	1399	1412	1839	2180	2657	4457
GCF_022552375.1	3516	3495	3495	3502	3514	3540	3532	3473	3502	3584	4293	1275	142	97	106	248	249	132	257	251	257	258	0	172	190	1285	1298	1723	2064	2541	4341
GCF_900147075.1	3542	3521	3521	3528	3540	3566	3558	3499	3524	3610	4319	1297	176	131	138	282	283	166	291	285	291	292	172	0	222	1315	1328	1749	2096	2567	4369
GCF_900707895.1	3556	3535	3535	3542	3554	3580	3572	3513	3542	3624	4333	1325	194	149	158	300	301	184	309	303	309	310	190	222	0	1337	1350	1775	2116	2593	4393
GCF_002330765.1	4169	4148	4148	4155	4167	4193	4185	4128	4157	4237	4946	1942	1285	1242	1253	1389	1390	1277	1398	1392	1398	1399	1285	1315	1337	0	23	2570	2770	3209	5052
GCF_002330725.1																										_			2783	3222	5065
GCF_004371155.1																														3769	5558
GCF_020905615.1	4905	4884	4884	4891	4903	4929	4921	4864	4893	4973	5644	2869	2065	2021	2032	2170	2171	2056	2179	2173	2179	2180	2064	2096	2116	2770	2783	3350	0	3565	
GCF_004054095.1																															2452
GCF_003836575.1	6494	6471	6471	6478	6492	6516	6510	6451	6480	6562	7173	5173	4342	4298	4309	4447	4448	4331	4452	4450	4456	4457	4341	4369	4393	5052	5065	5558	5475	2452	0
min: 0 max: 7173																															

ANEXO C Matriz de SNPs ST446 de *P. aeruginosa*

	54-CAMP	GCF_006704885.1	GCF_006704985.1	GCF_000790765.1	GCF_001449585.1	GCF_022570415.1	GCF_001909945.1	GCF_001450905.1	GCF_006704945.1	GCF_003698495.1	GCF_006704955.1	GCF_001453825.1	GCF_003834125.1	GCF_006704345.1	GCF_006704645.1	GCF_006704675.1	GCF_006704975.1	GCF_001452125.1	GCF_012102975.1	GCF_006705065.1	GCF_000988505.1	GCF_006704445.1	GCF_003410875.2	GCF_006704365.1	GCF_003410705.2	GCF_006704865.1	GCF_006705075.1	GCF_020639935.1	GCF_020640475.1	GCF_003955055.1	GCF_006704685.1
54-CAMP	0	117	119	161	162	195	198	199	199	200	201	207	231	240	243	245	248	250	250	250	256	258	260	261	262	263	273	281	295	333	583
GCF_006704885.1	117	0	12	86	89	126	129	120	118	119	120	126	162	159	160	162	167	169	171	167	185	179	187	182	187	182	192	208	214	264	504
GCF_006704985.1	119	12	0	88	91	130	133	124	122	123	124	130	166	163	164	166	171	173	175	171	189	183	191	186	191	186	196	212	218	268	508
GCF_000790765.1	161	86	88	0	25	114	117	108	106	107	108	114	150	147	150	152	155	157	157	157	171	165	175	168	171	170	180	194	202	248	490
GCF_001449585.1	162	89	91	25	0	117	120	97	109	110	111	113	153	150	153	155	158	154	160	160	174	168	178	171	174	173	183	197	205	251	493
GCF_022570415.1	195	126	130	114	117	0	47	48	18	7	20	56	142	151	152	154	159	161	159	157	167	171	171	174	177	174	184	194	206	256	496
GCF_001909945.1	198	129	133	117	120	47	0	37	51	52	53	45	145	154	155	157	162	160	164	162	166	170	174	173	176	177	187	193	205	255	499
GCF_001450905.1	199	120	124	108	97	48	37	0	42	43	44	30	146	145	146	148	153	149	155	153	167	165	173	168	171	168	178	192	200	250	490
GCF_006704945.1	199	118	122	106	109	18	51	42	0	11	10	48	146	143	144	146	151	153	153	151	167	163	171	166	171	166	176	192	198	248	488
GCF_003698495.1	200	119	123	107	110	7	52	43	11	0	13	49	147	144	145	147	152	154	152	150	168	164	172	167	172	167	177	193	199	249	489
GCF_006704955.1	201	120	124	108	111	20	53	44	10	13	0	50	148	145	146	148	153	155	155	153	169	165	173	168	173	168	178	194	200	250	490
GCF_001453825.1	207	126	130	114	113	56	45	30	48	49	50	0	154	151	152	154	159	155	161	159	175	171	181	174	179	174	184	200	206	256	496
GCF_003834125.1	231	162	166	150	153	142	145	146	146	147	148	154	0	175	168	170	181	173	145	83	157	195	185	198	201	88	94	108	120	280	508
GCF_006704345.1	240	159	163	147	150	151	154	145	143	144	145	151	175	0	175	177	180	182	184	182	198	176	202	179	184	195	205	221	227	261	517
GCF_006704645.1	243	160	164	150	153	152	155	146	144	145	146	152	168	175	0	62	181	131	177	171	193	195	149	198	203	188	198	214	220	280	494
GCF_006704675.1	245	162	166	152	155	154	157	148	146	147	148	154	170	177	62	0	183	133	179	175	195	197	151	200	205	190	198	216	222	282	496
GCF_006704975.1	248	167	171	155	158	159	162	153	151	152	153	159	181	180	181	183	0	188	190	186	204	200	208	203	208	199	209	225	231	285	522
GCF_001452125.1	250	169	173	157	154	161	160	149	153	154	155	155	173	182	131	133	188	0	182	180	196	198	152	201	204	195	203	215	221	281	499
GCF_012102975.1	250	171	175	157	160	159	164	155	153	152	155	161	145	184	177	179	190	182	0	150	174	202	202	205	208	165	175	189	197	283	517
GCF_006705065.1	250	167	171	157	160	157	162	153	151	150	153	159	83	182	171	175	186	180	150	0	170	202	198	205	210	105	113	129	135	287	515
GCF_000988505.1	256	185	189	171	174	167	166	167	167	168	169	175	157	198	193	195	204	196	174	170	0	214	212	217	216	185	195	203	213	297	535
GCF_006704445.1	258	179	183	165	168	171	170	165	163	164	165	171	195	176	195	197	200	198	202	202	214	0	220	7	34	215	225	235	243	167	535
GCF_003410875.2	260	187	191	175	178	171	174	173	171	172	173	181	185	202	149	151	208	152	202	198	212	220	0	223	216	215	223	233	245	301	519
GCF_006704365.1	261	182	186	168	171	174	173	168	166	167	168	174	198	179	198	200	203	201	205	205	217	7	223	0	37	218	228	238	246	170	538
GCF_003410705.2	262	187	191	171	174	177	176	171	171	172	173	179	201	184	203	205	208	204	208	210	216	34	216	37	0	223	233	241	251	171	543
GCF_006704865.1	263	182	186	170	173	174	177	168	166	167	168	174	88	195	188	190	199	195	165	105	185	215	215	218	223	0	42	104	98	300	529
GCF_006705075.1	273	192	196	180	183	184	187	178	176	177	178	184	94	205	198	198	209	203	175	113	195	225	223	228	233	42	0	114	120	310	537
GCF_020639935.1	281	208	212	194	197	194	193	192	192	193	194	200	108	221	214	216	225	215	189	129	203	235	233	238	241	104	114	0	32	320	554
GCF_020640475.1	295	214	218	202	205	206	205	200	198	199	200	206	120	227	220	222	231	221	197	135	213	243	245	246	251	98	120	32	0	328	562
GCF_003955055.1	333	264	268	248	251	256	255	250	248	249	250	256	280	261	280	282	285	281	283	287	297	167	301	170	171	300	310	320	328	0	620
GCF_006704685.1	583	504	508	490	493	496	499	490	488	489	490	496	508	517	494	496	522	499	517	515	535	535	519	538	543	529	537	554	562	620	0
min: 7 max: 620																															

ANEXO D Matriz de SNPs ST671 de *P. aeruginosa*

	29-CAMP	GCF_900143985.1	GCF_900147925.1	GCF_900147875.1	GCF_900143935.1	GCF_900144145.1	GCF_900144075.1	GCF_900147825.1	GCF_900147675.1	GCF_900144125.1	GCF_003974615.1	GCF_023806065.1	GCF_023806345.1	GCF_024179165.1	GCF_000795145.1	GCF_001450115.1	GCF_023101305.1	GCF_023074345.1	GCF_001554785.1	GCF_002964275.1	GCF_001454165.1	GCF_013328425.1	GCF_021266605.1	GCF_001554775.1	GCF_003632495.1
29-CAMP	0	1503	1504	1504	1505	1505	1505	1506	1507	1509	1549	1735	1735	1735	1811	2061	2067	2067	2073	2079	2081	2082	2093	2100	2482
GCF_900143985.1	1503	0	13	9	10	14	12	7	14	16	110	300	300	300	374	630	640	640	646	650	654	663	666	673	1047
GCF_900147925.1	1504	13	0	10	15	17	19	12	13	15	113	301	301	301	375	631	641	641	647	651	655	664	667	674	1048
GCF_900147875.1	1504	9	10	0	17	19	19	14	13	13	113	301	301	301	375	631	641	641	647	651	653	664	667	674	1048
GCF_900143935.1	1505	10	15	17	0	8	8	11	16	18	112	302	302	302	376	632	642	642	648	652	656	665	668	675	1045
GCF_900144145.1	1505	14	17	19	8	0	6	15	16	20	114	304	304	304	378	634	644	644	650	654	658	667	670	677	1047
GCF_900144075.1	1505	12	19	19	8	6	0	11	18	16	114	304	304	304	378	634	644	644	650	654	658	667	670	677	1047
GCF_900147825.1	1506	7	12	14	11	15	11	0	13	11	113	303	303	303	377	631	641	641	647	651	655	664	667	674	1050
GCF_900147675.1	1507	14	13	13	16	16	18	13	0	18	116	306	306	306	380	636	646	646	652	656	660	669	672	679	1053
GCF_900144125.1	1509	16	15	13	18	20	16	11	18	0	118	306	306	306	380	636	646	646	652	656	660	669	672	679	1053
GCF_003974615.1	1549	110	113	113	112	114	114	113	116	118	0	324	324	324	400	652	662	662	668	674	676	685	688	695	1071
GCF_023806065.1		300	301	301	302	304	304	303	306	306	324	0	0	0	114	754	766	766	772	778	780	789	792	799	1094
GCF_023806345.1	1735	300	301	301	302	304	304	303	306	306	324	0	0	0	114	754	766	766	772	778	780	789	792	799	1094
GCF_024179165.1		300	301	301	302	304	304	303	306	306	324	0	0	0	114	754	766	766	772	778	780	789	792	799	1094
GCF_000795145.1		374	375	375	376	378	378	377	380	380	400	114	114	114	0	814	824	824	832	838	840	847	850	859	1166
GCF_001450115.1			631	631	632	634	634	631	636	636	652	754	754	754	814	0	108	108	114	120	114	131	134	141	1491
GCF_023101305.1		640	641	641	642	644	644	641	646	646	662	766	766	766	824	108	0	0	54	60	62	37	40	81	1501
GCF_023074345.1		640	641	641	642	644	644	641	646	646	662	766	766	766	824	108	0	0	54	60	62	37	40	81	1501
GCF_001554785.1		646	647	647	648	650	650	647	652	652	668	772	772	772	832	114	54	54	0	50	66	77	78	35	1507
GCF_002964275.1		650	651	651	652	654	654	651	656	656	674	778	778	778	838	120	60	60	50	0	72	83	86	77	1513
GCF_001454165.1		654	655	653	656	658	658	655	660	660	676	780	780	780	840	114	62	62	66	72	0	85	88	93	1515
GCF_013328425.1		663	664	664	665	667	667	664	669	669	685	789	789	789	847	131	37	37	77	83	85	0	63	104	1524
GCF_021266605.1		666	667	667	668	670	670	667	672	672	688	792	792	792	850	134	40	40	78	86	88	63	0	105	1527
GCF_001554775.1		673	674	674	675	677	677	674	679	679	695	799	799	799	859	141	81	81	35	77	93	104	105	0	1534
GCF_003632495.1	2482	1047	1048	1048	1045	1047	1047	1050	1053	1053	1071	1094	1094	1094	1166	1491	1501	1501	1507	1513	1515	1524	1527	1534	0
min: 0 max: 2482																									

ANEXO E

Matriz de SNPs ST79 e ST730 de *A. baumannii*

	9-CAMP	17-CAMP	53-CAMP	GCF_015538165.1	GCF_004347325.1	GCF_015537175.1	GCF_018156745.1	GCF_015537275.1	GCF_015537615.1	GCF_015538105.1	GCF_016056145.1	GCF_015537465.1 GCF_015538325.1	GCF_015537095.1	GCF_003596215.1	GCF_003595875.1	GCF_015537605.1	GCF_003812485.1	GCF_009829535.1	GCF_015666365.1	GCF_004359905.1			GCF_015537995.1	GCF 022660815.1		GCF_016055595.1	GCF_016055015.1	GCF_015537365.1	GCF_015536875.1	GCF_002019025.1		GCF_015537155.1	GCF_015536935.1	GCF_009829525.1	GCF_015537295.1	GCF_015537845.1	GCF_008180145.1	GCF_015537665.1 GCF_015536965.1	60-CAMP	GCF_002250465.1
9-CAM	P 0	0	2	21	28	30	48	52	54	114	133	138 16	6 167	190	191	277	283	318	319	319	327	352 3	354 3	58 36	9 369	425	485	514	521	526 53	6 839	840	842	868	887	2820	2822 2	828 290	04 2911	2950
17-CAME	P 0	0	2	21	28	30	48	52	54	114	133	138 16	6 167	190	191	277	283	318	319	319	327	352 3	354 3	58 36	9 369	425	485	514	521	526 53	6 839	840	842	868	887	2820	2822 2	828 290	04 2911	2950
53-CAME	P 2	2	0	19	26	28	46	50	52	112	131	136 16	4 165	188	189	275	281	316	317	317	325	350 3	352 3	56 36	7 367	423	483	512	519	524 53	4 837	7 838	840	866	885	2818	2820 2	826 290	2909	2948
GCF_015538165.1		21	19	0	15	17	35	39	41			125 15			178	264								45 35			472			513 52			829						91 2900	
GCF_004347325.1		28	26	15	0	2	42	46	46			132 15	8 159	184	185	271								52 36		419	479			520 53			836						98 2907	
GCF_015537175.1		30	28	17	2	0	44	46	48			134 15	5 157	182	183	269	275							54 36	5 361	419	481		513	518 53			834						96 2905	
GCF_018156745.1		48	46	35	42	44	0	66	68			152 18			205									72 38	383	439	499			540 55			856						18 2927	
GCF_015537275.1		52	50	39	46	46	66	0	50			154 14			171	255								55 38			480			506 53			822						34 2893	
GCF_015537615.1		54	52	41	108	48	68	50 96	0			158 13		158	169 159	255 257								65 38 55 44		429 388	492			504 54			820 802						32 2891	· ·
GCF_015538105.1			112	101 120	108	129	128	126	96 140	166		158 62 179 19	61		255	303	301							55 44 87 46			482			518 53 571 45			802						39 2896 26 2935	
GCF_016056145.1		138	131	120	127	129	152	154	158		179	0 15			229	290			397	207				38 43	0 433	363	465		571	576 51			842						00 2909	
GCF_015537465.1		166	164	152	152	156	180	1/10	136			159 0	9 100	212	213	249	143	448	449	440		373 3		79 49	7 429	373	506			568 59		7 040	850	976	905	2010			02 2903	· ·
GCF_015538325.1			165	154	159	157	181	149	135			160 5	0	212	212					450				80 49	8 428		507			567 55		847	849	875	894	2817			01 2910	
GCF_003596215.1			188	177	184	187	204	170	168			228 21			5			414			423			55 46	1 391	449	493			510 55			806	832					79 2888	
GCF 003595875.1			189	178	185	183	205	171	169			229 21			0									56 46		450	494			511 55			807	833					30 2889	
GCF_015537605.1			275	264	271	269	291	255	255			290 24		_	293	_								81 46			533			610 57			914						05 2814	
GCF_003812485.1			281	270	277	275	297	263	261	177	301	238 14	3 142	235	236	250		539	540	542	550	450 4	448 4	56 56	6 486	466	583	613	620	625 63	4 904	905	907	933					01 2910	
GCF_009829535.1			316	305	312	314	332	334	338	396	409	396 44	8 449	414	415	439	539	_	_				504 5	08 6						733 51	1 974	975	977	1003					30 2889	
GCF_015666365.1			317	306	313	315	333	335		397	410	397 44	9 450	410	411			288			_		472 4	_	9 339					728 38		1 952	954						71 2780	-
GCF 004359905.1			317	306		315	333		339	397	410	397 44	9 450	415	416		542		289					09 70						734 51	2 975	5 976	978	1004					31 2890	
GCF 022660835.1			325	314		323	341	343	347			405 45	7 458	423	424		550			26				17 70						742 52		3 984							39 2898	
GCF 015538255.1			350		346	348	366	349	359		281	332 37	3 374	349	350		_	_							3 524					672 32		956	958						11 2950	
GCF_015537995.1			352		348	346	368	349	361	347	283	334 37	1 372	347	348	473	448					2	0 3	32 55						670 33		3 954	956						39 2948	1
GCF 016055335.1			356		352	354	372	355	365			338 37	9 380	355	356	481								0 55			272			678 33			964						17 2956	
GCF 022660815.1			367	356	363	365	383	385	389			439 49			462	464	566	_					555 5							784 56									33 2842	
GCF 015536955.1			367	356	363	361	383			375	435	437 42	9 428	391	392		486								0 0					728 53		970	972						36 2845	
GCF_016055595.1			423	412	419	419	439	421	429			363 37			450										8 582		523					0 1031							39 2998	
GCF_016055015.1			483	472	479	481	499	480	492			465 50			494	533								72 50		_	0												35 2894	
GCF 015537365.1		514	512	501	508	506	528	494	492	506		564 55			499	598								66 77							_	9 1080							53 3162	
GCF 015536875.1			519	508	515	513	535	501	499			571 56			506	605								73 77			845	13		47 90		6 1087							50 3169	
GCF_013336873.1			524	513	520	518	540	506	504			576 56			511	610		733						78 78			850		47	0 90		1 1092							55 3174	1
GCF_015666275.1			534	523		532	550	531	543			516 55			553	578								33 56			104												59 2968	
GCF_015666275.1		839	837	826	833	831	853	819	817			839 84			804	911								61 10			_			1091 11	_	1	17	51					59 3268	
GCF_015537705.1		840	838	827	834	832	854	820	818			840 84			805	912	905	975						62 10						1092 11		0	16	50					58 3267	
		840	840	827	836	834	856	820	820			840 84 842 85			805	912								64 10		1031				1092 11			0						58 3267 50 3269	
GCF_015536935.1		868	866	855	862	860	882	848	846			868 87			833	940				1004 1				90 10		1055				1120 11			52						38 3297	
GCF_009829525.1				874		879	901	867	865			868 87 887 89			852	959				1004 1		.003 1			73 1017		1087			1120 11			71	33						
GCF_015537295.1		887	885																										3076			5 3174							07 3316 2 131	
GCF_015537845.1					2814	2812	2834				842 2	816 281			2800						2805 2 2809 2				49 2752		2801	2072	2000	0081 28	70 317	0 2170							2 131 4 143	
GCF_008180145.1					2818	2816	2838						2 282												53 2756		2805	3073	2004	0085 28	73 31/	3 31/8		3208						
GCF_015537665.1									2806			824 282													57 2760			30//	3084	3089 28	33 318	3 3182		3212					0 139	
GCF_015536965.1									2882	2889 2	2926 2	900 290	2 290		2880			2880			2889 2			947 28			2885	3153	3100 :	3105 29		9 3258		3288				.30 0		1828
60-CAME	-								2891	2896 2	935 2	909 291	1 291				2910								42 2845					3174 29								.39 2:		1837
GCF_002250465.1	_	2950	2948	2937	2944	2946	2964	2945	2947	2945 2	2954 2	936 294	2 294	3 2986	2987	2978	3003	3052	3026	3053	3061 3	026 3	028 30	32 30!	5/ 3062	3081	3041	3310	3317	3322 30	345	6 3455	3457	3485	3504	1846	1856 1	854 182	28 1837	0
min: 0 max: 3504																																								

ANEXO F

Matriz de SNPs ST11 de *K. pneumoniae*

	8-CAMP	67-CAMP	GCF_014323715.1	GCF_018423665.1	GCF_011037675.1	GCF_011037595.1	GCF_011037755.1	GCF_011037515.1	GCF_011037615.1	GCF_011037715.1	GCF_016055885.1	GCF_018423625.1	GCF_011037535.1	GCF_011037495.1	GCF_001701895.1	GCF_011037455.1	GCF_016055695.1	6-CAMP	GCF_003321155.1	GCF_022544755.1	GCF_021206585.1	GCF_003321215.1	GCF_900504255.1	GCF_900512455.1	GCF_009914255.1	GCF_018335415.1	GCF_013626195.1	30-CAMP	GCF_900511465.1	GCF_021020735.1	GCF_013378175.1	GCF_013378295.1	GCF_013378315.1	GCF_013378195.1	GCF_013378235.1	GCF_015666295.1	GCF_023059285.1	GCF_022353825.1
8-CAMP	0	18	71	72	82	90	93	93	96	96	100	100	104	104	105	109	113	116	123	126	134	192	2031	2037	2052	2061	2068	2076	2079	2080	2083	2083	2083	2084	2087	2090	2098	2101
67-CAMP	18	0	75	76	86	94	97	97	100	100	104	104	108	108	109	113	117	120	127	126	138	196	2037	2041	2058	2065	2072	2080	2083	2084	2089	2089	2089	2090	2093	2094	2102	2103
GCF_014323715.1	71	75	0	3	45	53	56	58	63	59	53	47	67	71	58	72	66	75	80	97	91	149	1992	1996	2013	2020	2027	2039	2038	2039	2044	2044	2044	2045	2048	2051	2059	2064
GCF_018423665.1	72	76	3	0	46	54	57	59	64	60	54	48	68	72	59	73	67	76	81	98	92	150	1993	1997	2014	2021	2028	2040	2039	2040	2045	2045	2045	2046	2049	2052	2060	2065
GCF_011037675.1	82	86	45	46	0	46	49	59	66	62	62	74	60	74	71	73	55	74	89	90	100	154	2001	2005	2022	2029	2036	2048	2047	2048	2053	2053	2053	2054	2057	2060	2068	2063
GCF_011037595.1	90	94	53	54	46	0	53	71	52	50	74	82	46	62	57	63	87	86	93	102	104	158	1987	1991	2008	2015	2022	2034	2033	2034	2039	2039	2039	2040	2043	2046	2054	2049
GCF_011037755.1	93	97	56	57	49	53	0	74	73	69	77	85	67	81	78	82	90	89	64	105	77						2043										2075	
GCF_011037515.1		97	58	59	59	71	74	0	75	77	75	87	83	85	84	88	88	93	104	109			2016				2051							2069			2083	
GCF_011037615.1		100	63	64	66	52	73	75	0	60	84	92	20	68	43	73	97	102	103	118																	2050	
GCF_011037715.1		100	59	60	62	50	69	77	60	0	80	88	64	42	65	43	93	102	99	118	110	168					2032										2064	
GCF_016055885.1		104	53	54	62	74	77	75	84	80	0	82	88	92	79	91	83	72	101	90							2044										2076	
GCF_018423625.1		104	47	48	74	82	85	87	92	88	82	0	96	100	87	101	95	104	109	126																	2084	
GCF_011037535.1		108	67	68	60	46	67	83	20	64	88	96	0	76	47	77	101	100	107	116	118						2026										2058	
GCF_011037495.1		108	71	72	74	62	81	85	68	42	92	100	76	0	77	49	105	110		126																	2076	
GCF_001701895.1		109	58	59	71	57	78	84	43	65	79	87	47	77	0	78	92	101	102	123		171		1990	2007		2021			2033							2053	
GCF_011037455.1		113	72	73	73	63	82	88	73	43	91	101	77	49	78	0	104	113	112	129			2008				2043								2064		2075	
GCF_016055695.1		117	66	67	55	87	90	88	97	93	83	95	101	105	92	104	0	105	110	127	123						2059										2089	
6-CAMP		120	75	76	74	86	89	93	102	102	72	104	100	110	101	113	105	0	123	90			2031		_05.												2100	
GCF_003321155.1		127	80	81	89	93	64	104	103	99	101	109	107	111	102	112		123	0				2032		2053	2060	2067	2079									2099	
GCF_022544755.1		126	97	98	90	102	105	109	118	118	90		116	126	123	129	127	90	145	0			2053		20/6	2083	2090	2090									2122	
GCF_021206585.1		138	91 149	92 150	100	104 158	77 129	115	114 172				118		113	123	123			150	0 170		2037 2101		2060		2074				2091						2106	
GCF_003321215.1 GCF_900504255.1						1987		_		1997									147		_			28	43	52	2136 59	69	68	71	74	74	74	75	78	83	2166 91	88
GCF_900504255.1																								0	49	56	63	75	74	75	80	80	80	81	84	87		100
GCF_900312435.1						1991				2018								2057						49	0	67	74	86	91	86	59	59	59	60	63	98		115
GCF_003314235.1						2008				2018						2025				2083	2067			56	67	0	15	33	98	27	98	98	98		102	45		124
GCF 013626195.1																								63	74	15	0	40	105	34	105	105	105		109	50		131
30-CAMP										2044								2068		2090	2080			75	86	33	40	0	113	52	117	117	117		121	34		131
GCF 900511465.1										2043														74	91	98	105	113	0	117	122	122				129	_	138
GCF 021020735.1			2039	2040	2048	2034	2055			2044											2086			75	86	27	34		117	0	117	117	117		121	64		143
GCF_013378175.1				2045	2053	2039				2049											2091			80	59	98				117	0	0	0	1	4	129		146
GCF 013378295.1						2039				2049														80	59	98				117	0	0	0	1	4	129		146
GCF 013378315.1			2044	2045		2039				2049				2061				2085			2091			80	59	98	105			117	0	0	0	1	4	129		146
GCF 013378195.1				2046																				81	60	99				118	1	1	1	0	3	130		147
GCF_013378235.1	2087	2093	2048	2049	2057	2043	2064	2072	2039	2053	2067	2073	2047	2065	2042	2064	2080	2089	2088	2111	2095	2157	78	84	63	102	109	121	126	121	4	4	4	3	0	133	141	150
GCF_015666295.1			2051	2052	2060	2046	2067	2075	2042	2056	2068	2076	2050	2068	2045	2067	2081	2092			2098	2160	83	87	98	45	50	34	129	64	129	129	129	130	133	0	16	155
GCF_023059285.1	2098	2102	2059	2060	2068	2054	2075	2083	2050	2064	2076	2084	2058	2076	2053	2075	2089	2100	2099	2122	2106	2166	91	95	106	53	58	42	137	72	137	137	137	138	141	16	0	163
GCF_022353825.1	2101	2103	2064	2065	2063	2049	2070	2088	2055	2069	2083	2089	2051	2081	2058	2080	2096	2083	2104	2059	2105	2167	88	100	115	124	131	131	138	143	146	146	146	147	150	155	163	0
min: 0 max: 2167																																						

ANEXO G

Matriz de SNPs ST16 de *K. pneumoniae*

	81-CAMP	GCF_011038315.1	GCF_021206795.1	GCF_021020975.1	GCF_011038425.1	GCF_011038455.1	GCF_011038515.1	GCF_011038395.1	GCF_011038355.1	GCF_011038295.1	GCF_011038175.1	GCF_011038475.1	GCF_018423825.1	GCF_011038255.1	GCF_011038335.1	GCF_011038495.1	GCF_011038155.1	GCF_011038265.1	GCF_011038195.1	GCF_016055575.1	GCF_900084145.1	GCF_021245835.1	GCF_013372785.1	GCF_003401525.1	GCF_900084525.1	GCF_003400885.1	GCF_003400845.1	GCF_002248505.1	GCF_011038215.1	GCF_003326395.1	GCF_003321095.1
81-CAMP	0	67	75	84	91	91	91	92	94	94	95	95	95	95	98	98	99	100	106	106	110		132								467
GCF_011038315.1	67	0	48	45	64	64	64	65	67	67	68	68	68	68	71	71	72	73	81	79	85	90	107	115	116	116	119	144	149	155	436
GCF_021206795.1	75	48	0	67	72	72	72	73	75	75	76	76	76	76	79	79	80	81	89	87	93	98	115	123	124	124	127	152	157	169	450
GCF_021020975.1	84	45	67	0	83	83	83	84	86	86	87	87	87	87	90	88	91	92	98	98	104	107	126	134	135	135	138	163	168	174	453
GCF_011038425.1	91	64	72	83	0	2	22	3	7	7	6	6	20	20	9	23	24	25	33	77	81	48	103	111	112	112	115	140	87	185	466
GCF_011038455.1	91	64	72	83	2	0	22	1	7	7	6	4	20	20	9	23	24	25	33	77	81	48	103	111	112	112	115	140	87	185	466
GCF_011038515.1	91	64	72	83	22	22	0	23	25	25	26	26	26	26	29	29	30	31	39	77	81	48	103	111	112	112	115	140	107	185	466
GCF_011038395.1	92	65	73	84	3	1	23	0	8	8	7	5	21	21	10	24	25	26	34	78	82	49	104	112	113	113	116	141	88	186	467
GCF_011038355.1	94	67	75	86	7	7	25	8	0	4	11	11	23	23	14	26	27	28	36	80	84	51	106	114	115	115	118	143	92	188	469
GCF_011038295.1	94	67	75	86	7	7	25	8	4	0	11	11	23	23	14	26	27	28	36	80	84	51	106	114	115	115	118	143	92	188	469
GCF_011038175.1	95	68	76	87	6	6	26	7	11	11	0	10	24	24	13	27	28	29	37	81	85	52	107	115	116	116	119	144	85	189	470
GCF_011038475.1	95	68	76	87	6	4	26	5	11	11	10	0	24	24	13	27	28	29	37	81	85	52	107	115	116	116	119	144	91	189	470
GCF_018423825.1	95	68	76	87	20	20	26	21	23	23	24	24	0	24	27	27	28	29	37	81	85	52	107	115	116	116	119	144	105	189	470
GCF_011038255.1	95	68	76	87	20	20	26	21	23	23	24	24	24	0	27	27	26	29	37	81	85	52	107	115	116	116	117	144	105	187	470
GCF_011038335.1	98	71	79	90	9	9	29	10	14	14	13	13	27	27	0	30	31	32	40	84	88	55	110	118	119	119	122	147	94	192	473
GCF_011038495.1	98	71	79	88	23	23	29	24	26	26	27	27	27	27	30	0	29	30	38	84	88	55	110	118	119	119	122	147	108	192	473
GCF_011038155.1	99	72	80	91	24	24	30	25	27	27	28	28	28	26	31	29	0	11	35	85	89	56	111	119	120	120	121	148	109	191	474
GCF_011038265.1	100	73	81	92	25	25	31	26	28	28	29	29	29	29	32	30	11	0	36	86	90	57	112	120	121	121	124	149	110	194	475
GCF_011038195.1	106	81	89	98	33	33	39	34	36	36	37	37	37	37	40	38	35	36	0	94	98	63	120	128	129	129	132	157	118	202	481
GCF_016055575.1	106	79	87	98	77	77	77	78	80	80	81	81	81	81	84	84	85	86	94	0	98	103	120	128	129	129	132	157	162	198	481
GCF_900084145.1	110	85	93	104	81	81	81	82	84	84	85	85	85	85	88	88	89	90	98	98	0	107	98	74	73	75	78	111	166	206	487
GCF_021245835.1	115	90	98	107	48	48	48	49	51	51	52	52	52	52	55	55	56	57	63	103	107	0	129	137	138	138	141	166	133	211	490
GCF_013372785.1	132	107	115	126	103	103	103	104	106	106	107	107	107	107	110	110	111	112	120	120	98	129	0	128	129	129	132	157	188	228	509
GCF_003401525.1	136	115	123	134	111	111	111	112	114	114	115	115	115	115	118	118	119	120	128	128	74	137	128	0	105	9	13	141	196	236	517
GCF_900084525.1	141	116	124	135	112	112	112	113	115	115	116	116	116	116	119	119	120	121	129	129	73	138	129	105	0	106	109	142	197	237	518
GCF_003400885.1	141	116	124	135	112	112	112	113	115	115	116	116	116	116	119	119	120	121	129	129	75	138	129	9	106	0	14	142	197	237	518
GCF_003400845.1	144	119	127	138	115	115	115	116	118	118	119	119	119	117	122	122	121	124	132	132	78	141	132	13	109	14	0	145	200	238	521
GCF_002248505.1	169	144	152	163	140	140	140	141	143	143	144	144	144	144	147	147	148	149	157	157	111	166	157	141	142	142	145	0	225	265	546
GCF_011038215.1	176	149	157	168	87	87	107	88	92	92	85	91	105	105	94	108	109	110	118	162	166	133	188	196	197	197	200	225	0	270	551
GCF_003326395.1	188	155	169	174	185	185	185	186	188	188	189	189	189	187	192	192	191	194	202	198	206	211	228	236	237	237	238	265	270	0	557
GCF_003321095.1	467	436	450	453	466	466	466	467	469	469	470	470	470	470	473	473	474	475	481	481	487	490	509	517	518	518	521	546	551	557	0
min: 1 max: 557																															

ANEXO H

Matriz de SNPs ST17 de *K. pneumoniae*

	68-CAMP	GCF_008704105.1	GCF_001463555.1	GCF_002181945.1	GCF_900493415.1	GCF_003861575.1	GCF_900508645.1	GCF_900508605.1	GCF_001875075.1	GCF_900516175.1	GCF_023273215.1	GCF_023273185.1	GCF_002851455.1	GCF_900494355.1	GCF_900502815.1	GCF_002181955.1	GCF_002181915.1	GCF_900501815.1	GCF_900501665.1	GCF_002181895.1	GCF_900501755.1	GCF_900501985.1	GCF_000693115.1	GCF_900509065.1	GCF_900501975.1	GCF_900084965.1	GCF_900516705.1	GCF_900774365.1	GCF_900509985.1	GCF_900510045.1	GCF_021136045.1
68-CAMP		_																												367	
GCF_008704105.1			247											262																370	
GCF_001463555.1																														331	
GCF_002181945.1			248																											371	
GCF_900493415.1																														342	
GCF_003861575.1							41	42	52		166			235		270			68	69	71	70								301	
GCF_900508645.1						41	0	1	51		169			238		273		65	67	68	70	69		155						304	
GCF_900508605.1						42	1	0	52		170			239		274		66	68	69	71	70		156						305	
GCF_001875075.1						52	51	52	0		172			241				68	70	71	73	72								307	
GCF_900516175.1 GCF_023273215.1							55	56	58	-	174 0					278			72	71	75	74								309 311	
_																															
GCF_023273185.1 GCF_002851455.1																														311	
GCF_002851455.1 GCF_900494355.1																														352	
GCF 900502815.1														250					21											316	
GCF 002181955.1		_														0		_												389	
GCF 002181915.1																	0													390	
GCF 900501815.1							65	66	68		184			253				0	24	83	19	20								319	
GCF 900501665.1						68	67	68	70		186		89	255	21		291	-	0	85	29	28		172						321	
GCF 002181895.1						69	68	69	71		187		90		80	283		83	85	0	88	87		173						312	
GCF 900501755.1						71	70	71	73		187			256		291		19	29	88	0	25		175						322	
GCF 900501985.1						70	69	70	72		188			257		292		20	28	87	25	0		174						323	
GCF 000693115.1						64	65	66	76	80	194	194		263	87	298	299	90	92	93	95	94	0	180	104	305	312	320	318	329	394
GCF 900509065.1	278	281	250	282	253	152	155	156	158	160	196	196	161	265	167	300	301	170	172	173	175	174	180	0	184	281	314	318	322	295	396
GCF 900501975.1	280	283	254	284	255	80	79	80	82	72	198	198	101	267	81	302	303	90	96	95	95	96	104	184	0	309	316	324	322	333	398
GCF_900084965.1	343	346	309	347	318	277	280	281	283	285	287	287	280	330	292	365	366	295	297	298	298	299	305	281	309	0	239	239	249	222	389
GCF_900516705.1	348	351	322	352	323	284	287	288	290	292	292	292	295	335	299	370	371	302	304	305	305	306	312	314	316	239	0	252	258	269	394
GCF_900774365.1	354	357	328	358	329	292	295	296	298	300	300	300	303	341	307	376	377	310	312	313	313	314	320	318	324	239	252	0	264	271	402
GCF_900509985.1	356	359	330	360	331	290	293	294	296	298	300	300	301	341	305	378	379	308	310	305	311	312	318	322	322	249	258	264	0	89	396
GCF_900510045.1	367	370	331	371	342	301	304	305	307	309	311	311	304	352	316	389	390	319	321	312	322	323	329	295	333	222	269	271	89	0	405
GCF_021136045.1	430	433	404	434	405	366	369	370	372	374	374	374	377	417	381	452	453	384	386	381	387	388	394	396	398	389	394	402	396	405	0
min: 0 max: 453																															

ANEXO I Matriz de SNPs ST437 de *K. pneumoniae*

	21-CAMP	GCF_011037435.1	GCF_011037375.1	GCF_011037225.1	GCF_011037295.1	GCF_011037415.1	GCF_011037315.1	; GCF_011037275.1	; GCF_011037245.1	GCF_018423915.1	GCF_011037335.1	GCF_003789125.1	GCF_001968745.2	GCF_900506115.1	GCF_900506235.1	GCF_021020725.1	GCF_900504945.1	GCF_900505665.1	GCF_900505815.1	GCF_900505755.1	GCF_900506215.1	GCF_900500965.1	GCF_003363565.1	GCF_003363665.1	GCF_900503605.1	GCF_900504965.1	GCF_900505765.1	GCF_021136815.1	GCF_900506245.1	GCF_900506165.1	GCF_018423905.1
21-CAMP	_	45	47	49	49	51	51	52															168								
GCF_011037435.1		0	16	18	18	42	20	21	21														159								
GCF_011037375.1		16	0	4	4	44	6	7	-														161								
GCF_011037225.1		18	4	0	2	46	4	5	5														163								
GCF_011037295.1		18	4	2	0	46	4	5	5														163								
GCF_011037415.1		42	44	46	46	0	48	49	49														153								
GCF_011037315.1		20	6	4	4	48	0	7	7														165								
GCF_011037275.1		21	7	5	5	49	7	0	8														166								
GCF_011037245.1		21	7	5	5	49	7	8	112														166								
GCF_018423915.1										0		90	85	94	95	97							109								
GCF_011037335.1												112			91			93					103								
GCF_003789125.1 GCF_001968745.2												121	0	63		102	65	66	70	72			145 78	79	78	82	83	92		100	
GCF_001968745.2 GCF_900506115.1												130	63	0		111	16	29	19	21	74 25	74 37	67	68	53	57	58	67	72		111
GCF_900506235.1												123	64	15	0	112	11		22	14	10	28	68	69	54	56	59	68	63		102
GCF_900306233.1 GCF_021020725.1														111				114							126		131			148	
GCF_021020723.1 GCF_900504945.1												126	65	16		113	0	31	23	23	21	39	69	70	53	57	60	67	73		105
GCF 900505665.1												127	66	29	24	114	31	0	36	32	34	12	70	71	56	60	61	70	69		103
GCF 900505815.1													70	19	22	118	23	36	0	16	32	44	74	75	60	64	65	74	79		118
GCF 900505755.1												131	72	21	14	120	23	32	16	0	24	36	76	77	62	64	67	76	70		108
GCF 900506215.1													74	25	10		21	34	32	24	0	38	78	79	64	66	69	78	73		112
GCF 900500965.1													74	37	28		39	12	44	36	38	0	78	79	64	66	69	78	73		112
GCF 003363565.1													78	67		124	69	70	74	76	78	78	0	3	82	86	87		103		
GCF 003363665.1													79	68		125	70	71	75	77	79	79	3	0	83	87	88		104		
GCF 900503605.1														53	54	126	53	56	60	62	64	64	82	83	0	68	71	38	89		124
GCF 900504965.1													82	57	56	130	57	60	64	64	66	66	86	87	68	0	13	82	91		126
GCF 900505765.1													83	58	59	131	60	61	65	67	69	69	87	88	71	13	0	85	94		131
GCF 021136815.1														67	68	138	67	70	74	76	78	78	94	95	38	82	85	0	103	104	
GCF 900506245.1														72	63	147	73	69	79	70	73	73	103	104	89	91	94	103	0	1	136
GCF 900506165.1															64	148	74	70	80	71	74		104	105	90	92	95	104	1	0	137
GCF_018423905.1																									124	126	131	138	136		0
min: 1 max: 194																															

ANEXO J

Matriz de SNPs ST1193 de *E. coli*

	28-CAMP	GCF_002861245.1	GCF_905133495.1	GCF_905133455.1	GCF_018456825.1	GCF_021167055.1	GCF_001057225.1	GCF_905133515.1	GCF_905133425.1	GCF_003885915.1	GCF_900490575.1	GCF_016457375.1	GCF_902703125.1	GCF_022408955.1	GCF_024396555.1	GCF_019585935.1	GCF_016457845.1	GCF_016458155.1	GCF_014893315.1	GCF_016761135.1	GCF_016457655.1	GCF_016458055.1	GCF_019443685.1	GCF_014878495.1	GCF_016457315.1	GCF_016457545.1	GCF_016457915.1	GCF_016458045.1	GCF_017164655.1	GCF_003299085.1	GCF_016457605.1
28-CAMP	0	93	100	100	101	102	102	103	104	107	108	108	114	116	117	117	118	118	119	121	122	124	127	127	128	128	128	130	131	145	158
GCF_002861245.1		0	41	41	42	43	43	44	45	48	49	49	55	57	58	58	59	59	60	74	63	65	68	68	69	69	69	71	72	86	99
GCF_905133495.1		41	0	0	37	38	38	3	4	43	44	44	50	52	53	53	54	54	55	69	60	60	63	63	64	64	64	66	67	81	94
GCF_905133455.1	100	41	0	0	37	38	38	3	4	43	44	44	50	52	53	53	54	54	55	69	60	60	63	63	64	64	64	66	67	81	94
GCF_018456825.1			37	37	0	39	39	40	41	44	45	45	51	53	54	54	55	55	56	70	61	61	64	50	65	65	65	67	44	82	95
GCF_021167055.1			38	38	39	0	34	41	42	45	46	40	46	48	55	49	50	50	57	71	62	56	65	65	60	60	60	62	69	77	90
GCF_001057225.1			38	38	39	34	0	41	42	45	46	40	46	36	55	49	50	50	57	71	62	56	65	65	60	60	60	62	69	77	90
GCF_905133515.1			3	3	40	41	41	0	7	46	47	47	53	55	56	56	57	57	58	72	63	63	66	66	67	67	67	69	70	84	97
GCF_905133425.1			4	4	41	42	42	7	0	47	48	48	54	56	57	57	58	58	59	73	64	64	67	67	68	68	68	70	71	85	98
GCF_003885915.1		48	43	43	44	45	45	46	47	0	51	51	57	59	50	60	61	61	52	76	67	67	69	70	71	71	71	73	74	86	101
GCF_900490575.1		49	44	44	45	46	46	47	48	51	0	52	58	60	61	61	62	62	63	77	68	68	71	71	72	72	72	74	75	89	102
GCF_016457375.1			44	44	45	40	40	47	48	51	52	0	52	54	61	53	30	54	63	77	68	60	71	71	66	64	64	66	75	81	94
GCF_902703125.1			50	50	51	46	46	53	54	57	58	52	0	60	67	61	62	62	69	83	74	68	77	77	72	72	72	74	81	89	102
GCF_022408955.1			52	52	53	48	36	55	56	59	60	54	60	0	69	63	64	64	71	85	76	70	79	79	74	74	74	76	83	91	104
GCF_024396555.1			53	53	54	55	55	56	57	50	61	61	67	69	0	70	69	71	62	86	77	77	78	78	81	81	81	83	84	96	111
GCF_019585935.1			53	53	54	49	49	56	57	60	61	53	61	63	70	0	63	59	72	84	77	49	80	80	75	65	53	55	84	86	99
GCF_016457845.1			54	54	55	50	50	57	58	61	62	30	62	64	69	63	0	64	73	87	78	70	81	81	76	74	74	76	85	91	104
GCF_016458155.1			54	54	55	50	50	57	58	61	62	54	62	64	71	59	64	0	73	87	78	66	81	81	76	70	70	72	85	85	98
GCF_014893315.1			55	55	56	57	57	58	59	52	63	63	69	71	62	72	73	73	0	88	79	79	82	82	83	83	83	85	86	98	113
GCF_016761135.1			69	69	70	71	71	72	73	76	77	77	83	85	86	84	87	87	88	0	93	93	96	96	97	97	97	99	100	114	127
GCF_016457655.1			60	60	61	62	62	63	64	67	68	68	74	76	77	77	78	78	79	93	0	84	87	87	88	88	88	90	91	105	118
GCF_016458055.1			60	60	61	56	56	63	64	67	68	60	68	70	77	49	70	66	79	93	84	0	87	87	82	72	60	61	91	93	106
GCF_019443685.1			63	63	64	65	65	66	67	69	71	71	77	79	78	80	81	81	82	96	87	87	0	90	91	91	91	93	94	108	121
GCF_014878495.1			63	63	50	65	65	66	67	70	71	71	77	79	78	80	81	81	82	96	87	87	90	0	91	91	91	93	80	108	121
GCF_016457315.1			64	64	65	60	60	67	68	71	72	66	72	74	81	75	76	76	83	97	88	82	91	91	0	86	86	88	95	103	116
GCF_016457545.1			64	64	65	60	60	67	68	71	72	64	72	74	81	65	74	70	83	97	88	72	91	91	86	0	76	78	95	97	110
GCF_016457915.1			64	64	65	60	60	67	68	71	72	64	72	74	81	53	74	70	83	97	88	60	91	91	86	76	0	66	95		110
GCF_016458045.1			66	66	67	62	62	69	70	73	74	66	74	76	83	55	76	72	85	99	90	61	93	93	88	78	66	0	97		112
GCF_017164655.1			67	67	44	69	69	70	71	74	75	75	81	83	84	84	85	85	86	100	91	91	94	80	95	95	95	97		112	_
GCF_003299085.1			81	81	82	77	77	84	85	86	89	81	89	91	96	86	91	85	98		105				103	97	97	99	112	0	99
GCF_016457605.1	158	99	94	94	95	90	90	97	98	101	102	94	102	104	111	99	104	98	113	127	118	106	121	121	116	110	110	112	125	99	0
min: 0 max: 158																															